Publicación:
Análisis de la infraestructura de transporte aplicando redes complejas: red de avenidas de la ciudad de Celaya, Guanajuato

dc.contributor.authorHernández Torres, José Eduardospa
dc.contributor.authorHernández-González, Salvadorspa
dc.contributor.authorJiménez-García, José Alfredospa
dc.contributor.authorFigueroa-Fernández, Vicentespa
dc.date.accessioned2020-02-03 00:00:00
dc.date.accessioned2022-06-17T20:20:18Z
dc.date.available2020-02-03 00:00:00
dc.date.available2022-06-17T20:20:18Z
dc.date.issued2020-02-03
dc.description.abstractLa infraestructura de los países y las ciudades la forman sistemas de redes; en el caso del transporte terrestre, la infraestructura está formada por redes de carreteras, avenidas y calles. Las medidas de centralidad de las redes complejas permiten cuantificar el desempeño de cada intersección de avenidas o calles en la red. En este artículo, se analizó la red de avenidas principales de la ciudad de Celaya, Guanajuato empleando el enfoque de redes complejas. De la centralidad de intermediación, centralidad de la cercanía, diámetro y el grado promedio, se identificaron las 5 intersecciones con un papel fundamental en la red de vialidades de la ciudad. Los resultados son de interés para profesionales dedicados al diseño de sistemas logísticos y transporte.spa
dc.description.abstractThe streets and avenues networks of a city form the infrastructure of land transport systems. The measures of centrality of complex networks allow to quantify the performance of each intersection of avenues or streets in the network. In this article, Celaya’s city network avenues, was analyzed using the complex networks approach. From betweenness centrality, closeness centrality, diameter and average degree; we identify 5 intersections which play a fundamental role in the city's avenue network as well as its location within the city. The results are of interest for professionals dedicated to the design of logistics systems and transportation.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v17i33.1305
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5078
dc.identifier.urlhttps://doi.org/10.24050/reia.v17i33.1305
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1305/1272
dc.relation.citationeditionNúm. 33 , Año 2020spa
dc.relation.citationendpage13
dc.relation.citationissue33spa
dc.relation.citationstartpage33004 pp 1
dc.relation.citationvolume17spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesBarabási, A. L. (2016). Network Science by Albert-László Barabási. https://doi.org/10.2172/881797spa
dc.relation.referencesBoeing, G. (2018). A Multi-Scale Analysis of 27,000 Urban Street Networks: Every US City, Town, Urbanized Area, and Zillow Neighborhood. Environmental and Planning B: Urban Analytics and City Science, 1-18. https://doi.org/10.31235/osf.io/hmhtsspa
dc.relation.referencesBorgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55-71. https://doi:10.1016/j.socnet.2004.11.008spa
dc.relation.referencesCardillo, A., Scellato, S., Latora, V., & Porta, S. (2006). Structural Properties of Planar Graphs of Urban Street Patterns. Physical Review E, 73(6), 1-7. https://doi.org/10.1103/physreve.73.066107spa
dc.relation.referencesCats, O. (2017). Topological evolution of a metropolitan rail transport network: The case of Stockholm. Journal of Transport Geography, 62(June), 172-183. https://doi.org/10.1016/j.jtrangeo.2017.06.002spa
dc.relation.referencesCheng, Y.-Y., Roy, L., Lim, E.-p., & Zhu, F. (2015). Measuring centralities for transportation networks beyond structures. In P. Kazienko, & N. Chawla , Applications of Social Mediaand Social Network Analysis (pp. 23-39). New York: Springer. https://doi.org/10.1007/978-3-319-19003-7_2spa
dc.relation.referencesCrucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of urban streets. Physical Review E, 73(3), 1-4. doi:10.1103/PhysRevE.73.036125 https://doi.org/10.1103/physreve.73.036125spa
dc.relation.referencesde-la-Peña, J. (2012). Sistemas de Transporte en México: un análisis de centralidad en teoría de redes. Revista Internacional de Estadística y Geografía, 3(3), 72-91. https://doi.org/10.5565/rev/redes.438spa
dc.relation.referencesDerrible, S. (2012). Network Centrality of Metro Systems. PlosOne, 2012, 1-10. https://doi:10.1371/journal.pone.0040575spa
dc.relation.referencesDerrible, S., & Kennedy, C. (2011). Applications of Graph Theory and Network Science to Transit Network Design. Transport Reviews, 31(4), 495-519. https://doi.org/10.1080/01441647.2010.543709spa
dc.relation.referencesFreeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35-41. https://doi.org/10.2307/3033543spa
dc.relation.referencesFruchterman, T., & Reingold, E. (1991). Graph drawing by Force-directed Placement. Software—Practice and Experience, 21(11), 1129-1164. https://doi.org/10.1002/spe.4380211102spa
dc.relation.referencesGephi.org. (2017). Gephi: The Open Graph Viz Platform. From https://gephi.org/spa
dc.relation.referencesHuang, L., Zhu, X., Ye, X., Guo, W., & Wang, J. (2015). Characterizing streethierarchies through networkanalysis and large-scale taxitraffic flow: a case studyof Wuhan, China. Environment and Planning B:Planning and Design, 43(2), 276-296. https://doi.org/10.1177/0265813515614456spa
dc.relation.referencesJian, D., Zhao, Y., & Lu, Q.-C. (2015). Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China. Sustainability, 7(6), 6919-6936. https://doi.org/10.3390/su7066919spa
dc.relation.referencesLotero, R. G. (2014). Vulnerabilidad de redes complejas y aplicaciones al transporte urbano: una revision a la literatura. Revista EIA, 11(21), 67-78. https://doi:10.14508/reia.2014.11.21.67-78spa
dc.relation.referencesNewman, M. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27(1), 39-54. https://doi.org/10.1016/j.socnet.2004.11.009spa
dc.relation.referencesNewman, M. (2010). Networks: An Introduction. New York, USA: Oxford University Press.spa
dc.relation.referencesRodrigue, J.-P., Slack, B., & Comtois, C. (2017). Green Logistics, in Ann M. Brewer , Kenneth J. Button , David A. Hensher. In Handbook of Logistics and Supply-Chain Management (Vol. 2, pp. 339-350). Handbooks in Transport. https://doi.org/10.1108/9780080435930-021spa
dc.relation.referencesRui, J., Ban, Y., Wang, J., & Haas, J. (2013). Exploring the patterns and evolution of self-organized urban street networks through modeling. The European Physical Journal E, 86(3), 86-74. https://doi.org/10.1140/epjb/e2012-30235-7spa
dc.relation.referencesSaberi, M., Mahmassani, H., Brockmann, D., & Hosseini, A. (2016). A complex network perspective for characterizing urbantravel demand patterns: graph theoretical analysisof large-scale origin–destination demand networks. Transportation, 44(6), 1383-1402. https://doi.org/10.1007/s11116-016-9706-6spa
dc.relation.referencesStrano, E., Viana, M., da-Fontoura-Costa, L., Cardillo, A., Porta, S., & Latora, V. (2013). Urban street networks, a comparative analysis of ten European cities. Environment and Planning B: Planning and Design, 40, 1071-1086. https://doi.org/10.1068/b38216spa
dc.relation.referencesSun, J., & Tang, J. (2011). A Survey of Models and Algorithms for Social Influence Analysis. In C. Agarwal, Social Network Data Analytics (pp. 177-214). Nueva York: Springer Science. https://doi.org/10.1007/978-1-4419-8462-3_7spa
dc.relation.referencesWang, H., Martin-Hernandez, J., & van Mieghem, P. (2008). Betweenness centrality in a weighted network. Physical Review E, 77, 1-10. https://doi.org/10.1103/physreve.77.046105spa
dc.rightsRevista EIA - 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1305spa
dc.subjectRed de transportespa
dc.subjectredes complejasspa
dc.subjectintermediaciónspa
dc.subjectcercaníaspa
dc.subjectTransport networkeng
dc.subjectcomplex networkseng
dc.subjectbetweenness centralityeng
dc.subjectCloseness centralityeng
dc.titleAnálisis de la infraestructura de transporte aplicando redes complejas: red de avenidas de la ciudad de Celaya, Guanajuatospa
dc.title.translatedApplication of complex networks theory for transportation infrastructure analysis: Celaya’s city avenue networkeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos