Publicación:
Modelación de la contribución arbórea en análisis de susceptibilidad a deslizamientos superficiales

dc.contributor.authorSánchez, Roberto José Marínspa
dc.contributor.authorSalas, Juan Pablo Osoriospa
dc.date.accessioned2017-11-02 00:00:00
dc.date.accessioned2022-06-17T20:19:13Z
dc.date.available2017-11-02 00:00:00
dc.date.available2022-06-17T20:19:13Z
dc.date.issued2017-11-02
dc.description.abstractEl presente artículo evalúa la susceptibilidad a ocurrencia de deslizamientos superficiales, empleando un método que permite modelar en grandes áreas de terreno, cuantificando la contribución de los árboles a la estabilidad mediante tres parámetros principales: interceptación de lluvia, refuerzo aportado por las raíces y sobrecarga debida a su peso. Se utiliza un modelo de interceptación para determinar la lluvia disponible para infiltración y su distribución temporal durante la misma. Se describen varios modelos hidrológicos, implementados en TRIGRS, y que según las condiciones iniciales permiten estimar la presión de poros. Esta variable se incluye en el modelo revisado de estabilidad de taludes infinitos, el cual considera los términos de refuerzo de las raíces y sobrecarga, permitiendo modelar la estabilidad en términos del factor de seguridad en toda una cuenca. Finalmente, se simulan diferentes escenarios de densidad arbórea en una cuenca del Valle de Aburrá y se comparan los resultados con una modelación realizada sin considerar el efecto de los árboles en la estabilidad.spa
dc.description.abstractEl presente artículo evalúa la susceptibilidad a ocurrencia de deslizamientos superficiales, empleando un método que permite modelar en grandes áreas de terreno, cuantificando la contribución de los árboles a la estabilidad mediante tres parámetros principales: interceptación de lluvia, refuerzo aportado por las raíces y sobrecarga debida a su peso. Se utiliza un modelo de interceptación para determinar la lluvia disponible para infiltración y su distribución temporal durante la misma. Se describen varios modelos hidrológicos, implementados en TRIGRS, y que según las condiciones iniciales permiten estimar la presión de poros. Esta variable se incluye en el modelo revisado de estabilidad de taludes infinitos, el cual considera los términos de refuerzo de las raíces y sobrecarga, permitiendo modelar la estabilidad en términos del factor de seguridad en toda una cuenca. Finalmente, se simulan diferentes escenarios de densidad arbórea en una cuenca del Valle de Aburrá y se comparan los resultados con una modelación realizada sin considerar el efecto de los árboles en la estabilidad.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v14i28.975
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/4982
dc.identifier.urlhttps://doi.org/10.24050/reia.v14i28.975
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/975/1132
dc.relation.citationeditionNúm. 28 , Año 2017spa
dc.relation.citationendpage27
dc.relation.citationissue28spa
dc.relation.citationstartpage13
dc.relation.citationvolume14spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesBaum, R. L.; Savage, W. Z.; Godt, J. W. (2002). TRIGRS–a Fortran program for transient rainfall infiltration and grid–based regional slope–stability analysis. USGS Open File Report 02–0424. US Geological Survey, Reston, VA.spa
dc.relation.referencesBaum, R. L.; Savage, W. Z.; Godt, J. W. (2008). TRIGRS- A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2. 0. U.S. Geological Survey Open-File Report.spa
dc.relation.referencesBaum, R. L.; Godt, J. W.; Savage, W. Z. (2010). Estimating the timing and location of shallow rainfall‐induced landslides using a model for transient, unsaturated infiltration. Journal of Geophysical Research: Earth Surface, 115(F3).spa
dc.relation.referencesBaum, R. L.; Godt, J. W.; Coe, J. A. (2011). Assessing susceptibility and timing of shallow landslide and debris flow initiation in the Oregon Coast Range, USA. In 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, pp. 825–834.spa
dc.relation.referencesBordoni, M.; Meisina, C.; Valentino, R.; Bittelli, M.; Chersich, S. (2015a). Site-specific to local-scale shallow landslides triggering zones assessment using TRIGRS. Natural Hazards & Earth System Sciences, 15(5).spa
dc.relation.referencesBordoni, M.; Meisina, C.; Valentino, R.; Lu, N.; Bittelli, M.; Chersich, S. (2015b). Hydrological factors affecting rainfall-induced shallow landslides: From the field monitoring to a simplified slope stability analysis. Engineering Geology, 193, pp. 19–37.spa
dc.relation.referencesBurton, A.; Bathurst, J. C. (1998). Physically based modelling of shallow landslide sediment yield at a catchment scale. Environmental Geology, 35(2-3), pp. 89–99. Disponible en: http://doi.org/10.1007/s002540050296.spa
dc.relation.referencesCascini, L.; Cuomo, S.; Della Sala, M. (2011). Spatial and temporal occurrence of rainfall-induced shallow landslides of flow type: A case of Sarno-Quindici, Italy. Geomorphology, 126(1), pp. 148–158.spa
dc.relation.referencesChien-Yuan, C.; Tien-Chien, C.; Fan-Chieh, Y.; Sheng-Chi, L. (2005). Analysis of time-varying rainfall infiltration induced landslide. Environmental Geology, 48(4-5), pp. 466–479.spa
dc.relation.referencesCoe, J. A.; Michael, J. A.; Crovelli, R. A.; Savage, W. Z.; Laprade, W. T.; Nashem, W. D. (2004). Probabilistic assessment of precipitation-triggered landslides using historical records of landslide occurrence, Seattle, Washington. Environmental & Engineering Geoscience, 10(2), pp. 103–122.spa
dc.relation.referencesChow, V. T.; Maidment, D. R.; Mays, L. W. (1988). Applied hydrology. McGraw-Hill Publishing Company, 572 p.spa
dc.relation.referencesCrovelli, R. A. (2000). Probability models for estimation of number and costs of landslides. US Geological Survey.spa
dc.relation.referencesFrattini, P.; Crosta, G.; Sosio, R. (2009). Approaches for defining thresholds and return periods for rainfall-triggered shallow landslides. Hydrological Processes, 23(10), pp. 1444–1460. Disponible en: http://doi.org/10.1002/hyp.7269.spa
dc.relation.referencesGodt, J. W.; Baum, R. L.; Chleborad, A. F. (2006). Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surface Processes and Landforms, 31(1), pp. 97–110.spa
dc.relation.referencesGray, D. H.; Sotir, R. B. (1996). Biotechnical and soil bioengineering slope stabilization: A practical guide for erosion control. John Wiley & Sons, Ed. Wiley, pp. 101-102.spa
dc.relation.referencesGuzzetti, F.; Galli, M.; Reichenbach, P.; Ardizzone, F.; Cardinali, M. (2006). Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Natural Hazards and Earth System Science, 6(1), pp. 115–131.spa
dc.relation.referencesGuzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C. P. (2008). The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides, 5(1), pp. 3–17.spa
dc.relation.referencesHammond, C.; Hall, D.; Miller, S.; Swetic, P. (1992). Level I Stability Analysis (LISA) documentation for version 2.0. USDA Forest Service Intermountain Research Station, Ogden, UT, General Technical Report INT-285. US Department of Agriculture, Forest Service, Intermountain Research Station, pp. 30-32.spa
dc.relation.referencesISEA Ltda. (2006). Plan de saneamiento y manejo de vertimientos – PSMV - Vereda el Cabuyal, municipio de Copacabana-Antioquia, 182 p. Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), pp. 1897-1910. Disponible en: http://doi.org/10.1029/2000WR900090.spa
dc.relation.referencesJelínek, R.; Wagner, P. (2007). Landslide hazard zonation by deterministic analysis (Vel’ká Causa landslides area, Slovakia). Lanslides, 4(4), pp. 339–350.spa
dc.relation.referencesKim, D.; Im, S.; Lee, S. H.; Hong, Y.; Cha, K.-S. (2010). Predicting the rainfall-triggered landslides in a forested mountain region using TRIGRS model. Journal of Mountain Science, 7(1), pp. 83–91.spa
dc.relation.referencesKim, D.; Im, S.; Lee, C.; Woo, C. (2013). Modeling the contribution of trees to shallow landslide development in a steep, forested watershed. Ecological Engineering, 61, pp. 658–668. Disponible en: http://doi.org/10.1016/j.ecoleng.2013.05.003.spa
dc.relation.referencesLiao, Z.; Hong, Y.; Kirschbaum, D.; Adler, R. F.; Gourley, J. J.; Wooten, R. (2011). Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carolina. Natural Hazards, 58(1), pp. 325–339.spa
dc.relation.referencesLiu, C.-N.; Wu, C.-C. (2008). Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach. Environmental Geology, 55(4), pp. 907–915.spa
dc.relation.referencesLiu, S. (1997). A new model for the prediction of rainfall interception in forest canopies. Ecological Modelling, 99(2-3), pp. 151–159. Disponible en: http://doi.org/10.1016/S0304-3800(97)01948-0.spa
dc.relation.referencesMarín, R. J.; Castro, J. D. (2015). Efecto de los árboles en la ocurrencia de deslizamientos superficiales en una cuenca del Valle de Aburrá. Universidad de Antioquia, 103 p.spa
dc.relation.referencesMeisina, C.; Scarabelli, S. (2007). A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils. Geomorphology, 87(3), pp. 207–223.spa
dc.relation.referencesMontgomery, D. R.; Dietrich, W. E. (1994). A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30(4), pp. 1153–1171.spa
dc.relation.referencesMontrasio, L.; Valentino, R.; Losi, G. L. (2011). Towards a real-time susceptibility assessment of rainfall-induced shallow landslides on a regional scale. Natural Hazards and Earth System Science, 11(7), pp. 1927–1947.spa
dc.relation.referencesMontrasio, L.; Schilirò, L.; Terrone, A. (2015). Physical and numerical modelling of shallow landslides. Landslides, pp. 1–11.spa
dc.relation.referencesMorgan, R. P. C.; Rickson, R. J. (2003). Slope Stabilization and Erosion Control: A Bioengineering Approach: A Bioengineering Approach. Taylor & Francis. pp. 37-40.spa
dc.relation.referencesNorris, J. E., Greenwood, J. R., Achim, A., Gardiner, B. A., Nicoll, B. C., Cammeraat, E., & Mickovski, S. B. (2008). Hazard assessment of vegetated slopes. In Slope Stability and Erosion Control: Ecotechnological Solutions, Springer, pp. 119–166.spa
dc.relation.referencesPack, R. T.; Tarboton, D. G.; Goodwin, C. N. (1998). The SINMAP approach to terrain stability mapping. In 8th congress of the international association of engineering geology, Vancouver, British Columbia, Canada, pp. 21–25.spa
dc.relation.referencesPark, D. W.; Nikhil, N. V.; Lee, S. R. (2013). Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Natural Hazards and Earth System Sciences, 13(11), pp. 2833–2849.spa
dc.relation.referencesRaia, S.; Alvioli, M.; Rossi, M.; Baum, R. L.; Godt, J. W.; Guzzetti, F. (2013). Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach. Geoscientific Model Development and Discussions, 6(1), pp. 1367-1426.spa
dc.relation.referencesRichards, L. A. (1931). Capillary conduction of liquids through porous mediums. Journal of Applied Physics, 1(5), pp. 318–333.spa
dc.relation.referencesRutter, A. J. J.; Kershaw, K. A. A.; Robins, P. C. C.; Morton, A. J. J. (1971). A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine. Agricultural Meteorology, 9(1969), pp. 367–384. Disponible en: http://doi.org/10.1016/0002-1571(71)90034-3.spa
dc.relation.referencesRutter, A. J.; Morton, A. J.; Robins, P. C. (1975). A predictive model of rainfall interception in forests. II. Generalization of the model and comparison with observations in some coniferous and hardwood stands. Journal of Applied Ecology, pp. 367–380.spa
dc.relation.referencesSalciarini, D.; Godt, J. W.; Savage, W. Z.; Conversini, P.; Baum, R. L.; Michael, J. A. (2006). Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides, 3(3), pp. 181–194.spa
dc.relation.referencesSidle, R. C.; Ochiai, H. (2006). Landslides: Processes, Prediction, and Land Use. American Geophysical Union, pp. 89-110.spa
dc.relation.referencesSmith, R.; Vélez, M. V. (1997). Hidrología de Antioquia. Medellín: Secretaría de Obras Públicas Departamentales, 253 p.spa
dc.relation.referencesStokes, A.; Norris, J.; van Beek, L. P. H.; Bogaard, T.; Cammeraat, E.; Mickovski, S.; Fourcaud, T. (2008). How Vegetation Reinforces Soil on Slopes. In J. Norris, A. Stokes, S. Mickovski, E. Cammeraat, R. van Beek, B. Nicoll, & A. Achim (Eds.), Slope Stability and Erosion Control: Ecotechnological Solutions SE - 4, pp. 65–118. Springer Netherlands. Disponible en: http://doi.org/10.1007/978-1-4020-6676-4_4.spa
dc.relation.referencesTaylor, D. W. (1948). Fundamentals of soil mechanics. Soil Science, 66(2), 161 p.spa
dc.relation.referencesVieira, B. C.; Fernandes, N. F. (2010). Shallow landslide prediction in the Serra do Mar, Sao Paulo, Brazil. Natural Hazards and Earth System Sciences, 10(9), pp. 1829–1837.spa
dc.relation.referencesWu, W.; Sidle, R. C. (1995). A distributed slope stability model for steep forested basins. Water Resources Research, 31(8), pp. 2097–2110.spa
dc.relation.referencesZizioli, D.; Meisina, C.; Valentino, R.; Montrasio, L. (2013). Comparison between different approaches to modeling shallow landslide susceptibility: a case history in Oltrepo Pavese, Northern Italy. Nat Hazards Earth Syst Sci, 13(3), pp. 559–573.spa
dc.rightsRevista EIA - 2017spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/975spa
dc.subjectEstabilidad de taludesspa
dc.subjectdeslizamientos superficialesspa
dc.subjectTRIGRSspa
dc.subjectinterceptación de lluviaspa
dc.subjectrefuerzo de las raícesspa
dc.subjectsobrecarga arbórea.spa
dc.subjectIngenieríaspa
dc.subjectGeotecniaspa
dc.subjectEstabilidad de taludesspa
dc.titleModelación de la contribución arbórea en análisis de susceptibilidad a deslizamientos superficialesspa
dc.title.translatedModelación de la contribución arbórea en análisis de susceptibilidad a deslizamientos superficialeseng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos