Publicación: Análisis de la infraestructura de transporte aplicando redes complejas: red de avenidas de la ciudad de Celaya, Guanajuato
dc.contributor.author | Hernández Torres, José Eduardo | spa |
dc.contributor.author | Hernández-González, Salvador | spa |
dc.contributor.author | Jiménez-García, José Alfredo | spa |
dc.contributor.author | Figueroa-Fernández, Vicente | spa |
dc.date.accessioned | 2020-02-03 00:00:00 | |
dc.date.accessioned | 2022-06-17T20:20:18Z | |
dc.date.available | 2020-02-03 00:00:00 | |
dc.date.available | 2022-06-17T20:20:18Z | |
dc.date.issued | 2020-02-03 | |
dc.description.abstract | La infraestructura de los países y las ciudades la forman sistemas de redes; en el caso del transporte terrestre, la infraestructura está formada por redes de carreteras, avenidas y calles. Las medidas de centralidad de las redes complejas permiten cuantificar el desempeño de cada intersección de avenidas o calles en la red. En este artículo, se analizó la red de avenidas principales de la ciudad de Celaya, Guanajuato empleando el enfoque de redes complejas. De la centralidad de intermediación, centralidad de la cercanía, diámetro y el grado promedio, se identificaron las 5 intersecciones con un papel fundamental en la red de vialidades de la ciudad. Los resultados son de interés para profesionales dedicados al diseño de sistemas logísticos y transporte. | spa |
dc.description.abstract | The streets and avenues networks of a city form the infrastructure of land transport systems. The measures of centrality of complex networks allow to quantify the performance of each intersection of avenues or streets in the network. In this article, Celaya’s city network avenues, was analyzed using the complex networks approach. From betweenness centrality, closeness centrality, diameter and average degree; we identify 5 intersections which play a fundamental role in the city's avenue network as well as its location within the city. The results are of interest for professionals dedicated to the design of logistics systems and transportation. | eng |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | 10.24050/reia.v17i33.1305 | |
dc.identifier.eissn | 2463-0950 | |
dc.identifier.issn | 1794-1237 | |
dc.identifier.uri | https://repository.eia.edu.co/handle/11190/5078 | |
dc.identifier.url | https://doi.org/10.24050/reia.v17i33.1305 | |
dc.language.iso | spa | spa |
dc.publisher | Fondo Editorial EIA - Universidad EIA | spa |
dc.relation.bitstream | https://revistas.eia.edu.co/index.php/reveia/article/download/1305/1272 | |
dc.relation.citationedition | Núm. 33 , Año 2020 | spa |
dc.relation.citationendpage | 13 | |
dc.relation.citationissue | 33 | spa |
dc.relation.citationstartpage | 33004 pp 1 | |
dc.relation.citationvolume | 17 | spa |
dc.relation.ispartofjournal | Revista EIA | spa |
dc.relation.references | Barabási, A. L. (2016). Network Science by Albert-László Barabási. https://doi.org/10.2172/881797 | spa |
dc.relation.references | Boeing, G. (2018). A Multi-Scale Analysis of 27,000 Urban Street Networks: Every US City, Town, Urbanized Area, and Zillow Neighborhood. Environmental and Planning B: Urban Analytics and City Science, 1-18. https://doi.org/10.31235/osf.io/hmhts | spa |
dc.relation.references | Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55-71. https://doi:10.1016/j.socnet.2004.11.008 | spa |
dc.relation.references | Cardillo, A., Scellato, S., Latora, V., & Porta, S. (2006). Structural Properties of Planar Graphs of Urban Street Patterns. Physical Review E, 73(6), 1-7. https://doi.org/10.1103/physreve.73.066107 | spa |
dc.relation.references | Cats, O. (2017). Topological evolution of a metropolitan rail transport network: The case of Stockholm. Journal of Transport Geography, 62(June), 172-183. https://doi.org/10.1016/j.jtrangeo.2017.06.002 | spa |
dc.relation.references | Cheng, Y.-Y., Roy, L., Lim, E.-p., & Zhu, F. (2015). Measuring centralities for transportation networks beyond structures. In P. Kazienko, & N. Chawla , Applications of Social Mediaand Social Network Analysis (pp. 23-39). New York: Springer. https://doi.org/10.1007/978-3-319-19003-7_2 | spa |
dc.relation.references | Crucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of urban streets. Physical Review E, 73(3), 1-4. doi:10.1103/PhysRevE.73.036125 https://doi.org/10.1103/physreve.73.036125 | spa |
dc.relation.references | de-la-Peña, J. (2012). Sistemas de Transporte en México: un análisis de centralidad en teoría de redes. Revista Internacional de Estadística y Geografía, 3(3), 72-91. https://doi.org/10.5565/rev/redes.438 | spa |
dc.relation.references | Derrible, S. (2012). Network Centrality of Metro Systems. PlosOne, 2012, 1-10. https://doi:10.1371/journal.pone.0040575 | spa |
dc.relation.references | Derrible, S., & Kennedy, C. (2011). Applications of Graph Theory and Network Science to Transit Network Design. Transport Reviews, 31(4), 495-519. https://doi.org/10.1080/01441647.2010.543709 | spa |
dc.relation.references | Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35-41. https://doi.org/10.2307/3033543 | spa |
dc.relation.references | Fruchterman, T., & Reingold, E. (1991). Graph drawing by Force-directed Placement. Software—Practice and Experience, 21(11), 1129-1164. https://doi.org/10.1002/spe.4380211102 | spa |
dc.relation.references | Gephi.org. (2017). Gephi: The Open Graph Viz Platform. From https://gephi.org/ | spa |
dc.relation.references | Huang, L., Zhu, X., Ye, X., Guo, W., & Wang, J. (2015). Characterizing streethierarchies through networkanalysis and large-scale taxitraffic flow: a case studyof Wuhan, China. Environment and Planning B:Planning and Design, 43(2), 276-296. https://doi.org/10.1177/0265813515614456 | spa |
dc.relation.references | Jian, D., Zhao, Y., & Lu, Q.-C. (2015). Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China. Sustainability, 7(6), 6919-6936. https://doi.org/10.3390/su7066919 | spa |
dc.relation.references | Lotero, R. G. (2014). Vulnerabilidad de redes complejas y aplicaciones al transporte urbano: una revision a la literatura. Revista EIA, 11(21), 67-78. https://doi:10.14508/reia.2014.11.21.67-78 | spa |
dc.relation.references | Newman, M. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27(1), 39-54. https://doi.org/10.1016/j.socnet.2004.11.009 | spa |
dc.relation.references | Newman, M. (2010). Networks: An Introduction. New York, USA: Oxford University Press. | spa |
dc.relation.references | Rodrigue, J.-P., Slack, B., & Comtois, C. (2017). Green Logistics, in Ann M. Brewer , Kenneth J. Button , David A. Hensher. In Handbook of Logistics and Supply-Chain Management (Vol. 2, pp. 339-350). Handbooks in Transport. https://doi.org/10.1108/9780080435930-021 | spa |
dc.relation.references | Rui, J., Ban, Y., Wang, J., & Haas, J. (2013). Exploring the patterns and evolution of self-organized urban street networks through modeling. The European Physical Journal E, 86(3), 86-74. https://doi.org/10.1140/epjb/e2012-30235-7 | spa |
dc.relation.references | Saberi, M., Mahmassani, H., Brockmann, D., & Hosseini, A. (2016). A complex network perspective for characterizing urbantravel demand patterns: graph theoretical analysisof large-scale origin–destination demand networks. Transportation, 44(6), 1383-1402. https://doi.org/10.1007/s11116-016-9706-6 | spa |
dc.relation.references | Strano, E., Viana, M., da-Fontoura-Costa, L., Cardillo, A., Porta, S., & Latora, V. (2013). Urban street networks, a comparative analysis of ten European cities. Environment and Planning B: Planning and Design, 40, 1071-1086. https://doi.org/10.1068/b38216 | spa |
dc.relation.references | Sun, J., & Tang, J. (2011). A Survey of Models and Algorithms for Social Influence Analysis. In C. Agarwal, Social Network Data Analytics (pp. 177-214). Nueva York: Springer Science. https://doi.org/10.1007/978-1-4419-8462-3_7 | spa |
dc.relation.references | Wang, H., Martin-Hernandez, J., & van Mieghem, P. (2008). Betweenness centrality in a weighted network. Physical Review E, 77, 1-10. https://doi.org/10.1103/physreve.77.046105 | spa |
dc.rights | Revista EIA - 2020 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.creativecommons | Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | spa |
dc.source | https://revistas.eia.edu.co/index.php/reveia/article/view/1305 | spa |
dc.subject | Red de transporte | spa |
dc.subject | redes complejas | spa |
dc.subject | intermediación | spa |
dc.subject | cercanía | spa |
dc.subject | Transport network | eng |
dc.subject | complex networks | eng |
dc.subject | betweenness centrality | eng |
dc.subject | Closeness centrality | eng |
dc.title | Análisis de la infraestructura de transporte aplicando redes complejas: red de avenidas de la ciudad de Celaya, Guanajuato | spa |
dc.title.translated | Application of complex networks theory for transportation infrastructure analysis: Celaya’s city avenue network | eng |
dc.type | Artículo de revista | spa |
dc.type | Journal article | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTREF | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dspace.entity.type | Publication |