Publicación:
Control por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexible

dc.contributor.authorGuatibonza Artunduaga, Andres Felipespa
dc.contributor.authorSolaque Guzmán, Leonardo Enriquespa
dc.contributor.authorVelasco Vivas, Alexandraspa
dc.date.accessioned2020-02-03 00:00:00
dc.date.accessioned2022-06-17T20:20:39Z
dc.date.available2020-02-03 00:00:00
dc.date.available2022-06-17T20:20:39Z
dc.date.issued2020-02-03
dc.description.abstractRehabilitation devices with soft components increasingly attract more attention due to their characteristics in human-robot interaction. However, these types of systems have a certain level of complexity when analyzing and controlling. We have designed a 5-link knee rehabilitation device operated on two of the five joints using elastic action to help the movement of the knee. In this work, we simplify the modeling of the rehabilitation device in a smooth acting system of 1 degree of freedom. Subsequently, we present the design and implementation of a dynamic feedback controller to track a desired reference. For the proposed controller, we implemented a state observer to estimate the rigidity of the system and some of the states. As a result, we present the design and implementation of the controller with a status observer, which follows a desired angular path with a desired stiffness. We demonstrate in simulation, through tests aimed at carrying out some rehabilitation routines, to validate the effectiveness and stability of the controlled system, which responds effectively to disturbances.spa
dc.description.abstractRehabilitation devices with soft components increasingly attract more attention due to their characteristics in human-robot interaction. However, these types of systems have a certain level of complexity when analyzing and controlling. We have designed a 5-link knee rehabilitation device operated on two of the five joints using elastic action to help the movement of the knee. In this work, we simplify the modeling of the rehabilitation device in a smooth acting system of 1 degree of freedom. Subsequently, we present the design and implementation of a dynamic feedback controller to track a desired reference. For the proposed controller, we implemented a state observer to estimate the rigidity of the system and some of the states. As a result, we present the design and implementation of the controller with a status observer, which follows a desired angular path with a desired stiffness. We demonstrate in simulation, through tests aimed at carrying out some rehabilitation routines, to validate the effectiveness and stability of the controlled system, which responds effectively to disturbances.eng
dc.format.mimetypeapplication/pdfeng
dc.identifier.doi10.24050/reia.v17i33.1363
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5104
dc.identifier.urlhttps://doi.org/10.24050/reia.v17i33.1363
dc.language.isoengeng
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1363/1299
dc.relation.citationeditionNúm. 33 , Año 2020spa
dc.relation.citationendpage10
dc.relation.citationissue33spa
dc.relation.citationstartpage33019 pp. 1
dc.relation.citationvolume17spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAllen, M., Zhong, Q., Kirsch, N., Dani, A., Clark, W. W.& Sharma, N. (2017), ‘A nonlinear dynamics-based estimator for functional electrical stimulation: Preliminary results from lower-leg extension experiments’, IEEE Trans-actions on Neural Systems and Rehabilitation Engineering25(12), 2365–2374.eng
dc.relation.referencesBrahmi, B., Saad, M., Ochoa-Luna, C., Rahman, M. H.& Brahmi, A. (2018), ‘Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control’, IEEE/ASME Transactions onMechatronics23(2), 575–585.eng
dc.relation.referencesDella-Santina, C., Bianchi, M., Grioli, G., Angelini, F., Catalano, M. G., Garabini, M. & Bicchi, A. (2017), ‘Controlling soft robots: Balancing feedback and feedforward elements’, IEEE Robot. Automat. Mag.24(3), 75–83.URL: https://doi.org/10.1109/MRA.2016.2636360.eng
dc.relation.referencesErwin, A. & O’Malley, M. K. (2017), A novel exoskeleton for assessing passive wrist stiffness and active range of motion, in ‘2017 International Symposium on Wearable Robotics and Rehabilitation (WeRob)’, pp. 1–1.eng
dc.relation.referencesExpo, M.(n.d.), ‘Rehabilitation exoskeletons’, http://www.medicalexpo.es/fabricante-medical/exoesqueleto-rehabilitacion-10025.html. [Online; accessed 10-Aug-2019].eng
dc.relation.referencesGuatibonza, A., Solaque, L. & Velasco, A. (2018), Kinematic and dynamic modeling of a 5-bar assistive device for knee rehabilitation, in ‘Proceedings ETCM’.eng
dc.relation.referencesGuo, S., Zhao, F., Wei, W., Guo, J., Zhao, X. & Zhang, W. (2015), Soft actuator for hand rehabilitation, in ‘2015 IEEE International Conference on Mechatronics and Automation (ICMA)’, pp. 2197–2202.eng
dc.relation.referencesHtoon, Z. L., Sidek, S. N., Fatai, S. & Rashid, M. M. (2016), Estimation of upper limb impedance parameters using recursive least square estimator, in ‘2016 International Conference on Computer and Communication Engineering (ICCCE)’, pp. 144–148.eng
dc.relation.referencesHuo, W., Mohammed, S., Moreno, J. C. & Amirat, Y. (2016), ‘Lower limb wearable robots for assistance and rehabilitation: A state of the art’, IEEE Systems Journal10(3), 1068–1081.eng
dc.relation.referencesJujjavarapu, S. S. & Esfahani, E. T. (2019), Improving stability in upper limb rehabilitation using variable stiffness, in ‘2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)’, pp. 122–125.eng
dc.relation.referencesKoller-Hodac, A., Leonardo, D., Walpen, S. & Felder, D. (2010), A novel robotic device for knee rehabilitation improved physical therapy through automated process, in ‘2010 3rd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics’, pp. 820–824.eng
dc.relation.referencesLemerle, S., Fukushima, S., Saito, Y., Nozaki, T. & Ohnishi, K. (2017), Wearable finger exoskeleton using flexible actuator for rehabilitation, in ‘2017 IEEE International Conference on Mechatronics (ICM)’, pp. 244–249.eng
dc.relation.referencesLessard, S., Pansodtee, P., Robbins, A., Trombadore, J. M., Kurniawan, S. & Teodorescu, M. (2018), ‘A soft exosuit for flexible upper-extremity rehabilitation’, IEEE Transactions on Neural Systems and Rehabilitation Engineering26(8), 1604–1617.eng
dc.relation.referencesLuenberger, D. G. (1971), “an introduction to observers.”, IEEE Transactions on Automatic Control. 16(6), pp. 596–602.eng
dc.relation.referencesLuo, L., Peng, L., Hou, Z. & Wang, W. (2017), An adaptive impedance controller for upper limb rehabilitation based on estimation of patients’ stiffness, in ‘2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)’, pp. 532–537.eng
dc.relation.referencesMa, X., Yang, Q., Cai, J., Sun, M. & Song, J. (2016), Design and research of 7 - dof upper-limb rehabilitation robot flexible joint, in ‘2016 International Conference on Advanced Robotics and Mechatronics (ICARM)’, pp. 614–619.eng
dc.relation.referencesNational Institute of Biomedical Imaging, N.I. & Bioengineering (n.d.), ‘Ingeniería de Rehabilitación’, https://www.nibib.nih.gov/espanol/temas-cientificos/ingenier%C3%ADa-de-rehabilitaci%C3%B3n. [Online; accessed 10-Aug-2019].eng
dc.relation.referencesOgata, K. (1996), Discrete Time Control Systems, PearsonEducation.URL: https://books.google.com.co/books?id=aYFUs17m0YQCeng
dc.relation.referencesOgata, K. (2010), Modern Control Engineering, Pearson Education.eng
dc.relation.referencesParivash, F. & Bamdad, M. (2015), Independent position-stiffness control for elbow rehabilitation robot with cable-based series elastic actuator, in ‘2015 22nd Iranian Conference on Biomedical Engineering (ICBME)’, pp. 346–351.eng
dc.relation.referencesPolytechnique fédérale de Lausanne, E. (n.d.), ‘Soft actuator packs for human augmentation’, https://www.epfl.ch/labs/rrl/research-2/research-soft/page-148992-en-html/. [Online; accessed 10-Aug-2019].eng
dc.relation.referencesQb robotics. (n.d.), ‘Qbmove advanced’, https://qbrobotics.com/products/qbmove-advanced/. [Online; accessed 06-Aug-2019].eng
dc.relation.referencesSolaque, L. & Velasco, A. (2019), Control strategy for a soft actuated knee rehabilitation device, in ‘Proceedings of ICMRE’.eng
dc.relation.referencesUmivale, P. S. (2011), ‘Patología de la rodilla: Guía de manejo clínico’.eng
dc.relation.referencesWu, Q., Wang, X., Chen, B. & Wu, H. (2018), ‘Design and fuzzy sliding mode admittance control of a soft wear-able exoskeleton for elbow rehabilitation’, IEEE Access 6, 60249–60263.eng
dc.rightsRevista EIA - 2020eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2eng
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0eng
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1363eng
dc.subjectAssistive Roboticseng
dc.subjectRehabilitation Roboticseng
dc.subjectKinematics Modelingeng
dc.subjectDynamics Modelingeng
dc.subjectAssistive Roboticsspa
dc.subjectRehabilitation Roboticsspa
dc.subjectKinematics Modelingspa
dc.subjectDynamics Modeling.spa
dc.titleControl por retroalimentación dinámica y observadores de estado para un dispositivo de rehabilitación de rodilla usando actuación flexiblespa
dc.title.translatedDynamic feedback control and state observers for a knee rehabilitation device using soft actioneng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFeng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng
dspace.entity.typePublication
Archivos