Publicación:
Comportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simulado

dc.contributor.authorGaleano, Dianaspa
dc.contributor.authorVargas Giraldo, Santiagospa
dc.contributor.authorVélez Restrepo, Juan Manuelspa
dc.date.accessioned2020-06-21 00:00:00
dc.date.accessioned2022-06-17T20:20:59Z
dc.date.available2020-06-21 00:00:00
dc.date.available2022-06-17T20:20:59Z
dc.date.issued2020-06-21
dc.description.abstractLos materiales metálicos se emplean con frecuencia en la fabricación de implantes biomédicos, siendo la corrosión un factor que determina el éxito del desempeño del implante en el organismo. Debido a esto, en la presente investigación se estudió el comportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simulado. A través de difracción de rayos X, fue posible deducir que las capas nitruradas estaban compuestas, además de la fase austenítica, de la fase S. De acuerdo a los resultados alcanzados mediante análisis electroquímicos, las capas pasivas de los aceros 316L nitrurado y F1586 fueron las más protectoras, en comparación al acero 316L sin nitrurar. Esto se debió a la alta estabilidad de la capa pasiva del acero nitrurado y a la posible formación de productos estables de corrosión en la superficie del acero F1586. En términos generales, el acero sometido a nitruración reveló la menor corrosión en el fluido corporal simulado.spa
dc.description.abstractMetal materials are frequently used in the manufacture of biomedical implants, and corrosion is a critical factor that determines the success of the implant performance in the body. Due to this, this research is focused on studying the electrochemical behavior of 316L, nitrided 316L, and F1586 steels in simulated body fluid. With X-ray diffraction, it was possible to deduce that the nitrided steel surface was composed, besides to austenitic phase, of S phase. According to the electrochemical results, the passive layer of the nitrided 316L and the F1586 steels were the most protective compared to 316L steel. It was due to the high stability of the nitrided steel’s passive layer and the possible formation of stable corrosion products on the F1586 steel’s surface. In general terms, nitrided 316L steel revealed the least corrosion in the simulated body fluid.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v17i34.1461
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5131
dc.identifier.urlhttps://doi.org/10.24050/reia.v17i34.1461
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1461/1331
dc.relation.citationeditionNúm. 34 , Año 2020spa
dc.relation.citationendpage11
dc.relation.citationissue34spa
dc.relation.citationstartpage1
dc.relation.citationvolume17spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesASTM UNS S20910 (2018) Specification for Wrought Nitrogen Strengthened 22 Chromium-13 Nickel-5 Manganese-2.5 Molybdenum Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S20910). ASTM International. doi: 10.1520/F1314_F1314M-13A.spa
dc.relation.referencesASTM UNS S29108 (2012) Specification for Wrought, Nitrogen Strengthened 23Manganese-21Chromium-1Molybdenum Low-Nickel Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S29108). ASTM International. doi: 10.1520/F2229-07.spa
dc.relation.referencesASTM UNS S29225 (2017) Specification for Wrought Nitrogen Strengthened 11Manganese-17Chromium-3Molybdenum Low-Nickel Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S29225). ASTM International. doi: 10.1520/F2581-12R17.spa
dc.relation.referencesASTM UNS S31675 (2013) Specification for Wrought Nitrogen Strengthened 21Chromium--10Nickel--3Manganese--2.5Molybdenum Stainless Steel Alloy Bar for Surgical Implants (UNS S31675). ASTM International. doi: 10.1520/F1586_F1586M-13.spa
dc.relation.referencesBiehler, J., Hoche, H. and Oechsner, M. (2017) ‘Nitriding behavior and corrosion properties of AISI 304L and 316L austenitic stainless steel with deformation-induced martensite’, Surface and Coatings Technology, 324, pp. 121–128. doi: 10.1016/j.surfcoat.2017.05.059.spa
dc.relation.referencesBorgioli, F. et al. (2005) ‘Glow-discharge nitriding of AISI 316L austenitic stainless steel: influence of treatment temperature’, Surface and Coatings Technology, 200(7), pp. 2474–2480. doi: 10.1016/j.surfcoat.2004.07.110.spa
dc.relation.referencesBraz, J. K. F. S. et al. (2019) ‘Plasma nitriding under low temperature improves the endothelial cell biocompatibility of 316L stainless steel’, Biotechnology Letters, 41(4–5), pp. 503–510. doi: 10.1007/s10529-019-02657-7.spa
dc.relation.referencesDe Las Heras, E. et al. (2017) ‘Plasma nitriding of 316L stainless steel in two different N2-H2 atmospheres - Influence on microstructure and corrosion resistance’, Surface and Coatings Technology, 313, pp. 47–54. doi: 10.1016/j.surfcoat.2017.01.037.spa
dc.relation.referencesE. J. Mittemeijer (2013) ‘Fundamentals of Nitriding and Nitrocarburizing’, in J. Dossett and G.E. Totten (eds) Steel heat treating fundamentals and processes. ASM International, pp. 619–646.spa
dc.relation.referencesEliaz, N. (2019) ‘Corrosion of Metallic Biomaterials: A Review’, Materials, 12(3). doi: 10.3390/ma12030407.spa
dc.relation.referencesGaleano-Osorio, D. S. et al. (2019) ‘Hemocompatibility of plasma nitrided 316L stainless steel: Effect of processing temperature’, Applied Surface Science, p. 144704. doi: 10.1016/j.apsusc.2019.144704.spa
dc.relation.referencesGuo, D., Kwok, C. T. and Chan, S. L. I. (2019) ‘Spindle speed in friction surfacing of 316L stainless steel – How it affects the microstructure, hardness and pitting corrosion resistance’, Surface and Coatings Technology, 361, pp. 324–341. doi: 10.1016/j.surfcoat.2019.01.055. Ichii, K., Fujimura, K. and Takase, T. (1986) ‘Structure of the Ion-nitrided Layer of 18-8 Stainless Steel’, Tech. Rep. Kansai Univ., 27, pp. 135–144.spa
dc.relation.referencesKamachi Mudali, U. et al. (2002) ‘On the pitting corrosion resistance of nitrogen alloyed cold worked austenitic stainless steels’, Corrosion Science, 44(10), pp. 2183–2198. doi: 10.1016/S0010-938X(02)00035-5.spa
dc.relation.referencesKokubo, T. and Takadama, H. (2006) ‘How useful is SBF in predicting in vivo bone bioactivity?’, Biomaterials, 27(15), pp. 2907–2915. doi: 10.1016/j.biomaterials.2006.01.017.spa
dc.relation.referencesLaleh, M. et al. (2019) ‘Unanticipated drastic decline in pitting corrosion resistance of additively manufactured 316L stainless steel after high-temperature post-processing’, Corrosion Science, p. 108412. doi: 10.1016/j.corsci.2019.108412.spa
dc.relation.referencesLi, J. et al. (2019) ‘Enhancing Pitting Corrosion Resistance of Severely Cold-Worked High Nitrogen Austenitic Stainless Steel by Nitric Acid Passivation’, Journal of The Electrochemical Society, 166(13), pp. C365–C374. doi: 10.1149/2.0211913jes.spa
dc.relation.referencesLópez, D., Alonso Falleiros, N. and Paulo Tschiptschin, A. (2011) ‘Effect of nitrogen on the corrosion–erosion synergism in an austenitic stainless steel’, Tribology International. (Special Issue: ECOTRIB 2009), 44(5), pp. 610–616. doi: 10.1016/j.triboint.2010.12.013.spa
dc.relation.referencesMan, C. et al. (2019) ‘The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid’, Applied Surface Science, 467–468, pp. 193–205. doi: 10.1016/j.apsusc.2018.10.150.spa
dc.relation.referencesMarchev, K. et al. (1999) ‘The m phase layer on ion nitrided austenitic stainless steel (III): an epitaxial relationship between the m phase and the γ parent phase and a review of structural identifications of this phase’, Surface and Coatings Technology, 116–119, pp. 184–188. doi: 10.1016/S0257-8972(99)00296-0.spa
dc.relation.referencesMenthe, E. and Rie, K.-T. (1999) ‘Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding’, Surface and Coatings Technology, 116–119, pp. 199–204. doi: 10.1016/S0257-8972(99)00085-7.spa
dc.relation.referencesMingolo, N., Tschiptschin, A. P. and Pinedo, C. E. (2006) ‘On the formation of expanded austenite during plasma nitriding of an AISI 316L austenitic stainless steel’, Surface and Coatings Technology. (Proceedings of the 33rd International Conference on Metallurgical Coatings and Thin Films), 201(7), pp. 4215–4218. doi: 10.1016/j.surfcoat.2006.08.060.spa
dc.relation.referencesMitchell, D. R. G. et al. (2003) ‘Characterisation of PI3 and RF plasma nitrided austenitic stainless steels using plan and cross-sectional TEM techniques’, Surface and Coatings Technology, 165(2), pp. 107–118. doi: 10.1016/S0257-8972(02)00741-7.spa
dc.relation.referencesMontaño-Machado, V. et al. (2019) ‘Medical Devices: Coronary Stents’, in Narayan, R. (ed.) Encyclopedia of Biomedical Engineering. Oxford: Elsevier, pp. 386–398. doi: 10.1016/B978-0-12-801238-3.10995-X.spa
dc.relation.referencesSivakumar, M. and Rajeswari, S. (1995) ‘Corrosion induced failure of a stainless steel orthopaedic implant device’, Steel Research, 66(1), pp. 35–38. doi: 10.1002/srin.199501768.spa
dc.relation.referencesWang, Q. et al. (2018) ‘A self-healing stainless steel: Role of nitrogen in eliminating detrimental effect of cold working on pitting corrosion resistance’, Corrosion Science, 145, pp. 55–66. doi: 10.1016/j.corsci.2018.09.013.spa
dc.relation.referencesYang, K. and Ren, Y. (2010) ‘Nickel-free austenitic stainless steels for medical applications’, Science and Technology of Advanced Materials, 11(1). doi: 10.1088/1468-6996/11/1/014105.spa
dc.relation.referencesZiegenhagen, R. et al. (2019) ‘Corrosion Resistance of Stainless Steels Intended to Come into Direct or Prolonged Contact with the Skin’, Materials, 12(6), p. 987. doi: 10.3390/ma12060987.spa
dc.rightsRevista EIA - 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1461spa
dc.subjectAustenitc stainless steeleng
dc.subjectPassive layereng
dc.subjectCorrosioneng
dc.subjectSimulated body fluideng
dc.subjectPlasma nitridingeng
dc.subjectAceros austeníticosspa
dc.subjectCapa pasivaspa
dc.subjectCorrosiónspa
dc.subjectFluido corporal simuladospa
dc.subjectNitruración plasmaspa
dc.titleComportamiento electroquímico de los aceros 316L, 316L nitrurado y F1586 en fluido corporal simuladospa
dc.title.translatedElectrochemical behavior of 316L, 316L nitrided and F1586 steels in simulated body fluideng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos