Publicación:
CALIBRACIÓN DE LOS PARÁMETROS DE UN MODELO DE HORNO DE ARCO ELÉCTRICO EMPLEANDO SIMULACIÓN Y REDES NEURONALES

dc.contributor.authorÁlvarez-López, Mauricio Alexánderspa
dc.contributor.authorHenao-Baena, Carlos Albertospa
dc.contributor.authorMarulanda-Durango, Jesser Jamesspa
dc.date.accessioned2015-04-09 00:00:00
dc.date.accessioned2022-06-17T20:18:20Z
dc.date.available2015-04-09 00:00:00
dc.date.available2022-06-17T20:18:20Z
dc.date.issued2015-04-09
dc.description.abstractRESUMENEl horno de arco eléctrico proporciona un medio relativamente simple para la fusión de metales. Se utiliza en la producción de acero de alta pureza, aluminio, cobre, plomo, entre otros metales. Sin embargo, los hornos de arco son considerados como la carga más nociva para el sistema eléctrico de potencia. Por consiguiente, resulta de gran importancia contar con modelos de horno de arco que permitan determinar con alto grado de aproximación el comportamiento de este tipo de carga, puesto que se podría evaluar su impacto en términos de índices de calidad de energía para el sistema de potencia al cual se conecten. Uno de los principales problemas que surge al utilizar los modelos matemáticos de arco eléctrico consiste en la calibración de los parámetros que describen la dinámica del modelo. En este documento se muestra un procedimiento para calibrar todos los parámetros de un modelo de horno de arco eléctrico de corriente alterna, dadas mediciones reales de tensiones y corrientes. Se utiliza una red neuronal multicapa como emulador del modelo del horno. La red neuronal se entrena empleando datos de simulación obtenidos del modelo del horno implementado en el entorno Matlab®-Simulink®. Una vez entrenada la red, los parámetros de interés se obtienen resolviendo un problema inverso. Los resultados obtenidos muestran un error máximo de 4,1 % en el valor eficaz de las corrientes del arco eléctrico.ABSTRACTElectric arc furnace provides a relatively simple way for melting metals. They are used in the production of highly purified steel, aluminium, copper and other metals. However, they are considered the more damaging load for the power system. It is very important, therefore, to count on arc furnace models for determining with high degree of accuracy the performance of this type of load. In this way, it would be possible to assess the impact in terms of power quality indices for the power system to which they might be connected. When using electric arc furnace models in practice, a key issue is the calibration of the parameters of the model. In this paper, we show a procedure for calibrating all the parameters of an AC electric arc furnace model using real measurements of voltages and currents. It uses a multilayer neural network as an emulator of the electric arc furnace model. The neural network is trained using data obtained from the simulation of the electric arc furnace model implemented in Matlab®-Simulink®. Once the network is trained, the parameters of interest are obtained by solving an inverse problem. Results obtained show a maximum percentage error of 4.1 % for the rms value of the current involved in the electrical arc. spa
dc.description.abstractRESUMENEl horno de arco eléctrico proporciona un medio relativamente simple para la fusión de metales. Se utiliza en la producción de acero de alta pureza, aluminio, cobre, plomo, entre otros metales. Sin embargo, los hornos de arco son considerados como la carga más nociva para el sistema eléctrico de potencia. Por consiguiente, resulta de gran importancia contar con modelos de horno de arco que permitan determinar con alto grado de aproximación el comportamiento de este tipo de carga, puesto que se podría evaluar su impacto en términos de índices de calidad de energía para el sistema de potencia al cual se conecten. Uno de los principales problemas que surge al utilizar los modelos matemáticos de arco eléctrico consiste en la calibración de los parámetros que describen la dinámica del modelo. En este documento se muestra un procedimiento para calibrar todos los parámetros de un modelo de horno de arco eléctrico de corriente alterna, dadas mediciones reales de tensiones y corrientes. Se utiliza una red neuronal multicapa como emulador del modelo del horno. La red neuronal se entrena empleando datos de simulación obtenidos del modelo del horno implementado en el entorno Matlab®-Simulink®. Una vez entrenada la red, los parámetros de interés se obtienen resolviendo un problema inverso. Los resultados obtenidos muestran un error máximo de 4,1 % en el valor eficaz de las corrientes del arco eléctrico.ABSTRACTElectric arc furnace provides a relatively simple way for melting metals. They are used in the production of highly purified steel, aluminium, copper and other metals. However, they are considered the more damaging load for the power system. It is very important, therefore, to count on arc furnace models for determining with high degree of accuracy the performance of this type of load. In this way, it would be possible to assess the impact in terms of power quality indices for the power system to which they might be connected. When using electric arc furnace models in practice, a key issue is the calibration of the parameters of the model. In this paper, we show a procedure for calibrating all the parameters of an AC electric arc furnace model using real measurements of voltages and currents. It uses a multilayer neural network as an emulator of the electric arc furnace model. The neural network is trained using data obtained from the simulation of the electric arc furnace model implemented in Matlab®-Simulink®. Once the network is trained, the parameters of interest are obtained by solving an inverse problem. Results obtained show a maximum percentage error of 4.1 % for the rms value of the current involved in the electrical arc. eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/4899
dc.identifier.urlhttps://revistas.eia.edu.co/index.php/reveia/article/view/671
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/671/643
dc.relation.citationeditionNúm. 22 , Año 2014spa
dc.relation.citationendpage50
dc.relation.citationissue22spa
dc.relation.citationstartpage39
dc.relation.citationvolume11spa
dc.relation.ispartofjournalRevista EIAspa
dc.rightsRevista EIA - 2014spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/671spa
dc.subjecthorno de arcospa
dc.subjectcalibración de parámetrosspa
dc.subjectredes neuronalesspa
dc.subjectLatin Hypercubespa
dc.subjectemulaciónspa
dc.titleCALIBRACIÓN DE LOS PARÁMETROS DE UN MODELO DE HORNO DE ARCO ELÉCTRICO EMPLEANDO SIMULACIÓN Y REDES NEURONALESspa
dc.title.translatedCALIBRACIÓN DE LOS PARÁMETROS DE UN MODELO DE HORNO DE ARCO ELÉCTRICO EMPLEANDO SIMULACIÓN Y REDES NEURONALESeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos