Publicación: Una comparación del Análisis de Ciclo de Vida entre el árido reciclado y el árido natural
dc.contributor.author | Suárez Silgado, Sindy Sofía | spa |
dc.contributor.author | Roca Ramón, Xavier | spa |
dc.contributor.author | Calderón Valdiviezo, Lucrecia | spa |
dc.date.accessioned | 2022-06-01 00:00:00 | |
dc.date.accessioned | 2022-06-17T20:21:20Z | |
dc.date.available | 2022-06-01 00:00:00 | |
dc.date.available | 2022-06-17T20:21:20Z | |
dc.date.issued | 2022-06-01 | |
dc.description.abstract | La industria de la construcción consume muchos recursos de la naturaleza y genera una gran cantidad de residuos al medio, en todas las fases del ciclo de vida. Por esta razón cada vez se incentiva más el uso de material reciclado, en lugar de materia prima original para la producción de nuevos materiales que contribuyan a cerrar el ciclo de los materiales. El objetivo este estudio consistió en evaluar y comparar los impactos medioambientales de la obtención de árido natural y de árido reciclado. Para el cálculo de los impactos medioambientales se siguió la metodología de Análisis de Ciclo de Vida (ACV) y se escogió como método de evaluación el IMPACT 2002+. Se empleó la base de datos Ecoinvent v2.2, sin embargo, estos datos fueron contrastados y comparados con datos obtenidos de fuentes primarias con el fin de que el inventario de ciclo de vida fuera representativo de España. Los resultados de este estudio muestran que la obtención de árido natural presenta impactos en todas las categorías evaluadas, sin embargo el árido reciclado resulta beneficioso para la mayoría de estas categorías. El árido reciclado proveniente de hormigón armado, presenta impactos en la categoría efectos carcinogénicos y no carcinogénicos, debido al proceso de fundición durante el reciclaje del acero, y ahorros significativos en el resto de categorías estudiadas. Por último, el reciclaje del árido en la obra de construcción resultó en la mayoría de categorías, con ahorros más altos con respecto al reciclaje en planta. | spa |
dc.description.abstract | The construction industry consumes many natural resources and generates a large amount of waste in the environment, in all phases of the life cycle. For this reason, the use of recycled material is increasingly being encouraged, instead of original raw material for the production of new materials that contribute to closing the materials cycle. The objective of this study was to evaluate and compare the environmental impacts of obtaining natural aggregate and recycled aggregate, taking Spain as a case study. Life cycle assessment (LCA) and the IMPACT 2002+ method were used to calculate the environmental impacts. To carry out the inventory, primary information was obtained and subsequently complemented and compared with the Ecoinvent v2.2 database. The results of this study show that the obtaining of natural aggregate has environmental impacts on all the evaluated categories. Recycled aggregate from reinforced concrete has impacts on the carcinogenic and non-carcinogenic effects category. However, it results in significant savings in the other categories. Recycling aggregate on the construction site resulted in higher savings in most categories than recycling aggregate at the plant. | eng |
dc.format.mimetype | application/pdf | eng |
dc.identifier.doi | 10.24050/reia.v19i38.1515 | |
dc.identifier.eissn | 2463-0950 | |
dc.identifier.issn | 1794-1237 | |
dc.identifier.uri | https://repository.eia.edu.co/handle/11190/5160 | |
dc.identifier.url | https://doi.org/10.24050/reia.v19i38.1515 | |
dc.language.iso | eng | eng |
dc.publisher | Fondo Editorial EIA - Universidad EIA | spa |
dc.relation.bitstream | https://revistas.eia.edu.co/index.php/reveia/article/download/1515/1449 | |
dc.relation.citationedition | Núm. 38 , Año 2022 : . | spa |
dc.relation.citationendpage | 15 | |
dc.relation.citationissue | 38 | spa |
dc.relation.citationstartpage | 3801 pp. 1 | |
dc.relation.citationvolume | 19 | spa |
dc.relation.ispartofjournal | Revista EIA | spa |
dc.relation.references | ACR, 2015. Servidor de mapas de la Agencia Catalana de Residuos. [en línea]. 2015. [Consultado el 11 mayo 2015]. Disponible en: http://oslo.geodata.es/arc/mapa.php. | eng |
dc.relation.references | AFA, 2010. Asociación de Fabricantes de Áridos de la Rioja. Mejora de la gestión energética en las canteras y graveras de la Rioja [en línea]. 2010. [Consultado el 18 octubre 2014]. Disponible en: http://www.larioja.org/npRioja/default/defaultpage.jsp?idtab=456440&IdDoc=515711. | eng |
dc.relation.references | ALVES, A V, VIEIRA, T F, DE BRITO, J and CORREIA, J R, 2014. Mechanical properties of structural concrete with fine recycled ceramic aggregates. Construction and Building Materials. Vol. 64, n° 0, p. 103‑113. https://doi.org/10.1016/j.conbuildmat.2014.04.037 | eng |
dc.relation.references | ANDREW, R. M.: Global CO2 emissions from cement production, 1928–2018, 2019 Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-152 in review, 2019. | eng |
dc.relation.references | BOLAJI, B O and HUAN, Z, 2013. Ozone depletion and global warming: Case for the use of natural refrigerant – a review. Renewable and Sustainable Energy Reviews. Vol. 18, n° 0, p. 49‑54. https://doi.org/10.1016/j.rser.2012.10.008 | eng |
dc.relation.references | COLOMBANI, Marie, 2014. ACV de bolsas de compra. Aplicación a Córcega. Análisis del cambio de bolsas de un solo uso por alternativas reutilizables. S.l. : Tesis de máster. Universidad Politécnica de Cataluña. | eng |
dc.relation.references | DOMBROWSKI, U and ERNST, S, 2014. Effects of Climate Change on Factory Life Cycle. Procedia {CIRP}. Vol. 15, n° 0, p. 337‑342. https://doi.org/10.1016/j.procir.2014.06.012 | eng |
dc.relation.references | FERREIRA, Tiago, 2013. Concrete incorporating ceramic recycled fine aggregate. Thesis of master. Technical Lisbon. Portugal. | eng |
dc.relation.references | FERRÍS I TORTAJADA, J.A; et al, 2003. Autobuses escolares y motores diesel: contaminación atmosférica, exposición pediátrica y efectos adversos en la salud humana. Revista Española de Pediatria. 2003. Vol. 59, p. 132‑145. | eng |
dc.relation.references | GARCÍA OCA, Laura, 2008. Análisis de Ciclo de Vida en la aplicación intensiva de energías renovables en el ciclo de agua. Tesis de máster. Universidad Politécnica de Cataluña, pág. 40-43. | eng |
dc.relation.references | GREMI D’ÀRIDS DE CATALUNYA, 2015. Extracció i tractament d’àrids al territori català. [en línea] [Consultado el 11 julio 2015]. Disponible en : http://www.gremiarids.com/ca/que-es-el-gremi.html. | eng |
dc.relation.references | IACOBOAEA, Cristina, ALDEA, Mihaela, PETRESCU Florian, 2019. Construction and demolition waste - a challenge for the European Union?. Theoretical and Empirical Researches in Urban Management, Vol. 14, No. 1, pp. 30-52. https://www.researchgate.net/publication/331328615_CONSTRUCTION_AND_DEMOLITION_WASTE-A_CHALLENGE_FOR_THE_EUROPEAN_UNION | eng |
dc.relation.references | ILLANKOON, I.M. Chethana S., TAM, Vivian W.Y., LE, Khoa N., SHEN, Liyin, 2017. Key credit criteria among international green building rating tools. Journal of Cleaner Production. Vol. 164, p. 209–220. https://doi.org/10.1016/j.jclepro.2017.06.206 | eng |
dc.relation.references | ISMAIL, Sallehan, KWAN, Wai Hoe, RAMLI, Mahyuddin, 2017. Mechanical strength and durability properties of concrete containing treated recycled concrete aggregates under different curing conditions. Construction and Building Materials. Vol. 155, p. 296–306. https://doi.org/10.1016/j.conbuildmat.2017.08.076 | eng |
dc.relation.references | KIEN, Bui, SATOMI, Tomoaki, TAKAHASHI, Hiroshi, 2017.Improvement of mechanical properties of recycled aggregate concrete basing on a new combination method between recycled aggregate and natural aggregate. Construction and Building Materials. Vol. 148, p. 376–385. https://doi.org/10.1016/j.conbuildmat.2017.05.084. | eng |
dc.relation.references | KRISHNARAJ, R, 2015. Contemporary and futuristic views of pollution control devices in foundries. Ecotoxicology and Environmental Safety. Vol. 120, p. 130‑135. https://doi.org/10.1016/j.ecoenv.2015.05.045 | eng |
dc.relation.references | KULKARNI, Pavan S, BORTOLI, D, SALGADO, R, ANTÓN, M, COSTA, M J and SILVA, A M, 2011. Tropospheric ozone variability over the Iberian Peninsula. In : Atmospheric Environment Vol. 45, n° 1, p. 174‑182. https://doi.org/10.1016/j.atmosenv.2011.02.046 | eng |
dc.relation.references | LIMBACHIYA, Mukesh, MEDDAH, Mohammed Seddik and OUCHAGOUR, Youssef, 2012. Use of recycled concrete aggregate in fly-ash concrete. In : Construction and Building Materials. Vol. 27, n° 1, p. 439‑449. https://doi.org/10.1016/j.conbuildmat.2011.07.023 | eng |
dc.relation.references | MENEGAKI, Maria, DAMIGOS, Dimitris, 2018. A review on current situation and challenges of construction and demolition waste management. Current Opinion in Green and Sustainable Chemistry. Vol. 13, p. 8-15 DOI: 10.1016/j.cogsc.2018.02.010 | eng |
dc.relation.references | MERCANTE, Irma, BOVEA EDO, María, IBÁÑEZ FORÉS, Valeria and ARENA, Alejandro, 2010. Perfil ambiental de la gestión de los residuos de construcción y demolición. Elaboración de los inventarios de ciclo de vida. 3er Simposio Iberoamericano de Ingeniería de Residuos. Brasil, septiembre de 8-10. | eng |
dc.relation.references | MINISTERIO DE INDUSTRIA ENERGÍA Y TURISMO, 2015. Estadística minera de España 2013. [en línea] [Consultado el 4 septiembre 2015]. Disponible en: http://www.minetur.gob.es/energia/mineria/Estadistica/Datos anuales/anual 2013.pdf. | eng |
dc.relation.references | MISTRI Abhijit, KUMAR BHATTACHARYYA Sriman, DHAMI Navdeep, MUKHERJEE Abhijit, BARAI Sudhirkumar V.. 2019. Petrographic investigation on recycled coarse aggregate and identification the reason behind the inferior performance. Construction and Building Materials. Vol. 221, p. 399 ‑408. https://doi.org/10.1016/j.conbuildmat.2019.06.085 | eng |
dc.relation.references | ORTIZ, Oscar; PASQUALINO, Jorgelina C.; DIEZ, Gloria; CASTELLS, Francesc. 2010. The environmental impact of the construction phase: an application to composite walls from a life cycle perspective, Resources, Conservation and Recycling 54(11): 832–840. https://doi.org/10.1016/j.resconrec.2010.01.002 | eng |
dc.relation.references | PACHECO-TORGAL, F, 2014. Eco-efficient construction and building materials research under the {EU} Framework Programme Horizon 2020. Construction and Building Materials [en línea]. 2014. Vol. 51, n° 0, p. 151‑162. https://doi.org/10.1016/j.conbuildmat.2013.10.058 | eng |
dc.relation.references | RALUY RIVERA, Rosa, 2009. Evaluación ambiental de la integración de procesos de producción de agua con sistemas de producción de energía. Tesis doctoral. Universidad de Zaragoza, España. | eng |
dc.relation.references | ROY, Pierre-Olivier, AZEVEDO, Ligia B, MARGNI, Manuele, VAN ZELM, Rosalie, DESCHÊNES, Louise and HUIJBREGTS, Mark A J, 2014. Characterization factors for terrestrial acidification at the global scale: A systematic analysis of spatial variability and uncertainty. Science of The Total Environment. Vol. 500–501, p. 270‑276. DOI: 10.1016/j.scitotenv.2014.08.099 | eng |
dc.relation.references | SICAKOVA, Alena, DRAGANOVSKA, Martina, KOVAC, Marek, 2017. Water Absorption Coefficient as a Performance Characteristic of Building Mixes Containing Fine Particles of Selected Recycled Materials. Procedia Engineering. Vol. 180, p. 1256‑1265. https://doi.org/10.1016/j.proeng.2017.04.287 | eng |
dc.relation.references | SODSAI, Promtida and RACHDAWONG, Pichaya, 2012. The current situation on CO2 emissions from the steel industry in Thailand and mitigation options. In : International Journal of Greenhouse Gas Control. Vol. 6, n° 0, p. 48‑55. DOI: 10.1016/j.ijggc.2011.11.018. | eng |
dc.relation.references | SOLÍS-GUZMÁN, Jaime, MARRERO, Madelyn, MONTES-DELGADO, María Victoria, and RAMIREZ DE ARELLANO, Antonio, 2009. A Spanish model for quantification and management of construction waste. Waste Management 29 (9), pp. 2542–2548. DOI: 10.1016/j.wasman.2009.05.009. | eng |
dc.relation.references | SUÁREZ SILGADO, Sindy Sofía, 2017. Materiales pétreos a partir de residuos de construcción. Propuesta metodológica para la evaluación ambiental y económica. Alemania. Editorial Publicia ISBN: 978-3-8416-8281-9 v. pag. 473. | eng |
dc.relation.references | SUÁREZ SILGADO, Sindy Sofía, ROCA, Xavier and GASSO, Santiago, 2016. Product-specific life cycle assessment of recycled gypsum as a replacement for natural gypsum in ordinary Portland cement: application to the Spanish context. Journal of Cleaner Production. Vol. 117, p. 150‑159. https://doi.org/10.1016/j.jclepro.2016.01.044 | eng |
dc.relation.references | SUBHASIS, Pradhan, TIWARI, Bikash, HUMAR, Shailendra, SUDHIRKUMAR, Barai, 2019. Comparative LCA of recycled and natural aggregate concrete using Particle Packing Method and conventional method of design mix. Journal of Cleaner Production. Vol. 228, p. 679‑691. DOI: 10.1016/j.jclepro.2019.04.328. | eng |
dc.relation.references | TAM, Vivian, LE, Khoa, 2019. Sustainable Construction Technologies Lyfe-cicle Assessment. Butterworth-Heinemann is an imprint of Elsevier. Copyrigth 2019 Elsevier. ISBN: 978-0-12-811749-1.Chapter 1, p. 3. | eng |
dc.relation.references | THOMAS, Job, THAICKAVIL, Nassif Nazeer, WILSON, P.M., 2018. Strength and durability of concrete containing recycled concrete aggregates. Journal of Building Engineering. Vol, 19, p. 349-365. https://doi.org/10.1016/j.jobe.2018.05.007 | eng |
dc.relation.references | TRUELOVE, Heather Barnes and PARKS, Craig, 2012. Perceptions of behaviors that cause and mitigate global warming and intentions to perform these behaviors. In : Journal of Environmental Psychology. Vol. 32, n° 3, p. 246‑259. https://doi.org/10.1016/j.jenvp.2012.04.002 | eng |
dc.relation.references | TURK, Janez, COTIČ, Zvonko, MLADENOVIČ, Ana and ŠAJNA, Aljoša, 2015. Environmental evaluation of green concretes versus conventional concrete by means of {LCA}. Waste Management. Vol. 45, p. 194‑205. DOI: 10.1016/j.wasman.2015.06.035. | eng |
dc.relation.references | UN Environment and International Energy Agency (2017): Towards a zero-emission, efficient, and resilient buildings and construction sector. Global Status Report 2017. | eng |
dc.relation.references | VINAYAK Rajan, SINGH BATH Gurprit, GARG Vineet, 2017. Comparison of properties between natural aggregates & recycles aggregates. International Journal of Innovative and Emerging Research in Engineering. Vol. 4, Issue 2. Accessed October 07, 2019. Available in http://www.ijiere.com/FinalPaper/FinalPaperCOMPARISON%20OF%20PROPERTIES%20BETWEEN%20%20NATURAL%20AGGREGATES%20&%20RECYCLED%20AGGREGATES171175.pdf. | eng |
dc.relation.references | VOSSBERG, Cherilyn, MASON-JONES, Kyle and COHEN, Brett, 2014. An energetic life cycle assessment of C&D waste and container glass recycling in Cape Town, South Africa. In : Resources, Conservation and Recycling. Vol. 88, n° 0, p. 39‑49. https://doi.org/10.1016/j.resconrec.2014.04.009. | eng |
dc.relation.references | WALLINGTON, T J, ANDERSEN, M P Sulbaek and NIELSEN, O J, 2014. Atmospheric chemistry of short-chain haloolefins: Photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs). Chemosphere Vol. 129, p.135-141. DOI: 10.1016/j.chemosphere.2014.06.092. | eng |
dc.relation.references | YELLISHETTY, Mohan, MUDD, Gavin M, RANJITH, P G and THARUMARAJAH, A, 2011. Environmental life-cycle comparisons of steel production and recycling: sustainability issues, problems and prospects. Environmental Science & Policy. Vol. 14, nº 6, p. 650–663. https://doi.org/10.1016/j.envsci.2011.04.008. | eng |
dc.relation.references | ZABALZA BRIBIÁN, Ignacio, VALERO CAPILLA, Antonio and ARANDA USÓN, Alfonso, 2011. Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment. Vol. 46, n° 5, p. 1133‑1140. https://doi.org/10.1016/j.buildenv.2010.12.002 | eng |
dc.relation.references | ZAZURCA RUIZ-CERDÀ, Santi, 2012. Estudio medioambiental de una vivienda unifamiliar en Barcelona. Proyecto final de carrera. Universidad Politécnica de Cataluña. | eng |
dc.rights | Revista EIA - 2022 | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | eng |
dc.rights.creativecommons | Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | eng |
dc.source | https://revistas.eia.edu.co/index.php/reveia/article/view/1515 | eng |
dc.subject | Natural aggregate | eng |
dc.subject | Recycled aggregate | eng |
dc.subject | Recycling | eng |
dc.subject | Environmental impact | eng |
dc.subject | Construction | eng |
dc.subject | Life Cycle Assessment | eng |
dc.subject | Evaluation method | eng |
dc.subject | IMPACT 2002 | eng |
dc.subject | Ecoinvent | eng |
dc.subject | agregado natural | spa |
dc.subject | agregado reciclado | spa |
dc.subject | reciclaje | spa |
dc.subject | impacto medioambiental | spa |
dc.subject | construcción | spa |
dc.subject | Análisis de Ciclo de Vida | spa |
dc.subject | método de evaluación | spa |
dc.subject | IMPACT 2002 | spa |
dc.subject | Ecoinvent | spa |
dc.title | Una comparación del Análisis de Ciclo de Vida entre el árido reciclado y el árido natural | spa |
dc.title.translated | A comparative Life Cycle Assessment between recycled aggregate and natural aggregate | eng |
dc.type | Artículo de revista | spa |
dc.type | Journal article | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | eng |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | eng |
dc.type.content | Text | eng |
dc.type.driver | info:eu-repo/semantics/article | eng |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTREF | eng |
dc.type.version | info:eu-repo/semantics/publishedVersion | eng |
dspace.entity.type | Publication |