Publicación: Plataforma de prototipos de control rápido para sistemas fotovoltaicos basados en Arduino y Simulink
dc.contributor.author | Zabala Daza, Juan Esteban | spa |
dc.contributor.author | González-Montoya, Daniel | spa |
dc.contributor.author | Henao Bravo, Elkin Edilberto | spa |
dc.contributor.author | Ramos-Paja, Carlos Andrés | spa |
dc.contributor.author | Aponte-Roa, Diego Andrés | spa |
dc.date.accessioned | 2021-05-31 00:00:00 | |
dc.date.accessioned | 2022-06-17T20:21:03Z | |
dc.date.available | 2021-05-31 00:00:00 | |
dc.date.available | 2022-06-17T20:21:03Z | |
dc.date.issued | 2021-05-31 | |
dc.description.abstract | En este documento se presenta el desarrollo y ensayo de una plataforma de prototipos de control rápido (RCP) para sistemas fotovoltaicos. La plataforma propuesta tiene por objeto apoyar la evaluación tanto de los controladores de tensión de los sistemas fotovoltaicos como de los algoritmos MPPT, dedicados a los sistemas fotovoltaicos, sin necesidad de construir un banco de pruebas para cada aplicación. En cambio, la plataforma proporciona un entorno experimental unificado, fácil de utilizar, para probar las estrategias de control en condiciones realistas, antes de su aplicación final en los dispositivos comerciales. El sistema RCP propuesto es capaz de medir, en tiempo real, las variables físicas necesarias para evaluar el comportamiento de las estrategias de control, sin necesidad de construir sensores dedicados o utilizar equipos costosos. La plataforma se basa en la combinación de hardware de bajo costo (placa Arduino) y software comúnmente disponible (Matlab/Simulink), que proporciona un entorno fácil de usar para los no expertos en la programación de dispositivos incorporados. La usabilidad del sistema RCP se valida utilizando un controlador de tensión PI clásico y perturba y observa el algoritmo MPPT, pero se puede probar cualquier otra estrategia de control. Por último, los resultados muestran que la plataforma propuesta proporciona resultados similares en comparación con las simulaciones detalladas, lo que confirma la correcta implementación tanto del controlador de tensión como del algoritmo MPPT mediante la plataforma RCP | spa |
dc.description.abstract | This paper presents the development and testing of a Rapid Control Prototyping (RCP) platform for PV systems. The proposed platform is intended to support the evaluation of both PV voltage controllers and MPPT algorithms, devoted to PV systems, without the need of constructing a testbench for each application. Instead, the platform provides a unified experimental environment, easy-to-use, for testing control strategies under realistic conditions, prior to their final implementation in commercial devices. The proposed RCP system is capable of measuring, in real-time, physical variables needed to evaluate the behavior of the control strategies, without constructing dedicated sensors or using costly equipment. The platform is based on the combination of low-cost hardware (Arduino board) and commonly available software (Matlab/Simulink), which provides an easy-to-use environment for non-experts in programming embedded devices. The RCP system usability is validated using a classical PI voltage controller and perturb and observe MPPT algorithm, but any other control strategies can be tested. Finally, the results show that the proposed platform provide similar results in comparison with detailed simulations, which confirms the correct implementation of both the voltage controller and MPPT algorithm by means of the RCP platform | eng |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | 10.24050/reia.v18i36.1470 | |
dc.identifier.eissn | 2463-0950 | |
dc.identifier.issn | 1794-1237 | |
dc.identifier.uri | https://repository.eia.edu.co/handle/11190/5136 | |
dc.identifier.url | https://doi.org/10.24050/reia.v18i36.1470 | |
dc.language.iso | spa | spa |
dc.publisher | Fondo Editorial EIA - Universidad EIA | spa |
dc.relation.bitstream | https://revistas.eia.edu.co/index.php/reveia/article/download/1470/1414 | |
dc.relation.citationedition | Núm. 36 , Año 2021 : | spa |
dc.relation.citationendpage | 21 | |
dc.relation.citationissue | 36 | spa |
dc.relation.citationstartpage | 36002 pp. 1 | |
dc.relation.citationvolume | 18 | spa |
dc.relation.ispartofjournal | Revista EIA | spa |
dc.relation.references | Ahmed, N. A., Al-Othman, A. K., & AlRashidi, M. R. (2011). Development of an efficient utility interactive combined wind/photovoltaic/fuel cell power system with MPPT and DC bus voltage regulation. Electric Power Systems Research, 81(5), 1096–1106. | spa |
dc.relation.references | Boscaino, V., Miceli, R., & Capponi, G. (2013). MATLAB-based simulator of a 5kW fuel cell for power electronics design. International Journal of Hydrogen Energy, 38(19), 7924–7934. https://doi.org/https://doi.org/10.1016/j.ijhydene.2013.04.123 | spa |
dc.relation.references | Claros-Marfil, L. J., Padial, J. F., & Lauret, B. (2016). A new and inexpensive open source data acquisition and controller for solar research: Application to a water-flow glazing. Renewable Energy, 92, 450–461. https://doi.org/https://doi.org/10.1016/j.renene.2016.02.037 | spa |
dc.relation.references | de Brito, M. A. G., Galotto, L., Sampaio, L. P., e Melo, G. de A., & Canesin, C. A. (2013). Evaluation of the Main MPPT Techniques for Photovoltaic Applications. IEEE Transactions on Industrial Electronics, 60(3), 1156–1167. https://doi.org/10.1109/TIE.2012.2198036 | spa |
dc.relation.references | Eghtedarpour, N., & Farjah, E. (2012). Control strategy for distributed integration of photovoltaic and energy storage systems in DC micro-grids. Renewable Energy, 45, 96–110. https://doi.org/10.1016/j.renene.2012.02.017 | spa |
dc.relation.references | Femia, N, Petrone, G., Spagnuolo, G., & Vitelli, M. (2010). A new analog MPPT technique: TEODI. Progress in Photovoltaics: Research and Applications, 18(1), 28–41. | spa |
dc.relation.references | Femia, Nicola, Petrone, G., Spagnuolo, G., & Vitelli, M. (2005). Optimization of perturb and observe maximum power point tracking method. IEEE Transactions on Power Electronics, 20(4), 963–973. https://doi.org/10.1109/TPEL.2005.850975 | spa |
dc.relation.references | Gonzalez Montoya, D., Ramos-Paja, C. A., & Giral, R. (2016). Improved Design of Sliding-Mode Controllers Based on the Requirements of MPPT Techniques. IEEE Transactions on Power Electronics, 31(1), 235–247. https://doi.org/10.1109/TPEL.2015.2397831 | spa |
dc.relation.references | Grepl, R. (2011). Real-time control prototyping in MATLAB/simulink: Review of tools for research and education in mechatronics. 2011 IEEE International Conference on Mechatronics, ICM 2011 - Proceedings, 881–886. https://doi.org/10.1109/ICMECH.2011.5971238 | spa |
dc.relation.references | Hossain, M. Z., Rahim, N. A., & a/l Selvaraj, J. (2018). Recent progress and development on power DC-DC converter topology, control, design and applications: A review. Renewable and Sustainable Energy Reviews, 81, 205–230. https://doi.org/https://doi.org/10.1016/j.rser.2017.07.017 | spa |
dc.relation.references | Ibrahim, M. A., Hamoodi, A. N., & Salih, B. M. (2020). PI controller for DC motor speed realized with simulink and practical measurements. International Journal of Power Electronics and Drive Systems, 11(1), 119–126. https://doi.org/10.11591/ijpeds.v11.i1.pp119-126 | spa |
dc.relation.references | Lee, Y. S., Jo, B., & Han, S. (2017). A Light-Weight Rapid Control Prototyping System Based on Open Source Hardware. IEEE Access, 5, 11118–11130. https://doi.org/10.1109/ACCESS.2017.2715184 MathWorks. (n.d.). Arduino Programming with MATLAB and Simulink - MATLAB & Simulink. Retrieved October 1, 2018, from https://la.mathworks.com/discovery/arduino-programming-matlab-simulink.html | spa |
dc.relation.references | Müller, L., Mohammed, M., & Kimball, J. W. (2015). Using the Arduino Uno to teach digital control of power electronics. 2015 IEEE 16th Workshop on Control and Modeling for Power Electronics, COMPEL 2015. https://doi.org/10.1109/COMPEL.2015.7236487 | spa |
dc.relation.references | Petrone, G., & Ramos-Paja, C. A. (2011). Modeling of photovoltaic fields in mismatched conditions for energy yield evaluations. Electric Power Systems Research, 81(4), 1003–1013. | spa |
dc.relation.references | Petrone, G., Spagnuolo, G., & Vitelli, M. (2007). Analytical model of mismatched photovoltaic fields by means of Lambert W-function. Solar Energy Materials and Solar Cells, 91(18), 1652–1657. https://doi.org/10.1016/j.solmat.2007.05.021 | spa |
dc.relation.references | Restrepo, C., Ramos-Paja, C. A., Giral, R., Calvente, J., & Romero, A. (2012). Fuel cell emulator for oxygen excess ratio estimation on power electronics applications. Computers & Electrical Engineering, 38(4), 926–937. https://doi.org/https://doi.org/10.1016/j.compeleceng.2012.02.012 | spa |
dc.relation.references | Salah, C. Ben, Mimouni, M. F., & Ouali, M. (2015). A real-time control of photovoltaic water-pumping network. Computers & Electrical Engineering, 46, 14–28. https://doi.org/https://doi.org/10.1016/j.compeleceng.2015.06.026 | spa |
dc.relation.references | Serna-Garcés, S. I., Montoya, D. G., & Ramos-Paja, C. A. (2016). Sliding-mode control of a charger/discharger DC/DC converter for DC-bus regulation in renewable power systems. Energies, 9(4). https://doi.org/10.3390/en9040245 | spa |
dc.relation.references | Smedsgaard, J. (2006). Analytical Tools. Metabolome Analysis: An Introduction, 83–145. https://doi.org/10.1002/9780470105511.ch4 | spa |
dc.relation.references | Trejos, A., Gonzalez, D., & Ramos-Paja, C. A. (2012). Modeling of step-up grid-connected photovoltaic systems for control purposes. Energies, 5(6), 1900–1926. https://doi.org/10.3390/en5061900 | spa |
dc.relation.references | Ulloa, C., Nuñez, J. M., Suárez, A., & Lin, C. (2017). Design and development of a PV-T test bench based on Arduino. Energy Procedia, 141, 71–75. https://doi.org/https://doi.org/10.1016/j.egypro.2017.11.014 | spa |
dc.relation.references | Winston, D. P., Kumar, B. P., Christabel, S. C., Chamkha, A. J., & Sathyamurthy, R. (2018). Maximum power extraction in solar renewable power system - a bypass diode scanning approach. Computers & Electrical Engineering, 70, 122–136. https://doi.org/https://doi.org/10.1016/j.compeleceng.2018.02.034 | spa |
dc.relation.references | Zeng, Z., Zhao, R., & Yang, H. (2013). Micro-sources design of an intelligent building integrated with micro-grid. Energy and Buildings, 57, 261–267. https://doi.org/10.1016/j.enbuild.2012.11.018 | spa |
dc.rights | Revista EIA - 2021 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.creativecommons | Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | spa |
dc.source | https://revistas.eia.edu.co/index.php/reveia/article/view/1470 | spa |
dc.subject | RCP, P&O, MPPT algorithm, Simulink, Arduino | eng |
dc.subject | RCP, P&O, Algoritmo MPPT, Simulink, Arduino | spa |
dc.title | Plataforma de prototipos de control rápido para sistemas fotovoltaicos basados en Arduino y Simulink | spa |
dc.title.translated | Rapid control prototyping platform for PV systems based on Arduino and Simulink | eng |
dc.type | Artículo de revista | spa |
dc.type | Journal article | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTREF | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dspace.entity.type | Publication |