Publicación:
COOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKS

dc.contributor.authorCruz Duarte, Jorge Mariospa
dc.contributor.authorAmaya Contreras, Iván Mauriciospa
dc.contributor.authorCorrea Cely, Carlos Rodrigospa
dc.date.accessioned2016-02-25 00:00:00
dc.date.accessioned2022-06-17T20:19:03Z
dc.date.available2016-02-25 00:00:00
dc.date.available2022-06-17T20:19:03Z
dc.date.issued2016-02-25
dc.description.abstractThis article deals with the design of optimum microchannel heat sinks through Unified Particle Swarm Optimisation (UPSO) and Harmony Search (HS). These heat sinks are used for the thermal management of electronic devices, and we analyse the performance of UPSO and HS in their design, both, systematically and thoroughly. The objective function was created using the entropy generation minimisation criterion. In this study, we fixed the geometry of the microchannel, the amount of heat to be removed, and the properties of the cooling fluid. Moreover, we calculated the entropy generation rate, the volume flow rate of air, the channel width, the channel height, and the Knudsen number. The results of several simulation optimizations indicate that both global optimisation strategies yielded similar results, about 0.032 W/K, and that HS required five times more iterations than UPSO, but only about a nineteenth of its computation time. In addition, HS revealed a greater chance (about three times) of finding a better solution than UPSO, but with a higher dispersion rate (about five times). Nonetheless, both algorithms successfully optimised the design for different scenarios, even when varying the material of the heat sink, and for different heat transfer rates.spa
dc.description.abstractThis article deals with the design of optimum microchannel heat sinks through Unified Particle Swarm Optimisation (UPSO) and Harmony Search (HS). These heat sinks are used for the thermal management of electronic devices, and we analyse the performance of UPSO and HS in their design, both, systematically and thoroughly. The objective function was created using the entropy generation minimisation criterion. In this study, we fixed the geometry of the microchannel, the amount of heat to be removed, and the properties of the cooling fluid. Moreover, we calculated the entropy generation rate, the volume flow rate of air, the channel width, the channel height, and the Knudsen number. The results of several simulation optimizations indicate that both global optimisation strategies yielded similar results, about 0.032 W/K, and that HS required five times more iterations than UPSO, but only about a nineteenth of its computation time. In addition, HS revealed a greater chance (about three times) of finding a better solution than UPSO, but with a higher dispersion rate (about five times). Nonetheless, both algorithms successfully optimised the design for different scenarios, even when varying the material of the heat sink, and for different heat transfer rates.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v12i24.880
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/4964
dc.identifier.urlhttps://doi.org/10.24050/reia.v12i24.880
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/880/785
dc.relation.citationeditionNúm. 24 , Año 2015spa
dc.relation.citationendpage166
dc.relation.citationissue24spa
dc.relation.citationstartpage151
dc.relation.citationvolume12spa
dc.relation.ispartofjournalRevista EIAspa
dc.rightsRevista EIA - 2015spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/880spa
dc.subjectEntropy Generation Minimisationspa
dc.subjectGlobal Optimization Algorithmspa
dc.subjectMicrochannel Heat Sinkspa
dc.subjectOptimal Designspa
dc.titleCOOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKSspa
dc.title.translatedCOOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKSeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos