Publicación:
Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio

dc.contributor.authorSilva Urrego, Yimmy Fernandospa
dc.contributor.authorDelvasto, Silviospa
dc.date.accessioned2020-02-03 00:00:00
dc.date.accessioned2022-06-17T20:20:38Z
dc.date.available2020-02-03 00:00:00
dc.date.available2022-06-17T20:20:38Z
dc.date.issued2020-02-03
dc.description.abstractEn este trabajo se presentan resultados de un estudio experimental sobre la resistencia al ataque externo de sulfato de sodio (Na2SO4) en concretos autocompactantes (CACs) con residuo de mampostería (RM).  Los CACs presentaban un contenido de agua constante de 202,5 kg/m3 y diferentes volúmenes de RM (0%, 25% Y 50%) como reemplazo parcial de cemento Portland (OPC) expuesto a una solución de sulfato de sodio al 5%. Las propiedades en estado fresco como fluidez, capacidad de paso y resistencia a la segregación se evaluaron mediante el flujo de asentamiento, embudo en V y caja en L. En estado endurecido, la resistencia a la compresión y expansión fueron determinadas. Por otra parte, técnicas de difracción de rayos X (DRX), microscopia electrónica de barrido (MEB) y espectroscopia de Infrarrojo con transformada de Fourier (FTIR) fueron aplicadas en pastas para investigar los efectos de los sulfatos sobre la microestructura.  Los resultados mostraron que todas las mezclas cumplen las propiedades en estado fresco, además se encontró que cuando los CACs son inmersos en la solución de sulfato de sodio, el RM puede mejorar la resistencia de los CACs al ataque por sulfatos en comparación con el CAC solo de OPC.spa
dc.description.abstractIn this paper are shown the results of an experimental study of self compacting concretes with residue of masonry about their resistance to external sulfate attack, they presented a constant content of water of 202,5 kg/m3 and different volumes of RM (0%, 25% Y 50%) as a partial replacement of Portland cement (OPC) exposed to a sulfate sodium solution at 5%. The properties in fresh state as fluidity, passing ability and resistance to segregation were evaluated through slump flow, V-funnel and L-box. In hard state, the compression strength and expansion were determinate. Besides, techniques of X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were applied to pastes in order to investigate the effects of sulfates on the microstructure. The results showed that all mixes have the properties onfresh state. Also, it was found that when CACs areexposed in a sodium sulfate solution, the RM can improve the resistance of CACs to the sulfates attack comparing with CAC only of OPC.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v17i33.1361
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5103
dc.identifier.urlhttps://doi.org/10.24050/reia.v17i33.1361
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1361/1282
dc.relation.citationeditionNúm. 33 , Año 2020spa
dc.relation.citationendpage14
dc.relation.citationissue33spa
dc.relation.citationstartpage33014 pp. 1
dc.relation.citationvolume17spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAbd Elaty, M.A.A.; Ghazy M.F. (2018). Fluidity evaluation of fiber reinforced-self compacting concrete based on buoyancy law. HBRC Journal, 14, pp. 368-378. https://doi.org/10.1016/j.hbrcj.2017.04.003.spa
dc.relation.referencesAsensio de Lucas, E.; Medina, C.; Frías, M.; Sánchez de Rojas, M.I. (2016). Clay-based construction and demolition waste as a pozzolanic addition in blended cements. Effect on sulfate resistance. Construction and Building Materials, 127, pp. 950-058. https://doi.org/10.1016/j.conbuildmat.2016.10.047.spa
dc.relation.referencesBonavetti, V.L.; Rahhal, V.F. (2006). Interacción de adiciones minerales en pastas de cemento. Revista de la Construccion, 52 (268), pp. 57-64. https://repositorio.uc.cl/handle/11534/11378spa
dc.relation.referencesBravo, M.; de Brito, J.; Pontes, J.; Evangelista, L. (2015). Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. Journal of Cleaner Production, 99, pp. 59-74. https://doi.org/10.1016/j.jclepro.2015.03.012.spa
dc.relation.referencesBulatović, V.; Melešev, M.; Radeka, M.; Radonjanin, V.; Lukić, I. (2019). Evaluation of sulfate resistance of concrete with recycled and natural aggregates, Construction and Building Materials. 152, pp. 614-631. http://dx.doi.org/10.1016/j.conbuildmat.2017.06.161.spa
dc.relation.referencesCai, R.; He, Z.; Tang, S.; Wu, T.; Chen, E. (2018). The early hydration of metakaolin blended cements by non-contact impedance measurement. Cement and Concrete Composites, 92, pp. 70-81. https://doi.org/10.1016/j.cemconcomp.2018.06.001.spa
dc.relation.referencesChen, F.; Gao, J.; Qi, B.; Shen, D. (2019). Deterioration mechanism of plain and blended cement mortars partially exposed to sulfate attack. Construction and Building Materials, 154, pp. 849-856. https://doi.org/10.1016/j.conbuildmat.2017.08.017.spa
dc.relation.referencesChoudhary, H.K.; A.V. A.; Kumar, R.; Panzi, M.E.; Matteppanavar, S.; Sherikar, B.N.; Sahoo, B. (2015). Observation of phase transformations in cement during hydratation. Construction and Building Materials, 101, pp. 122-129. https://doi.org/10.1016/j.conbuildmat.2015.10.027.spa
dc.relation.referencesEFNARC (2002). Specification and guidelines for self-compacting concrete. European association for producers and applicators of specialist building products. http://www.efnarc.org/pdf/SandGforSCC.PDFspa
dc.relation.referencesEPG (2005). BIBM, CEMBUREAU, ERMCO, EFCA, EFNARC. The European guidelines for self compacting concrete: specification, production and use. The Self-Compacting Concrete European Project Group. http://www.efca.info/download/european-guidelines-for-self-compacting-concrete-sccspa
dc.relation.referencesErcikdi, B.; Külekci, G.; Yılmaz, T. (2015). Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings. Construction and Building Materials, 93, pp. 573–583. http://dx.doi.org/10.1016/j.conbuildmat.2015.06.042spa
dc.relation.referencesGálvez-Martos, J.L.; Styles, D.; Schoenberger, H.; Zeschmar-Lahl, B. (2018). Construction and demolition waste best management practice in Europe. Resources, Conservation & Recycling, 136, pp. 166–178. https://doi.org/10.1016/j.resconrec.2018.04.016.spa
dc.relation.referencesGill, A.S.; Siddique, R. (2018). Durability properties of self compacting concrete incorporating metakaolin and rice husk ash. Construction and Building Materials, 176, pp. 323-332. https://doi.org/10.1016/j.conbuildmat.2018.05.054.spa
dc.relation.referencesGülsan, M.E.; Alzeebaree, R.; Rasheed, A. A.; Nis, A.; Kurtoğlu, A.E. (2019). Development of fly ash/slag based self compacting geopolymer concrete using nano-silica and steel fiber. Construction and Building Materials, 211, pp. 271-283. https://doi.org/10.1016/j.conbuildmat.2019.03.228spa
dc.relation.referencesIrbe, L.; Beddoe, R.E.; Heinz, D. (2019). The role of aluminium in C-A-S-H during sulfate attack on concrete. Cement and Concrete Research, 116, pp. 71-80. https://doi.org/10.1016/j.cemconres.2018.11.012spa
dc.relation.referencesIslam, R.; Nazifa, T.H.; Yuniarto, A.; Uddin, A.S.M.S.; Salmiati, S.; Shahid, S. (2019). An empirical study of construction and demolition waste generation and implication of recycling. Waste Management, 95, pp. 10–21. https://doi.org/10.1016/j.wasman.2019.05.049spa
dc.relation.referencesKulkarni, N.G.; Rao, A.B. (2016). Carbon footprint of solid clay bricks fired in clamps of India. Journal of Cleaner Production, 135, pp. 1396-1406. https://doi.org/10.1016/j.jclepro.2016.06.152spa
dc.relation.referencesLi, B.; Cao, R.; You, N.; Chen, C.; Zhang, Y. (2019). Products and properties of steam cured cement mortar containing lithium slag under partial immersion in sulfate solution. Construction and Building Materials, 220, pp. 596-606. https://doi.org/10.1016/j.conbuildmat.2019.06.062spa
dc.relation.referencesLi, H.; Dong, L.; Jiang, Z., Yang, X.; Yang, Z. (2016). Study on utilization of red brick waste powder in the production of cement-based red decorative plaster for walls. Journal of Cleaner Production, 133, pp. 1017- 1026. [Online] Disponible en: https://doi.org/10.1016/j.jclepro.2016.05.149. [Consultado 1 de octubre 2019].spa
dc.relation.referencesLin, K.L.; Chen, B.Y.; Chiou, C.S.; Cheng, A. (2010). Waste brick’s potential for use as a pozzolan in blended Portland cement. Waste Management & Research, 28, pp. 647-652. https://doi.org/10.1177/0734242X09355853spa
dc.relation.referencesLiu, C.; Gao, J.; Chen, F.; Zhao, Y.; Chen, X.; He, Z. (2019). Coupled effect of relative humidity and temperature on the degradation of cement mortars partially exposed to sulfate attack. Construction and Building Materials, 216, pp. 93-100. https://doi.org/10.1016/j.conbuildmat.2019.05.001spa
dc.relation.referencesLiu, T.; Teng, J.; Yan, G. (2012). The influence of sulfate attack on the dynamic properties of concrete column. Construction and Building Materials, 28, pp. 201-207. https://doi.org/10.1016/j.conbuildmat.2011.08.036spa
dc.relation.referencesMajhi, R.K.; Nayak, A.N. (2019). Bond, durability and microstructural characteristics of ground granulated blast furnace slag baased recycled aggregate concrete. Construction and Building Materials, 212, pp. 578-595. https://doi.org/10.1016/j.conbuildmat.2019.04.017spa
dc.relation.referencesMohammed S. (2017). Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review, Construction and Building Materials, 140, pp. 10–19. https://doi.org/10.1016/j.conbuildmat.2017.02.078spa
dc.relation.referencesMuduli, R.; Mukharjee, B.B. (2019). Effect of incorporation of metakaolin and recycled coarse aggregate on properties of concrete, Journal of Cleaner Production. 209, pp. 398-414. https://doi.org/10.1016/j.jclepro.2018.10.221spa
dc.relation.referencesNRMCA (2004). CIP 37 – Self Consolidating Concrete (SCC). https://www.nrmca.org/aboutconcrete/cips/37p.pdfspa
dc.relation.referencesSanthanam, M.; Cohen, M.D.; Olek, J. (2002). Mechanism of sulfate attack: A fresh look Part 1: Summary of experimental results. Cement and Concrete Research, 32, pp. 915 – 921. https://doi.org/10.1016/S0008-8846(02)00724-Xspa
dc.relation.referencesSanthanam, M.; Cohen, M.D.; Olek, J. (2003). Mechanism of sulfate attack: a fresh look Part 2. Proposed mechanisms. Cement and Concrete Research, 33, pp. 341 – 346. https://doi.org/10.1016/S0008-8846(02)00958-4spa
dc.relation.referencesSchackow, A.; Stringari, D.; Senff, L.; Correia, S.L.; Segadães, A.M. (2015). Influence of fired clay brick waste additions on the durability of mortars. Cement & Concrete Composites, 62, pp. 82–89. http://dx.doi.org/10.1016/j.cemconcomp.2015.04.019spa
dc.relation.referencesShaheen, F.; Pradhan, B. (2017). Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride ions. Cement and Concrete Research, 91, pp. 73-86. https://doi.org/10.1016/j.cemconres.2016.10.008spa
dc.relation.referencesSikandar, M.A.; Ahmad, W.; Khan, M.H.; Ali, F.; Waseem, M. Effect of water resistant SiO2 coated SrAl2O4: Eu2+ Dy3+ persistent luminescence phosphor on the properties of Portland cement pastes. Construction and Building Materials, 228, 116823. https://doi.org/10.1016/j.conbuildmat.2019.116823.spa
dc.relation.referencesSilva, G.; Castañeda, D.; Kim, S.; Castañeda, A.; Bertolotti, B.; Ortega-San-Martin, L.; Nakamatsu, J.; Aguilar, R. (2019). Analysis of the production conditions of geopolymer matrices from natural pozzolana and fired clay brick wastes. Construction and Building Materials, 215, pp. 633-643. https://doi.org/10.1016/j.conbuildmat.2019.04.247spa
dc.relation.referencesSilva, Y.F.; Izquierdo, S.R.; Delvasto, S. (2019). Effect of masonry residue on the hydration of Portland cement paste. Revista DYNA, 86(209), pp. 367-377. http://doi.org/10.15446/dyna.v86n209.77286spa
dc.relation.referencesSkaropoulou, A.; Sotiriadis, K.; Kakali, G.; Tsivilis, S. (2013). Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack. Cement & Concrete Composites, 36, pp. 267-275. https://doi.org/10.1016/j.cemconcomp.2013.01.007spa
dc.relation.referencesTang, Z.; Li, W.; Ke, G.; Zhou, J.L.; Tam, V.W.Y. (2019). Sulfate attack resistance of sustainable concrete incorporating various industrial solid waste. Journal of Cleaner Production, 218, pp. 810-822. https://doi.org/10.1016/j.jclepro.2019.01.337spa
dc.relation.referencesWong, C.L.; Mo, K.H.; Yap, S.P.; Alengaram, U.J. (2018). Potential use of brick waste as alternate concrete-making materials: A review. Journal of Cleaner Production, 195, pp. 226-239. https://doi.org/10.1016/j.jclepro.2018.05.193spa
dc.relation.referencesZhang Y.; Luo W.; Wang J.; Wang Y.; Xu Y.; Xiao J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, pp. 115-125. https://doi.org/10.1016/j.conbuildmat.2019.03.078spa
dc.rightsRevista EIA - 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1361spa
dc.subjectResiduo de mamposteríaspa
dc.subjectConcreto autocompactantespa
dc.subjectSulfatosspa
dc.subjectExpansiónspa
dc.subjectEtringita.spa
dc.subjectceramico / materiales compuestosspa
dc.subjectResidue of masonryeng
dc.subjectSelf-compacting concreteeng
dc.subjectSulfateseng
dc.subjectExpansioneng
dc.subjectEttringiteeng
dc.titleInfluencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodiospa
dc.title.translatedInfluence of masonry residue on the resistance of self-compacting concrete to the sodium sulfate attackeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos