Publicación:
Modelo estadístico para el análisis de variables negativas con aplicación a pruebas de contracción en concreto

dc.contributor.authorUsuga, Olgaspa
dc.contributor.authorPatiño Rodríguez, Carmenspa
dc.contributor.authorHernández Barajas, Freddyspa
dc.contributor.authorUrrea Montoya, Amylkarspa
dc.date.accessioned2022-06-01 00:00:00
dc.date.accessioned2022-06-17T20:21:25Z
dc.date.available2022-06-01 00:00:00
dc.date.available2022-06-17T20:21:25Z
dc.date.issued2022-06-01
dc.description.abstractEn algunas áreas de conocimiento se pueden presentar fenómenos que son representados por variables aleatorias negativas (ℝ-) ; contar con un modelo estadístico es crucial para representar esos fenómenos y explicarlos en función de otras variables auxiliares. En este trabajo se propone un modelo de regresión para el análisis de variables aleatorias negativas tomando como distribución para la variable respuesta la distribución Weibull reflejada. En este artículo reportamos el paquete RelDists creado en el lenguaje de programación R para facilitar el uso del modelo de regresión propuesto. Por medio de un estudio de simulación Monte Carlo se exploró el desempeño del proceso de estimación de parámetros. En el estudio de simulación se consideraron dos casos: sin covariables y con covariables. El primer caso se refiere a la situación en la cual sólo se tiene la variable respuesta y con ella se deben estimar los parámetros de la distribución. En el segundo caso se tiene la variable respuesta y variables explicativas que en conjunto se usan para estimar los parámetros del modelo de regresión. Adicionalmente, en el estudio de simulación se consideraron datos censurados y no censurados. Del estudio se encontró que el proceso de estimación logra estimar bien los parámetros del modelo a medida que el tamaño de la muestra aumenta y que el porcentaje de censura disminuye. En el artículo se muestra una aplicación del modelo propuesto usando datos experimentales provenientes de una prueba de contracción con probetas de concreto. En la aplicación se construyó un modelo para explicar la contracción de las probetas en función del tiempo. El modelo de regresión para variables aleatorias negativa y el paquete RelDists pueden ser usados por comunidades académicas, científicas y de negocios para el desarrollo de análisis de confiabilidad.spa
dc.description.abstractIn some areas of knowledge, we can find negative variables (ℝ-), to have a statistical model is crucial to represent the phenomenon and explain it using other variables. This paper proposes a regression model to analyze negative random variables using the reflected Weibull distribution. We developed the RelDists package in the R programming language to implement the proposed model. A Monte Carlo simulation study was conducted to explore the performance of the estimation procedure considering censored and uncensored data and the presence and absence of covariates. From the simulation study, we found that the estimation procedure achieves accurate estimations of the parameters as the sample size increases and the percentage of censoring decreases. In the paper, we present an application of the proposed model using experimental data from a compression test with concrete specimens. In the application, a model was fitted to explain the shrinkage strain using the variable time. The regression model for negative variables and the RelDists package can be used by academic, scientific, and business communities to perform reliability analysis.eng
dc.format.mimetypeapplication/pdfeng
dc.identifier.doi10.24050/reia.v19i38.1526
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5166
dc.identifier.urlhttps://doi.org/10.24050/reia.v19i38.1526
dc.language.isoengeng
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1526/1454
dc.relation.citationeditionNúm. 38 , Año 2022 : .spa
dc.relation.citationendpage19
dc.relation.citationissue38spa
dc.relation.citationstartpage3806 pp. 1
dc.relation.citationvolume19spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAkaike, H. (1983). Information measures and model selection. Int Stat Inst, 44, 277–291.eng
dc.relation.referencesAl Abbasi, J. N., Risan, H. K., & Resen, I. A. (2018). Application of Kumaraswamy Extreme Values Distributions to Earthquake Magnitudes in Iraq and Conterminous Regions. International Journal of Applied Engineering Research, 13(11), 8971–8980.eng
dc.relation.referencesAli, M. M., & Woo, J. (2006). Skew-symmetric reflected distributions. Soochow Journal of Mathematics, 32(2), 233–240. https://doi.org/10.1080/01966324.2008.10737716eng
dc.relation.referencesAlmalki, S. J., & Nadarajah, S. (2014). Modifications of the Weibull distribution: A review. Reliability Engineering & System Safety, 124(4), 32–55. https://doi.org/https://doi.org/10.1016/j.ress.2013.11.010eng
dc.relation.referencesBalakrishnan, N., & Kocherlakota, S. (1985). On the double Weibull distribution: order statistics and estimation. Sankhya: The Indian Journal of Statistics, Series B, 47(2), 161–178.eng
dc.relation.referencesBarreto-Souza, W., Santos, A. H. S., & Cordeiro, G. M. (2010). The beta generalized exponential distribution. Journal of Statistical Computation and Simulation, 80(2), 159–172. https://doi.org/10.1080/00949650802552402eng
dc.relation.referencesCaron, R., Sinha, D., Dey, D., & Polpo, A. (2017). Categorical data analysis using a skewed Weibull regression model. In arXiv (Vol. 20, Issue 3, pp. 176–193). Multidisciplinary Digital Publishing Institute. https://doi.org/https://doi.org/10.3390/e20030176eng
dc.relation.referencesCohen, A. C. (1975). Multi-censored sampling in the three parameter Weibull distribution. Technometrics, 17(3), 347–351. https://doi.org/https://doi.org/10.2307/1268072eng
dc.relation.referencesCohen, A. C. (2016). Truncated and censored samples: theory and applications. CRC press.eng
dc.relation.referencesCohen, C. A., & Whitten, B. (1982). Modified maximum likelihood and modified moment estimators for the three-parameter Weibull distribution. Communications in Statistics-Theory and Methods, 11(23), 2631–2656. https://doi.org/https://doi.org/10.1080/03610928208828412eng
dc.relation.referencesDunn, P. K., & Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics, 5(3), 236–244. https://doi.org/https://doi.org/10.2307/1390802eng
dc.relation.referencesGibbons, D. I., & Vance, L. C. (1983). Estimators for the 2-parameter Weibull distribution with progressively censored samples. IEEE Transactions on Reliability, 32(1), 95–99. https://doi.org/10.1109/TR.1983.5221484eng
dc.relation.referencesGuure, C. B., & Ibrahim, N. A. (2012). Bayesian analysis of the survival function and failure rate of Weibull distribution with censored data. Mathematical Problems in Engineering, 2012. https://doi.org/https://doi.org/10.1155/2012/329489eng
dc.relation.referencesGuure, C. B., & Ibrahim, N. A. (2013). Methods for estimating the 2-parameter Weibull distribution with type-I censored data. Research Journal of Applied Sciences, Engineering and Technology, 5(3), 689–694. https://doi.org/10.19026/rjaset.5.5010eng
dc.relation.referencesHernández, B. F., Cano, B. U., & Caicedo, E. A. C. (2021). Modelos GAMLSS para analizar el grado secado de calcio dihidratado. Revista EIA, 18(35), 1–13. https://doi.org/https://doi.org/10.24050/reia.v18i35.1439eng
dc.relation.referencesHuang, H., Garcia, R., Huang, S.-S., Guadagnini, M., & Pilakoutas, K. (2019). A practical creep model for concrete elements under eccentric compression. Materials and Structures, 52(6), 1–18. https://doi.org/10.1617/s11527-019-1432-zeng
dc.relation.referencesKalsoom, U., Nasir, W., & Syed, A. (2019). On estimation of reflected Weibull distribution using bayesian analysis under informative prior. 15th Islamic Countries Conference on Statistical Sciences (ICCS-15), 49.eng
dc.relation.referencesKim, C., Jung, J., & Chung, Y. (2011). Bayesian estimation for the exponentiated Weibull model under Type II progressive censoring. Statistical Papers, 52(1), 53–70. https://doi.org/https://doi.org/10.1007/s00362-009-0203-2eng
dc.relation.referencesKim, J. S., & Yum, B.-J. (2008). Selection between Weibull and lognormal distributions: A comparative simulation study. Computational Statistics & Data Analysis, 53(2), 477–485. https://doi.org/https://doi.org/10.1016/j.csda.2008.08.012eng
dc.relation.referencesLai, C.-D. (2014). Generalized weibull distributions. Springer.eng
dc.relation.referencesLee, C., Famoye, F., & Olumolade, O. (2007). Beta-Weibull distribution: some properties and applications to censored data. Journal of Modern Applied Statistical Methods, 6(1), 173–186. https://doi.org/DOI: 10.22237/jmasm/1177992960eng
dc.relation.referencesMeeker, W. Q., & Escobar, L. A. (2014). Statistical methods for reliability data. John Wiley & Sons.eng
dc.relation.referencesModarres, M., Kaminskiy, M. P., & Krivtsov, V. (2016). Reliability engineering and risk analysis: a practical guide. CRC press.eng
dc.relation.referencesMorris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate statistical methods. Statistics in Medicine, 38(11), 2074–2102. https://doi.org/https://doi.org/10.1002/sim.8086eng
dc.relation.referencesNagatsuka, H., Kamakura, T., & Balakrishnan, N. (2013). A consistent method of estimation for the three-parameter Weibull distribution. Computational Statistics & Data Analysis, 58(1), 210–226. https://doi.org/https://doi.org/10.1016/j.csda.2012.09.005eng
dc.relation.referencesNagelkerke, N. J. D. (1991). A Note on a General Definition of the Coefficient of Determination. Biometrika, 78(3), 691–692. https://doi.org/https://doi.org/10.1093/biomet/78.3.691eng
dc.relation.referencesOdell, P. M., Anderson, K. M., & D’Agostino, R. B. (1992). Maximum likelihood estimation for interval-censored data using a Weibull-based accelerated failure time model. Biometrics, 48(3), 951–959.eng
dc.relation.referencesOrjubin, G. (2007). Maximum field inside a reverberation chamber modeled by the generalized extreme value distribution. IEEE Transactions on Electromagnetic Compatibility, 49(1), 104–113. https://doi.org/10.1109/TEMC.2006.888172eng
dc.relation.referencesPhadnis, M. A., Sharma, P., Thewarapperuma, N., & Chalise, P. (2020). Assessing accuracy of Weibull shape parameter estimate from historical studies for subsequent sample size calculation in clinical trials with time-to-event outcome. Contemporary Clinical Trials Communications, 17(1). https://doi.org/10.1016/j.conctc.2020.100548eng
dc.relation.referencesR Core Team. (2021). R: A Language and Environment for Statistical Computing. https://www.r-project.org/eng
dc.relation.referencesRegal, R. R., & Larntz, K. (1978). Likelihood methods for testing group problem solving models with censored data. Psychometrika, 43(3), 353–366. https://doi.org/https://doi.org/10.1007/BF02293645eng
dc.relation.referencesRigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(3), 507–554. https://doi.org/https://doi.org/10.1111/j.1467-9876.2005.00510.xeng
dc.relation.referencesRoss, M. S. (2012). Simulation. Elsevier.eng
dc.relation.referencesSchwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.eng
dc.relation.referencesStacy, E. W. (1962). A generalization of the gamma distribution. The Annals of Mathematical Statistics, 33(3), 1187–1192.eng
dc.relation.referencesStasinopoulos, M. D., Rigby, R. A., Heller, G. Z., Voudouris, V., & Bastiani, F. (2017). Flexible Regression and Smoothing Using GAMLSS in R. CRC Press.eng
dc.relation.referencesWei, Z., Start, M., Hamilton, J., & Luo, L. (2016). A unified framework for representing product validation testing methods and conducting reliability analysis. SAE International Journal of Materials and Manufacturing, 9(2), 303–314. https://doi.org/https://doi.org/10.4271/2016-01-0269eng
dc.relation.referencesXie, M., & Lai, C. D. (1996). Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliability Engineering & System Safety, 52(1), 87–93. https://doi.org/https://doi.org/10.1016/0951-8320(95)00149-2eng
dc.relation.referencesZhang, T., & Xie, M. (2007). Failure data analysis with extended Weibull distribution. Communications in Statistics—Simulation and Computation®, 36(3), 579–592. https://doi.org/https://doi.org/10.1080/03610910701236081eng
dc.rightsRevista EIA - 2022eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2eng
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0eng
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1526eng
dc.subjectReflected Weibulleng
dc.subjectRegression modeleng
dc.subjectGAMLSSeng
dc.subjectCompression test on concreteeng
dc.subjectconfiabilidadspa
dc.subjectdatos censuradosspa
dc.subjectestimación de parámetrosspa
dc.subjectGAMLSSspa
dc.subjectenguaje de programación Rspa
dc.subjectmáxima verosimilitudspa
dc.subjectmodelo de regresiónspa
dc.subjectprueba de contracción en concretospa
dc.subjectvariable aleatoria negativaspa
dc.subjectWeibull reflejadaspa
dc.titleModelo estadístico para el análisis de variables negativas con aplicación a pruebas de contracción en concretospa
dc.title.translatedStatistical model for analizing negative variables with application to compression test on concreteeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFeng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng
dspace.entity.typePublication
Archivos