Publicación:
Desempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercial

dc.contributor.authorGuzmán Aponte, Álvarospa
dc.contributor.authorBurgos Galindo, Diana Marcelaspa
dc.contributor.authorTorres Castellanos, Nancyspa
dc.date.accessioned2019-06-06 00:00:00
dc.date.accessioned2022-06-17T20:19:46Z
dc.date.available2019-06-06 00:00:00
dc.date.available2022-06-17T20:19:46Z
dc.date.issued2019-06-06
dc.description.abstractEn este artículo se presentan los resultados de un estudio de viabilidad técnica de uso de agregado reciclado fino comercial (ARF) proveniente de concretos de las actividades de construcción y demolición (RC&D), en la fabricación de concreto de mediana resistencia. Con el fin de evaluar el desempeño mecánico y durable de los concretos, se estudiaron diferentes propiedades como la densidad, absorción, sorptividad, resistencia mecánica, tracción indirecta y permeabilidad al ion cloruro, de concretos con incorporación de 20% y 40% de ARF (ARF20% y ARF40%, respectivamente) en reemplazo del agregado fino natural. Los resultados se compararon con un concreto de referencia incorporando agregado fino natural (ARF0%).Se encontró que la incorporación de ARF hasta un 40% en los concretos, no causa un detrimento marcado en la consistencia del concreto en estado fresco. En términos generales, a pesar de que las propiedades físicas, mecánicas y de durabilidad de los concretos en estado endurecido disminuyen con el incremento en la incorporación de ARF en reemplazo del agregado fino natural; los valores de las propiedades alcanzadas por los concretos ARF20% y ARF40%, fueron comprables a aquellas alcanzadas por el concreto de referencia ARF0%, y aptas para la construcción de concretos de mediana resistencia.spa
dc.description.abstractEn este artículo se presentan los resultados de un estudio de viabilidad técnica de uso de agregado reciclado fino comercial (ARF) proveniente de concretos de las actividades de construcción y demolición (RC&D), en la fabricación de concreto de mediana resistencia. Con el fin de evaluar el desempeño mecánico y durable de los concretos, se estudiaron diferentes propiedades como la densidad, absorción, sorptividad, resistencia mecánica, tracción indirecta y permeabilidad al ion cloruro, de concretos con incorporación de 20% y 40% de ARF (ARF20% y ARF40%, respectivamente) en reemplazo del agregado fino natural. Los resultados se compararon con un concreto de referencia incorporando agregado fino natural (ARF0%).Se encontró que la incorporación de ARF hasta un 40% en los concretos, no causa un detrimento marcado en la consistencia del concreto en estado fresco. En términos generales, a pesar de que las propiedades físicas, mecánicas y de durabilidad de los concretos en estado endurecido disminuyen con el incremento en la incorporación de ARF en reemplazo del agregado fino natural; los valores de las propiedades alcanzadas por los concretos ARF20% y ARF40%, fueron comprables a aquellas alcanzadas por el concreto de referencia ARF0%, y aptas para la construcción de concretos de mediana resistencia.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v16i32.1210
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5031
dc.identifier.urlhttps://doi.org/10.24050/reia.v16i32.1210
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1210/1253
dc.relation.citationeditionNúm. 32 , Año 2019spa
dc.relation.citationendpage179
dc.relation.citationissue32spa
dc.relation.citationstartpage167
dc.relation.citationvolume16spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAbdurrahmaan, L., & Al-Fayez, M. (2015). Performance evaluation of structural concrete using controlled quality coarse and fine recycled concrete aggregate. Cement and Concrete Composites, 61, 36-43. doi: 10.1016/j.cemconcomp.2015.02.009.spa
dc.relation.referencesAkbarnezhad, A., Ong, K.C.G., Zhang, M.H., Tam, C.T., & Foo, T.W.J. (2011). Microwave-assisted beneficiation of recycled concrete aggregates. Construction and Building Materials, 25(8), 3469-3479. doi: 10.1016/j.conbuildmat.2011.03.038.spa
dc.relation.referencesAmerican Society for Testing and Materials, 2016. ASTM C33-16 Standard Specification for Concrete Aggregates. West Conshohocken, PA: ASTM.spa
dc.relation.referencesAmerican Society for Testing and Materials, 2017. ASTM C39-17 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. West Conshohocken, PA: ASTM.spa
dc.relation.referencesAmerican Society for Testing and Materials, 2011. ASTM C496-11 Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. West Conshohocken, PA: ASTM.spa
dc.relation.referencesAmerican Society for Testing and Materials, 2013. ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. West Conshohocken, PA: ASTM.spa
dc.relation.referencesAmerican Society for Testing and Materials, 2012. ASTM C1202-12 Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration. West Conshohocken, PA: ASTM.spa
dc.relation.referencesAnn, K.Y., Ahn, J.H., & Ryou, J.S. (2009) The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures. Construction and Building Materials, 23(1), 239–45. doi: 10.1016/j.conbuildmat.2007.12.014.spa
dc.relation.referencesBraga, M., De Brito, J., & Veiga, R. (2014). Reduction of the cement content in mortar made with fine concrete aggregates. Materials and Structures, 47(1-2), 171-182.spa
dc.relation.referencesBravo, M., De Brito, J., Pontes, J., & Evangelista, L. (2015). Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Construction and Building Materials, 77, 357-369.doi: 10.1016/j.conbuildmat.2014.12.103.spa
dc.relation.referencesDe Brito, J., & Saikia, N. (2013). Recycled aggregate in concrete: Use of industrial, construction and demolition waste. London, UK: Springer.spa
dc.relation.referencesDelay, M., Lager, T., Schulz, H.D., & Frimmel, F.H. (2007). Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste. Waste Management, 27(2), 248-255. doi: https://doi.org/10.1016/j.wasman.2006.01.013.spa
dc.relation.referencesDosho, Y. (2007). Development of a sustainable concrete waste recycling system – application of recycled aggregate concrete produced by aggregate replacing Method. Journal of Advanced Concrete Technology, 5(1), 27-42. doi: 10.3151/jact.5.27.spa
dc.relation.referencesEMPA-SIA 162/1, 1989. Test No. 5- Water conductivity, Suiza.spa
dc.relation.referencesEuropean Aggregates Association. (2012). Annual review. Brussels, Belgium.spa
dc.relation.referencesEvangelista, L., & De Brito, J. (2004). Criteria for the use of fine recycled concrete aggregates in concrete production. Conference: Conference on the Use of Recycled Materials in Building and Structures, RILEM, At Barcelona, Spain.spa
dc.relation.referencesEvangelista, L., & De Brito, J. (2010). Durability performance of concrete made with fine recycled concrete aggregates. Cement & Concrete Composites, 32(1), 9–14. doi: 10.1016/j.cemconcomp.2009.09.005.spa
dc.relation.referencesGonzález-Fonteboa, B., Martínez-Abella, F., Herrador, M.F., & Seara-Paz, S. (2012). Structural recycled concrete : Behaviour under low loading rate. Construction and Building Materials, 28(1): 111-116. doi: 10.1016/j.conbuildmat.2011.08.010.spa
dc.relation.referencesHongru, Z., & Yuxi, Z. (2015). Integrated interface parameters of recycled aggregate concrete. Construction and Building Materials, 101, 861–877. doi: 10.1016/j.conbuildmat.2015.10.084.spa
dc.relation.referencesHowland, J.J., & Martín, A.R. (2013). Estudio de la absorción capilar y la sorptividad de hormigones con áridos calizos cubanos. Materiales de construcción, 312, 515-527.spa
dc.relation.referencesKhatib, J.M. (2005). Properties of concrete incorporating fine recycled aggregate. Cement & Concrete Research, 35(4), 763-769. doi: 10.1016/j.cemconres.2004.06.017.spa
dc.relation.referencesKosmatka, S., Kherkhoff, B., & Panarese, W. (2002). Design and control of concrete mixtures. Chapter 5. Publisher: Portland Cement Association.spa
dc.relation.referencesKou, S., & C, Poon. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69-76. doi: 0.1016/j.conbuildmat.2012.02.032.spa
dc.relation.referencesKou, S.C., Zhan, B., & Poon, C. (2014). Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates. Cement and Concrete Composites, 45, 22-28. doi: 10.1016/j.cemconcomp.2013.09.008.spa
dc.relation.referencesLevy, S., & Helene, P. (2004). Durability of recycled aggregates concrete: a safe way to sustainable development. Cement and Concrete Research, 34(11), 1975–1980. doi: 10.1016/j.cemconres.2004.02.009.spa
dc.relation.referencesLi, W. (2002). Composition Analysis of Construction and Demolition Waste and Enhancing Waste Reduction and Recycling in Construction Industry in Hong Kong. Department of Building and Real Estate. (M.Sc Thesis). The Hong Kong Polytechnic University: Hong Kong, China.spa
dc.relation.referencesLiu, Q., Xiao, J., & Sun, Z. (2011). Experimental study on the failure mechanism of recycled concrete. Cement & Concrete Research, 41(10), 1050-1057. doi: 10.1016/j.cemconres.2011.06.007.spa
dc.relation.referencesMarie, I., & Quiasrawi, H. (2012). Closed-loop recycling of recycled concrete aggregates. Journal of Cleaner Production, 37, 243-248. doi: https://doi.org/10.1016/j.jclepro.2012.07.020.spa
dc.relation.referencesMarinković, S., Radonjanin, V., Malešev, M., & Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, 30, 2255-2264. doi:10.1016/j.wasman.2010.04.012.spa
dc.relation.referencesMedina, C., Banfill, P. F. G., Sanchez de Rojas, M., & Frías, M. (2013). Rheological behaviour of cements blended with containing ceramic wastes. In N. Roussel, & H. Bessaies-Bey (Eds.), Rheology and processing of construction materials: 7th RILEM International Conference on Self-Compacting Concrete and 1st RILEM International Conference on Rheology and Processing of Construction Materials (1 ed., Vol. PRO90, pp. 65-74). Paris: RILEM. Recuperado de https://pureapps2.hw.ac.uk/ws/portalfiles/portal/7700978.spa
dc.relation.referencesMéndez, S. (2011). Aprovechamiento de escombros: una oportunidad para mejorar la infraestructura de las comunidades marginadas. In II Conferencia Internacional “Gestión de Residuos en América Latina GRAL”.spa
dc.relation.referencesMindess, S., Young, J.F., & Darwin, D. (2003). Concrete. 2nd ed. Upper Saddle River, N.J: Prentice Hall.spa
dc.relation.referencesOtsuki, N.M., Miyazato, S., & Yodsudjai, W. (2003). Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. Journal of Materials in Civil Engineering, 15(5), 443–51. doi: 10.1061/(ASCE)0899-1561(2003)15:5(443).spa
dc.relation.referencesPinzón, A. (2013). Formulación de lineamientos para la gestión de residuos de construcción y demolición (RCD) en Bogotá. (Tesis de especialización, Universidad Militar Nueva Granada). Universidad Militar Nueva Granada: Bogotá, Colombia. Recuperado de http://repository.unimilitar.edu.co/bitstream/10654/11004/1/TRABAJO%20DE%20GRADO%20ADRIANA%20ISABEL%20PINZON%20M..pdf.spa
dc.relation.referencesPoon, C., & Chan, D. (2007). The use of recycled aggregate in concrete in Hong Kong. Resources Conservation and Recycling, 50(3), 293–305. doi: 10.1016/j.resconrec.2006.06.005.spa
dc.relation.referencesRavindrarajah, R.S., & Tam, C.T. (1985). Properties of concrete made with crushed concrete as coarse aggregate. Magazine of Concrete Research, 37(130), 29-38.spa
dc.relation.referencesRavindrarajah, R.S., Loo, Y.H., & Tam, C.T. (1987). Recycled concrete as fine and coarse aggregates in concrete. Magazine of Concrete Research, 39(141), 214–220.spa
dc.relation.referencesRoussat, N., Dujet, C., & Méhu, J. (2009). Choosing a sustainable demolition waste management strategy using multicriteria decision analysis. Waste Management, 29(1), 12-20. doi:10.1016/j.wasman.2008.04.010.spa
dc.relation.referencesVázquez, E., Barra, M., Aponte, D., Jiménez, C., & Valls, S. (2014). Improvement of the durability of concrete with recycled aggregates in chloride exposed environment. Construction and Building Materials, 67, 61–67. doi: 10.1016/j.conbuildmat.2013.11.028.spa
dc.relation.referencesWirquin, E., Hahdjeva-Zahaarieva, R., & Buyle-Bodin, F. (2000). Use of water absorption by concrete as a criterion of the durability of concrete – application to recycled aggregate concrete. Materials and Structures, 33(6), 403-408.spa
dc.relation.referencesXuan, D., Zhan, B., & Poon, C. (2016). Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cement and Concrete Composites, 65, 67-74. doi: 10.1016/j.cemconcomp.2015.10.018.spa
dc.relation.referencesZega, C.J., & Di Maio, A.A. (2011). Use of recycled fine aggregate in concretes with durable requirements. Waste Management, 31(11), 2336–2340. doi: 10.1016/j.wasman.2011.06.011.spa
dc.relation.referencesZhan, B., Poon, C., Liu, Q., Kou, S., & Shi, C. (2014). Experimental study on CO2 curing for enhancement of recycled aggregate properties. Construction and Building Materials, 67, 3–7. doi: 10.1016/j.conbuildmat.2013.09.008.spa
dc.rightsRevista EIA - 2019spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1210spa
dc.subjectagregado reciclado finospa
dc.subjectconcretospa
dc.subjectdurabilidadspa
dc.subjectpropiedades mecánicasspa
dc.subjectresistencia a clorurospa
dc.subjectsorptividadspa
dc.subjectmateriales compuestosspa
dc.titleDesempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercialspa
dc.title.translatedDesempeño mecánico y durable de concretos que incorporan agregado reciclado fino comercialeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos