Publicación:
Modelamiento del salto del inverso de la resistencia del electrolito sólido NaI-AgI

dc.contributor.authorPeña Lara, Diegospa
dc.contributor.authorCorrea Gallego, Hernandospa
dc.contributor.authorSuescún Diaz, Danielspa
dc.date.accessioned2022-06-01 00:00:00
dc.date.accessioned2022-06-17T20:21:22Z
dc.date.available2022-06-01 00:00:00
dc.date.available2022-06-17T20:21:22Z
dc.date.issued2022-06-01
dc.description.abstractMidiendo la resistencia eléctrica del electrolito sólido NaI-AgI, se mostró que al adicionar NaI al AgI se estabiliza la transición de la fase conductora iónica (β-AgI) a la fase superiónica (α-AgI) a 420 K al incrementar la temperatura. La conductividad iónica en la transición β → α del AgI aumenta varios órdenes de magnitud. Para simular esta transición, se consideró un modelo fenomenológico basado en una densidad de energía libre, siendo la concentración de defectos en equilibrio (n) el parámetro de orden e interpretando éste como el inverso de la resistencia R. Los datos experimentales se ajustaron muy bien al modelo propuesto.spa
dc.description.abstractElectrical resistance measurements of NaI-AgI solid electrolyte showed that adding NaI to AgI stabilizes the transition from conducting ionic phase (β-AgI) to the superionic (α-AgI) at 420 K with increasing temperature. The ionic conductivity at the β → α transition of AgI increases by several orders of magnitude. Considering a phenomenological model based on a free energy density was fitted the abrupt jump of ionic conductivity. In this model, the equilibrium defect concentration (, R is the resistance) is the order parameter. Better results are achieved for the order parameter.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v19i38.1517
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5162
dc.identifier.urlhttps://doi.org/10.24050/reia.v19i38.1517
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1517/1451
dc.relation.citationeditionNúm. 38 , Año 2022 : .spa
dc.relation.citationendpage10
dc.relation.citationissue38spa
dc.relation.citationstartpage3803 pp. 1
dc.relation.citationvolume19spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAgrawal, R. C. & Gupta, R. K., 1999. Review Superionic solids: composite electrolyte phase -an overview. J. Mat. Scie., Volume 34, p. 1131–1162. doi: 10.1023/A:1004598902146spa
dc.relation.referencesBurley, G., 1963. Polymorphism of silver iodide. American mineralogist. Volume 48, p. 1266–1276. https://pubs.geoscienceworld.org/ammin/article-pdf/48/11-12/1266/4254546/am-1963-1266.pdfspa
dc.relation.referencesChandra, A., 2014. Ion conduction in crystalline superionic solids and its applications. Eur. Phys. J. Appl. Phys., 66 (30905 (pp 21)). doi: 10.1051/epjap/2014130569spa
dc.relation.referencesChandra, S., 1981. Superionics Solids. Amsterdan: North-Holland.spa
dc.relation.referencesHuberman, A., 1974. Cooperative Phenomena in Solid Electrolytes. Phys. Rev. Lett., Volume 32, p. 1000–1002. doi 10.1103/PhysRevLett.32.1000. doi: 10.1103/PhysRevLett.32.1000spa
dc.relation.referencesMadden, P., O'Sullivan, K. F. & Chiarotti, G., 1992. Ordering of the silver ions in α-AgI: A mechanism for the α→β phase transition. Phy. Rev. B, 45(18), p. 10206–10212. doi: 10.1103/PhysRevB.45.10206spa
dc.relation.referencesRice, M. J., Strässler, S. & Toombs, G. A., 1974. Superionic Conductors: Theory of the Phase Transition to the Cation Disordered State. Phys. Rev. Lett., Volume 32, p. 596. doi: 10.1103/PhysRevLett.32.596spa
dc.relation.referencesRickert, H., 1978. Solid ionic conductors: principles and applications. Angew Chem Int Ed Engl, Volume 17, p. 37–46. doi: 10.1002/anie.197800371spa
dc.relation.referencesSiraj, K., 2012. Past, present and future of superionic conductors. Int. J. Nano Mater. Sci., Volume 1, pp. 1-20. https://www.researchgate.net/publication/235222104_Past_Present_and_Future_of_Superionic_Conductors Sunandana, C., 2016. Introduction to solid state ionics: phenomenology and applications. New York: CRC Press, Taylor & Francis.spa
dc.relation.referencesWelch, D. O. & Dienes, G. J., 1977. Phenomenological and microscopic models of sublattice disorder in ionic crystals -I Phenomenological models. J. Phys. Chem. Solids, Volume 38, p. 311–317.spa
dc.rightsRevista EIA - 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1517spa
dc.subjectPhase transitionseng
dc.subjectSilver iodideeng
dc.subjectIonic conductivityeng
dc.subjectSolid electrolyteeng
dc.subjectPhenomenological modeleng
dc.subjectTransición de fasesspa
dc.subjectYoduro de plataspa
dc.subjectConductividad iónicaspa
dc.subjectElectrolito sólidospa
dc.subjectModelo fenomenológicospa
dc.titleModelamiento del salto del inverso de la resistencia del electrolito sólido NaI-AgIspa
dc.title.translatedModeling of jump of the inverse of the resistance of NaI-AgI solid electrolyteeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos