Publicación:
Diseño y construcción de un equipo estimulador de campo eléctrico tipo capacitivo para estimulación celular

dc.contributor.authorOrozco-Vásquez, Juan Carlosspa
dc.contributor.authorGrisales-Díaz, Juan Felipespa
dc.contributor.authorRoldán-Vasco, Sebastiánspa
dc.contributor.authorOssa-Orozco, Claudia Patriciaspa
dc.contributor.authorRestrepo-Múnera, Luz Marinaspa
dc.contributor.authorMoncada Acevedo, María Elenaspa
dc.date.accessioned2020-06-21 00:00:00
dc.date.accessioned2022-06-17T20:20:49Z
dc.date.available2020-06-21 00:00:00
dc.date.available2022-06-17T20:20:49Z
dc.date.issued2020-06-21
dc.description.abstractRESUMENLa búsqueda de alternativas para tratamientos al cáncer que puedan ser de bajo costo, menos invasivos y con menores efectos secundarios, sigue siendo un tema de continuo interés. El estudio de un sistema combinado de campos eléctricos de bajo voltaje con nanomateriales, estos últimos actuando como nanovectores, en el tratamiento de cáncer ha mostrado resultados prometedores. En este trabajo se presenta el diseño, simulación y construcción de un equipo estimulador eléctrico tipo capacitivo de bajo voltaje para estimular células tipo fibrobastos normales y tipo melanoma combinadas con nanopartículas de oro. El equipo permite variación en voltaje, frecuencia, intensidad de corriente, forma de onda y ciclo de dureza. El diseño fue realizado en la plataforma Arduino Due, llevado a Eagle para el desarrollo PCB y con visualización en pantalla LCD. El generador construido es finalmente conectado a un par de placas paralelas encargadas del campo eléctrico que será inducido. De las variables entregadas por el equipo se encontraron exactitudes inferiores al 1,5% lo que garantiza el cumplimiento técnico del equipo en las variables necesarias.spa
dc.description.abstractThe searching of options for cancer treatments at low cost, less invasive and with minor side effects is still an interest matter. The study of a combined system of low voltages electric fields with nanomaterials, the latter working as nanovectors, in the cancer treatment has shown promising results. This work presents the design, simulation and construction of an electrical stimulator equipment capacitive type of low voltage for stimulation of healthy skin cells and melanoma type combined with gold nanoparticles. The equipment allows to modify voltage, frequency, current intensity, waveform and duty cycle. The design was performed in Arduino DUE platform, then taken to Eagle to the PCB development and the visualization on a LCD screen. The implemented generator is finally connected to a couple of parallel plates which are in charge of the induced electric field. From the variables delivered by the equipment, accuracies lower than 1.5% were found, this guarantees the technical fulfillment of the equipment in the needed variables.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v17i34.1410
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5117
dc.identifier.urlhttps://doi.org/10.24050/reia.v17i34.1410
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1410/1361
dc.relation.citationeditionNúm. 34 , Año 2020spa
dc.relation.citationendpage11
dc.relation.citationissue34spa
dc.relation.citationstartpage1
dc.relation.citationvolume17spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAraujo, T. S. (2015). Modulation of electrical stimulation applied to human physiology and clinical diagnostic. Lisboa: Universidade Nova Lisboa. Fundación para la Ciencia y la Tecnología.spa
dc.relation.referencesBalakatounis K, Angoules A. (2008) ‘Low-intensity Electrical Stimulation in Wound Healing: Review of the Efficacy of Externally Applied Currents Resembling the Current of Injury’. Journal of Plactic Surgery. 8:283-91.spa
dc.relation.referencesCamapana LG., et. al. (2009) ‘Bleomycin-based electrochemotherapy: clinical outcome from a single institution's experience with 52 patients’, Ann. Surg. Oncol. 16 191–199.spa
dc.relation.referencesCemazar M., et. al. (2009) ‘Control by pulse parameters of DNA electrotransfer into solid tumors in mice’, Gene Ther. 16 635–644.spa
dc.relation.referencesEsser A.T., et. al. (2007) ‘Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue’, Technol. Cancer Res. Treat. 6 (2007) 261–274.spa
dc.relation.referencesGehl J, et. al. (2006) ‘Results of the ESOPE (European Standard Operating Procedures on Electrochemotherapy) study: efficient, highly tolerable and simple palliative treatment of cutaneous and subcutaneousmetastases fromcancers of any histology’, J. Clin. Oncol. 24 s8047 (Suppl).spa
dc.relation.referencesGehl, (2003) ‘Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research’, Acta Physiol. Scand. 177 437–447.spa
dc.relation.referencesGintautas S, (1997) ‘Pore disappearance in a cell after electroporation: theoretical simulation and comparison with experiments’, Biophys. J. 73 1299–1309.spa
dc.relation.referencesJankovic A, Binic I. (2008) ‘Frequency rhythmic electrical modulation system in the treatment of chronic painful leg ulcers’. Arch Dermatol Res. 2008;300(7):377-83.spa
dc.relation.referencesKasivisvanathan V, et. al. (2012) ‘A. Thapar, Y. Oskrochi, J. Picard, E.L.S. Leen, Irreversible electroporation for focal ablation at the porta hepatis’, Cardiovasc. Intervent. Radiol. 35 1531–1534.spa
dc.relation.referencesKozinsky B, et. al. (2006) ‘Static dielectric properties of carbon nanotubes from first principles’, Phys. Rev. Lett. 96 166801.spa
dc.relation.referencesLee S, et. al., (2014) ‘Chemical tumor-targeting of nanoparticles based on metabolic glycoengineering and click chemistry’, ACS Nano 8 2048–2063.spa
dc.relation.referencesLekner, (2014) ‘Electroporation in cancer therapy without insertion of electrodes’, Phys. Med. Biol. 59 6031–6042.spa
dc.relation.referencesMaeda H., (2010) ‘Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects’, Bioconjug. Chem. 21 797–802.spa
dc.relation.referencesMarty M., et. al. (2006) ‘Electrochemotherapy — an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study’, EJC Suppl. 4 3–13.spa
dc.relation.referencesMatsumura Y., Maeda H., (1986). ‘A new concept for macromolecular therapeutics in cáncer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS’, Cancer Res. 46 pag. 6387–6392.spa
dc.relation.referencesMiklavčič D, et. al. (2012) ‘Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors’, Med. Biol. Eng. Comput. 50 1213–1225.spa
dc.relation.referencesNeumann E, et. al. (1999) ‘Fundamentals of electroporative delivery of drugs and genes, Bioelectrochem’. Bioenerg. 48 3–16.spa
dc.relation.referencesNeumann E, et. al. (1982) ‘Gene transfer into mouse lyoma cells by electroporation in high electric fields’, EMBO J. 1 841–845.spa
dc.relation.referencesPamela E., et. al. (2010 ‘Electrical Stimulation Therapy Increases Rate of Healing of Pressure Ulcers in Community-Dwelling People With Spinal Cord Injury’. Archives of Physical Medicine and Rehabilitation. Volume 91, Issue 5, Pages 669-678.spa
dc.relation.referencesPei-Chi Lee et. al. (2016) ‘Combining the single-walled carbon nanotubes with low voltaje electrical stimulation to improve accumulation of nanomedicines in tumor for effective cancer therapy’. Journal of Controlled Release 225 140–151.spa
dc.relation.referencesRaffa V, et. al. (2010) ‘Carbon nanotubeenhanced cell electropermeabilisation’, Bioelectrochemistry 79 136–141. Saito R, et. al. (2010) ‘Physical Properties of Carbon Nanotube’, Imperial College Press, London, 2010 1–29.spa
dc.relation.referencesSano K, et. al. (2013) ‘Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors’, ACS Nano 7 717–724.spa
dc.relation.referencesSatkauskas S, et. al. (2005) ‘Effectiveness of tumor electrochemotherapy as a function of electric pulse strength and duration’, Bioelectrochemistry 65 105–111.spa
dc.relation.referencesShahini M, et. al. (2013) ‘Cell electroporation by CNT-featured microfluidic chip’, Lab Chip 13 2585–2590.spa
dc.relation.referencesStylianopoulos T, (2013) ‘EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors’, Ther. Deliv. 4 421–423.spa
dc.relation.referencesTitomirov AV, et. al. (1991) ‘In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA’, Biochim. Biophys. Acta 1088 (1991) 131–134.spa
dc.relation.referencesWang L, et. al. (2015) ‘Cuschieri, Tumour cell membrane poration and ablation by pulsed low-intensity electric field with carbon nanotubes’, Int. J. Mol. Sci. 16 6890–6901.spa
dc.relation.referencesZhong Y, et. al. (2014) ‘Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy’, Biomacromolecules 15 1955–1969.spa
dc.rightsRevista EIA - 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1410spa
dc.subjectEstimulación eléctricaspa
dc.subjectDesarrollo de equiposspa
dc.subjectEstimulación capacitivaspa
dc.subjectElectric stimulation instrumenteng
dc.subjectDevelopment equipmenteng
dc.subjectCapacitive stimulationeng
dc.titleDiseño y construcción de un equipo estimulador de campo eléctrico tipo capacitivo para estimulación celularspa
dc.title.translatedDesign and construction capacitive electric field equipment for cell stimulationeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos