Publicación:
Síntesis hidrotermal de AlPO-5 y SAPO-5 y su evaluación catalítica en la oligomerización de propileno

dc.contributor.authorRuiz Llano, Jorgespa
dc.contributor.authorArroyave Manco, Juan Camilospa
dc.contributor.authorArboleda Echavarría, Johana Catalinaspa
dc.contributor.authorEchavarría Izasa, Adriana Patriciaspa
dc.date.accessioned2020-02-03 00:00:00
dc.date.accessioned2022-06-17T20:20:03Z
dc.date.available2020-02-03 00:00:00
dc.date.available2022-06-17T20:20:03Z
dc.date.issued2020-02-03
dc.description.abstractLos aluminofosfatos y silico-aluminofosfatos son familias de mallas moleculares que presentan sistemas de poros ordenados con disposición alternada de AlO4 y PO4. Estas pueden usarse en la reacción de oligomerización de propileno debido a sus propiedades para promover la obtención de hidrocarburos de cadenas más grandes como el Diesel. En el presente trabajo se sintetizó AlPO-5 y SAPO-5 y se evaluó su actividad catalítica en la oligomerización de propileno. Las mallas moleculares obtenidas se caracterizaron por difracción de rayos X (XRD), análisis termogravimétrico (TGA), espectroscopía de absorción atómica (AA), desorción de amoniaco a temperatura programada (NH3-TPD) y microscopía electrónica de barrido (SEM). Los productos de la reacción se analizaron mediante cromatografía de gases (GC). Se obtuvo un mayor rendimiento en la proporción de oligómeros pesados en la reacción luego de las impregnaciones de Cr y Ni al material AlPO-5, siendo el material Cr 3% AlPO-5 el de mayor rendimiento.spa
dc.description.abstractAluminophosphates and silicoaluminophospates are molecular sieves families with ordered pore systems with an alternative accommodation of AlO4 and PO4. This molecular sieves can be use like catalyst in propylen oligomerization reaction due their textural properties and selectivity toward some products for contribute to obtaining olefins of carbon chains longer achieving thus the synthesis of sulfur free liquid fuels. In this work, AlPO-5 and SAPO-5 were synthetize and was evaluated its catalytic activity in propylen oligomerization. Molecular sieves obtained were characterized by x-ray diffraction (XRD), thermal gravimetric analysis (TGA), atomic absorption spectrometry (AA), ammonia temperature programmed desorption (NH3-TPD) and scanning electronic microscopy (SEM). The reaction products were analyzed by gas chromatography (GC). A higher yield was obtained in the proportion of heavy oligomers after impregnation of Cr and Ni on AlPO-5, being Cr 3% AlPO-5 the catalyst with the highest yield.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v17i33.1260
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5057
dc.identifier.urlhttps://doi.org/10.24050/reia.v17i33.1260
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1260/1271
dc.relation.citationeditionNúm. 33 , Año 2020spa
dc.relation.citationendpage11
dc.relation.citationissue33spa
dc.relation.citationstartpage33002 pp. 1
dc.relation.citationvolume17spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAmrute, A. P., Mondelli, C., & Pérez-Ramírez, J. (2012). Kinetic aspects and deactivation behaviour of chromia-based catalysts in hydrogen chloride oxidation. Catalysis Science & Technology, 2(10), 2057. https://doi.org/10.1039/c2cy20185bspa
dc.relation.referencesBellussi, G., Mizia, F., Calemma, V., Pollesel, P., & Millini, R. (2012). Oligomerization of olefins from Light Cracking Naphtha over zeolite-based catalyst for the production of high quality diesel fuel. Microporous and Mesoporous Materials, 164, 127–134. https://doi.org/10.1016/j.micromeso.2012.07.020spa
dc.relation.referencesBlas, L., Dorge, S., Dutourni??, P., Lambert, A., Chiche, D., Bertholin, S., & Josien, L. (2015). Study of the performances of an oxygen carrier: Experimental investigation of the binder’s contribution and characterization of its structural modifications. Comptes Rendus Chimie, 18(1), 45–55. https://doi.org/10.1016/j.crci.2014.07.005spa
dc.relation.referencesBuchholz, A., Wang, W., Xu, M., Arnold, A., & Hunger, M. (2002). Thermal stability and dehydroxylation of Brønsted acid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-18, H-SAPO-31 , and H-SAPO-34 investigated by multi-nuclear solid-state NMR spectroscopy, 56, 267–278.spa
dc.relation.referencesBurton, A. W., Ong, K., Rea, T., & Chan, I. Y. (2009). On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous and Mesoporous Materials, 117(1–2), 75–90. https://doi.org/10.1016/j.micromeso.2008.06.010spa
dc.relation.referencesCheng, T., Xu, J., Li, X., Li, Y., Zhang, B., Yan, W., … Xu, R. (2012). Molecular engineering of microporous crystals: (IV) Crystallization process of microporous aluminophosphate AlPO 4-11. Microporous and Mesoporous Materials, 152, 190–207. https://doi.org/10.1016/j.micromeso.2011.11.034spa
dc.relation.referencesDang, T. T. H., Hoang, D.-L., Schneider, M., Hunger, M., & Martin, A. (2014). Impact of Conventional and Microwave Heating on SAPO-5 Formation and Brønsted Acidic Properties. Zeitschrift Für Anorganische Und Allgemeine Chemie, 640(8–9), 1576–1584. https://doi.org/10.1002/zaac.201400014spa
dc.relation.referencesHu, Z., Xu, M., Shen, Z., & Yu, J. C. (2015). A Nanostructured Chromium(III) Oxide/Tungsten(VI) Oxide p–n Junction Photoanode toward Enhanced Efficiency for Water Oxidation. J. Mater. Chem. A, 3(26), 14046–14053. https://doi.org/10.1039/C5TA02528Aspa
dc.relation.referencesJiang, F. Y., Tang, Z. K., Zhai, J. P., Ye, J. T., & Han, J. R. (2006). Synthesis of AlPO4-5 crystals using TBAOH as template. Microporous and Mesoporous Materials, 92(1–3), 129–133. https://doi.org/10.1016/j.micromeso.2005.12.021 Kalbasi, R. J., & Izadi, E. (2011). Synthesis and characterization of polymer/microporous molecular sieve nanocomposite as a shape-selective basic catalyst. Comptes Rendus Chimie, 14(11), 1002–1013. https://doi.org/10.1016/j.crci.2011.05.001spa
dc.relation.referencesKaydouh, M.-N., El Hassan, N., Davidson, A., Casale, S., El Zakhem, H., & Massiani, P. (2015). Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane. Comptes Rendus Chimie, 18(3), 293–301. https://doi.org/10.1016/j.crci.2015.01.004spa
dc.relation.referencesLi, D., Yao, J., & Wang, H. (2012). Hydrothermal synthesis of AlPO4-5: Effect of precursor gel preparation on the morphology of crystals. Progress in Natural Science: Materials International, 22(6), 684–692. https://doi.org/10.1016/j.pnsc.2012.11.003spa
dc.relation.referencesLiu, Z., Liu, L., Song, H., Wang, C., Xing, W., Komarneni, S., & Yan, Z. (2015). Hierarchical SAPO-11 preparation in the presence of glucose. Materials Letters, 154(66), 116–119. https://doi.org/10.1016/j.matlet.2015.04.067 Mériaudeau, P., Tuan, V. ., Lefebvre, F., Nghiem, V. ., & Naccache, C. (1998). Isomorphous substitution of silicon in the AlPO4 framework with AEL structure: n-octane hydroconversion. Microporous and Mesoporous Materials, 22(1–3), 435–449. https://doi.org/10.1016/S1387-1811(98)00095-Xspa
dc.relation.referencesSanta Arango, Alejandra Maria. (2009). Oligomerización De Olefinas Livianas Para La Producción De Diesel Usando Catalizadores Tipo Zeolita. MSc. Thesis, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia.spa
dc.relation.referencesSanta Arango, Alejandra María, Escobar Garcés, C. M., Agudelo Valderrama, J. L., Guzmán Monsalve, A., Palacio Santos, L. A., & Echavarría Isaza, A. (2011). Oligomerization of propene over ZSM-5 modified with Cr and W. Revista Facultad de Ingenieria, (57), 57–65.spa
dc.relation.referencesShufang, W., Yanji, W., Yang, G., & Xinqiang, Z. (2010). Preparation of SAPO-5 and Its Catalytic Synthesis of p-Aminophenol. Chinese Journal of Catalysis, 31(6), 637–644. https://doi.org/10.1016/S1872-2067(09)60079-6spa
dc.relation.referencesSouza de Araujo, A., Carlos Diniz, J., da Silva, A. O. S., & Alves de Melo, R. a. (1997). Hydrothermal synthesis of cerium aluminophosphate. Journal of Alloys and Compounds, 250(1–2), 532–535. https://doi.org/10.1016/S0925-8388(96)02738-7spa
dc.relation.referencesVan Der Borght, K., Galvita, V. V., & Marin, G. B. (2015). Reprint of "ethanol to higher hydrocarbons over Ni, Ga, Fe-modified ZSM-5: Effect of metal content. Applied Catalysis A: General, 504, 621–630. https://doi.org/10.1016/j.apcata.2015.06.034spa
dc.relation.referencesWei, X.-L., Lu, X.-H., Zhang, T.-J., Chu, X., Zhou, D., Nie, R.-F., & Xia, Q.-H. (2015). Synthesis and catalytic application of SAPO-5 by dry-gel conversion for the epoxidation of styrene with air. Microporous and Mesoporous Materials, 214, 80–87. https://doi.org/10.1016/j.micromeso.2015.04.037spa
dc.relation.referencesWu, Q., Oduro, I. N., Huang, Y., & Yunming, F. (2015). Synthesis of hierarchical SAPO-11 via seeded crystallization. Microporous and Mesoporous Materials, 218, 24–32.spa
dc.relation.referencesYoung, D., & Young, A. B. (1993). Rapid Analysis of Occluded Pr2NH in the AIPO4-11 and VPI-5 Molecular Sieves by Direct Mass Spectrometry. Materials Chemistry, 3(3), 295–297.spa
dc.relation.referencesZhou, D., Luo, X. B., Zhang, H. L., Dong, C., Xia, Q. H., Liu, Z. M., & Deng, F. (2009). Synthesis and characterization of organic-functionalized molecular sieves Ph-SAPO-5 and Ph-SAPO-11. Microporous and Mesoporous Materials, 121(1–3), 194–199. https://doi.org/10.1016/j.micromeso.2009.01.033spa
dc.rightsRevista EIA - 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1260spa
dc.subjectsilico-aluminofosfatospa
dc.subjectimpregnaciónspa
dc.subjectoligomerización de propilenospa
dc.subjectcatálisisspa
dc.subjectsilicoaluminophosphateeng
dc.subjectimpregnationeng
dc.subjectpropylen oligomerizationeng
dc.subjectcatalysiseng
dc.titleSíntesis hidrotermal de AlPO-5 y SAPO-5 y su evaluación catalítica en la oligomerización de propilenospa
dc.title.translatedAlPO-5 and SAPO-5 hydrothermal synthesis and catalytic propylen oligomerizationeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos