Publicación:
Efecto de la incorporación de pasto estrella sobre el mejoramiento del proceso y la calidad del producto del compostaje de biorresiduos

dc.contributor.authorTorres Lozada, Patriciaspa
dc.contributor.authorMarmolejo Rebellón, Luis Fernandospa
dc.contributor.authorArias Giraldo, Cielospa
dc.contributor.authorForonda Zapata, Kevinspa
dc.contributor.authorSoto Paz, Jonathanspa
dc.date.accessioned2020-02-03 00:00:00
dc.date.accessioned2022-06-17T20:20:35Z
dc.date.available2020-02-03 00:00:00
dc.date.available2022-06-17T20:20:35Z
dc.date.issued2020-02-03
dc.description.abstractLa predominancia orgánica de los Biorresiduos (BOM) presentes en los Residuos Sólidos Municipales, favorece su aprovechamiento mediante estrategias como el compostaje; sin embargo, presentan deficiencias que pueden ser mitigadas con la incorporación de materiales acondicionadores. En este estudio se evaluó el efecto de la incorporación de Pasto Estrella (PE) como material de soporte, sobre el compostaje de BOM (proporciones BOM:PE A1 90:10, A2 80:20 y A3 70:30), evidenciándose efectos favorables. A2 mantuvo las mayores temperaturas; A2 y A3 registraron la mayor reducción de sólidos volátiles (SV) y concentración final de nitrógeno total (NT). Los productos finales de A2 y A3 también presentaron mejor calidad en términos de capacidad de intercambio catiónico, contenido de nutrientes (fósforo, potasio y nitrógeno totales), densidad aparente, capacidad de retención de humedad y contenido de materia orgánica, siendo el producto de A2 el de mayor valor agronómico, de acuerdo con la Norma Técnica Colombiana 5167.spa
dc.description.abstractThe predominantly organic composition of biowaste (BW) present in municipal solid wastes, enhances its use through composting; however, these present physicochemical deficiencies that can be mitigated with the incorporation of conditioning materials as the support materials (SM). On this study, it was evaluated the effect of the incorporation of star grass (SG) on BW composting in four BW:SG ratios (A0-100: 00, A1-90: 10, A2-80: 20, A3-70: 30), showing favorable effects with respect to A0 (100% BOM). A2 maintained the highest temperatures; A2 and A3 recorded the greatest reduction of volatile solids (VS) and final concentration of total nitrogen (TN). The final products of A2 and A3 also presented better quality in terms of cation exchange capacity, nutrient content (total phosphorus, potassium and nitrogen), bulk density, moisture retention capacity and organic matter content; being A2 product, the material with highest agronomic value, in accordance with Colombian Technical Standard. Proportions less or equal to the one evaluated in A1, do not have a significant effect on the process and quality of the final product and, proportions greater than A3 could favor the loss of nitrogen due to the increase in porosity, thus decreasing the agricultural value of the product.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v17i33.1352
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5098
dc.identifier.urlhttps://doi.org/10.24050/reia.v17i33.1352
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1352/1284
dc.relation.citationeditionNúm. 33 , Año 2020spa
dc.relation.citationendpage11
dc.relation.citationissue33spa
dc.relation.citationstartpage33011 pp. 1
dc.relation.citationvolume17spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAcosta-Durán, C. M.; Solís-Pérez, O.;Villegas-Torres, O. G.; Cardoso-Vigueros, L. (2013). Precomposteo de residuos orgánicos y su efecto En la dinámica poblacional de einsenia foetida. Agronomía Costarricense, 37 (1), pp. 127-139.spa
dc.relation.referencesAli, U.; Khalid, A.; Mahmood, T; Aziz, I. (2013). Accelerated Biodegradation of Solid Organic Waste through Biostimulation. Proceedings of the Pakistan Academy of Sciences, 50 (1), pp. 37-46.spa
dc.relation.referencesBarrena, R.; Vázquez, F.; Sánchez, A. (2006). The use of respiration indices in the composting process: a review. Waste Management & Research, 24 (1), pp. 24-37. https://doi.org/10.1177 / 0734242X06062385spa
dc.relation.referencesBernal, M. P.; Alburquerque; J. A.; Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource technology, 100 (22), pp. 5444-5453. https://doi.org/10.1016/j.biortech.2008.11.027spa
dc.relation.referencesBohórquez, A.; Puentes, Y.; Menjivar, J. C. (2014). Evaluación de la calidad del compost producido a partir de subproductos agroindustriales de caña de azúcar. Corpoica Ciencia y Tecnología Agropecuaria, 15 (1), pp 73-81spa
dc.relation.referencesCáceres, R., Malińska, K. y Marfà, O. (2018). Nitrification within composting: A review. Waste Management, 72, pp. 119-137. https://doi.org/10.1016/j.wasman.2017.10.049spa
dc.relation.referencesChanpla, M.; Kullavanijaya, P.; Janejadkarn, A.; Chavalparit, O. (2017) Effect of harvesting age and performance evaluation on biogasification from Napier grass in separated stages process. KSCE Journal of Civil Engineering, pp. 1–6. https://doi.org/10.1007/s12205-017-1164-yspa
dc.relation.referencesCampuzano, R.; González-Martínez, S. (2016). Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management, pp. 54: 3-12. https://doi.org/10.1016/j.wasman.2016.05.016spa
dc.relation.referencesCesaro, A.; Belgiorno, V.; Guida, M. (2015). Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resources, Conservation and Recycling ,94(0), pp. 72-79. https://doi.org/10.1016/j.resconrec.2014.11.003spa
dc.relation.referencesDe Guardia, A.; Mallard, P.; Teglia, C.; Marin, A.; Le Pape, C.; Launay, M.; Benoist, J. C.; Petiot, C. (2010). Comparison of five organic wastes regarding their behaviour during composting: Part 1, biodegradability, stabilization kinetics and temperature rise. Waste Management, 30(3), pp. 402-414. https://doi.org/10.1016/j.wasman.2009.10.019spa
dc.relation.referencesFaverial, J.; Boval, M.; Sierra, J.; Sauvant, D. (2016). End-product quality of composts produced under tropical and temperate climates using different raw materials: A meta-analysis. Journal of Environmental Management, 183, pp. 909-916. https://doi.org/10.1016 / j.jenvman.2016.09.057spa
dc.relation.referencesGötze, R.; Boldrin, A.; Scheutz, C.; Astrup, T. F. (2016). Physico-chemical characterisation of material fractions in household waste: Overview of data in literature. Waste Management, 49, pp. 3-14. https://doi.org/10.1016 / j.wasman.2016.01.008spa
dc.relation.referencesHaynes, R.J.; Belyaeva, O. N.; Zhou, Y. F. (2015). Particle size fractionation as a method for characterizing the nutrient content of municipal green waste used for composting. Waste Management, 35, pp. 48-54. https://doi.org/10.1016/j.wasman.2014.10.002spa
dc.relation.referencesHemidat, S.; Jaar, M.; Nassour, A.; Nelles, M. (2018). Monitoring of Composting Process Parameters: A Case Study in Jordan. Waste and Biomass Valorization, 9(12), pp. 2257-2274. https://doi.org/10.1007 / s12649-018-0197-xspa
dc.relation.referencesICONTEC (2011). Norma Técnica Colombiana 5167. Productos para la Industria Agrícola, Productos Orgánicos Usados como Abonos o Fertilizantes y Enmiendas de Suelo.spa
dc.relation.referencesJiang T., Schuchardt F., Li G., Guo R. y Zhao Y. (2011). Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. Journal of Environmental Sciences, 23 (10), 1754-1760. https://doi.org/10.1016/S1001-0742(10)60591-8spa
dc.relation.referencesJ Jiang-Ming, Z. (2017). Effect of turning frequency on co-composting pig manure and fungus residue. Journal of the Air & Waste Management Association, 67 (3), 313-321. https://doi.org/10.1080 / 10962247.2016.1232666spa
dc.relation.referencesKalemelawa, F., Nishihara, E., Endo, T., Ahmad, Z., Yeasmin, R., Tenywa, M. M. y Yamamoto, S. (2012). An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment. Bioresource Technology, 126, 375-382. https://doi.org/10.1016/j.biortech.2012.04.030spa
dc.relation.referencesKumar, M., Ou, Y. y Lin, J. (2010). Co-composting of green and food waste at low C/N ratio. Waste Management, 30(4), 602-609. https://doi.org/10.1016/j.wasman.2009.11.023spa
dc.relation.referencesLasaridi, K., Protopapa, I., Kotsou, M., Pilidis, G., Manios, T. y Kyriacou, A. (2006). Quality assessment of composts in the Greek market: The need for standards and quality assurance. Journal of Environmental Management, 80 (1), 58-65. https://doi.org/10.1016 / j.jenvman.2005.08.011spa
dc.relation.referencesLi, Z.; Lu, H.; Ren, L.; He, L. (2013). Experimental and modeling approaches for food waste composting: A review. Chemosphere, 93(7), pp. 1247-1257. https://doi.org/10.1016/j.chemosphere.2013.06.064spa
dc.relation.referencesMartínez-Salgado, M.M.; Ortega-Blu, R.; Janssens, M.; Fincheira, P. (2019). Grape pomace compost as a source of organic matter: Evolution of quality parameters to evaluate maturity and stability. Journal of Cleaner Production, 216, pp. 56-63. https://doi.org/10.1016/j.jclepro.2019.01.156spa
dc.relation.referencesNavia-Cuetia, C. A.; Zemanate-Cordoba, Y.; Morales-Velasco, S.; Alonso Prado, F.; Albán López, N. (2013). Evaluation of different formulations From waste composting crop tomato (solanum lycopersicum). Biotecnología en el Sector Agropecuario y Agroindustrial, 2, pp. 165 - 173.spa
dc.relation.referencesNCh -Norma chilena de compost 2880- 2004. (2015). Compost - Clasificación y requisitos, 23. Santiago de Chile, 27.spa
dc.relation.referencesNigussie, A., Bruun, S., Kuyper, T. W. y De Neergaard, A. (2017). Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability. Chemosphere, 166, 352-362. https://doi.org/10.1016/j.chemosphere.2016.09.123spa
dc.relation.referencesOnwosi, C. O., Igbokwe, V. C., Odimba, J. N., Eke, I. E., Nwankwoala, M. O., Iroh, I. N. y Ezeogu, L. I. (2017). Composting technology in waste stabilization: On the methods, challenges and future prospects. Journal of Environmental Management, 190, 140-157. https://doi.org/10.1016/j.jenvman.2016.12.051spa
dc.relation.referencesOudart, D., Robin, P., Paillat, J.-M. y Paul, E. J. W. M. 2015. Modelling nitrogen and carbon interactions in composting of animal manure in naturally aerated piles. 46, 588-598. https://doi.org/10.1016/j.wasman.2015.07.044spa
dc.relation.referencesOviedo, R.; Marmolejo, L.; Torres, P. (2017). Advances in research on biowaste composting in small municipalities of developing countries. Lessons from Colombia. Revista Ingenieria Investigacion y Tecnologia, 18(01), pp. 31-42.spa
dc.relation.referencesParkinson, R., Gibbs, P., Burchett, S. y Misselbrook, T. (2004). Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure. Bioresource Technology, 91 (2), 171-178. https://doi.org/10.1016/S0960-8524(03)00174-3spa
dc.relation.referencesPonsá, S., Gea, T. y Sánchez, A. (2010). Different Indices to Express Biodegradability in Organic Solid Wastes. Waste Managament, 39 (2), 706-712. https://doi.org/10.2134 / jeq2009.0294spa
dc.relation.referencesReyes-Torres, M., Oviedo-Ocaña, E. R., Dominguez, I., Komilis, D. y Sánchez, A. (2018). A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Management, 77, 486-499. https://doi.org/10.1016/j.wasman.2018.04.037spa
dc.relation.referencesRichardson, A. E. y Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol, 156 (3), 989-996. https://doi.org/10.1104 / pp.111.175448spa
dc.relation.referencesSoobhany, N. (2018). Assessing the physicochemical properties and quality parameters during composting of different organic constituents of Municipal Solid Waste. Journal of Environmental Chemical Engineering, 6 (2), 1979-1988. https://doi.org/10.1016/j.jece.2018.02.049spa
dc.relation.referencesSoto-Paz, J., Oviedo-Ocaña, R., Marmolejo-Rebellón, L. F. y Manyoma-Velásquez, P. C. (2017). Compostaje de biorresiduos: Tendencias de investigación y pertinencia en países en desarrollo. DYNA, 84(203), pp. 334-342. https://doi.org/10.15446/dyna.v84n203.61549spa
dc.relation.referencesSundberg, C., Yu, D., Franke-Whittle, I., Kauppi, S., Smårs, S., Insam, H., Romantschuk, M. y Jönsson, H. (2013). Effects of pH and microbial composition on odour in food waste composting. Waste Management, 33 (1), 204-211. https://doi.org/10.1016/j.wasman.2012.09.017spa
dc.relation.referencesThi, N., Kumar, G. y Lin, C.Y. (2015). An overview of food waste management in developing countries: Current status and future perspective. Journal of Environmental Management, 157, 220-229. https://doi.org/10.1016/j.jenvman.2015.04.022spa
dc.relation.referencesTorres, P.; Imery, R.; Perez, A.; Uribe, I. E.; Escobar Rivera, J. C. (2007). Compostaje de biosólidos de Plantas de Tratamiento de Aguas Residuales. Engenharia Agricola, 27 (1), pp.267 - 275. https://doi.org/10.1590 / S0100-69162007000100021spa
dc.relation.referencesVandecasteele, B., Boogaerts, C. y Vandaele, E. (2016). Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality. Waste Management, 58, 169-180. https://doi.org/10.1016/j.wasman.2016.09.012spa
dc.relation.referencesVan Soest, PJ.; Wine, R.; (1967). Uso de detergentes en el análisis de alimentos fibrosos. IV. Determinación de permanganato. Assoc. Oficial Anal. Chem 50(1): 6. Waqas, M., Nizami, A. S., Aburiazaiza, A. S., Barakat, M. A., Rashid, M. I. y Ismail, I. M. I. (2018). Optimizing the process of food waste compost and valorizing its applications: A case study of Saudi Arabia. Journal of Cleaner Production, 176, 426-438. https://doi.org/10.1016/j.jclepro.2017.12.165spa
dc.relation.referencesZhang, L. y Sun, X. (2016). Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Management, 48, 115-126. https://doi.org/10.1016/j.wasman.2015.11.032spa
dc.relation.referencesZhou, H., Zhao, Y., Yang, H., Zhu, L., Cai, B., Luo, S., Cao, J. y Wei, Z. (2018). Transformation of organic nitrogen fractions with different molecular weights during different organic wastes composting. Bioresource Technology, 262, 221-228. https://doi.org/10.1016 / j.biortech.2018.04.088.spa
dc.rightsRevista EIA - 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1352spa
dc.subjectBiorresiduos - BOMspa
dc.subjectCompostajespa
dc.subjectCo-compostajespa
dc.subjectMaterial de soportespa
dc.subjectPasto Estrellaspa
dc.subjectBiowasteeng
dc.subjectCo-compostingeng
dc.subjectStar Grasseng
dc.subjectSupport materialeng
dc.subjectCompostingeng
dc.titleEfecto de la incorporación de pasto estrella sobre el mejoramiento del proceso y la calidad del producto del compostaje de biorresiduosspa
dc.title.translatedEffect of grass star incorporation on the composting biowaste process and on the quality of the producteng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos