Publicación:
Análisis de características tiempo-frecuencia para la predicción de series temporales de Material Particulado usando Regresión por Vectores de Soporte y Optimización por Enjambre de Partículas

dc.contributor.authorSepulveda Suescun, Juan Pablospa
dc.contributor.authorAlzate Zuluaga, Norbey Yovanyspa
dc.contributor.authorMurillo Escobar, Juan Pablospa
dc.contributor.authorOrrego Metaute, Diana Alexandraspa
dc.contributor.authorCorrea Ochoa, Mauricio Andresspa
dc.date.accessioned2020-06-21 00:00:00
dc.date.accessioned2022-06-17T20:20:32Z
dc.date.available2020-06-21 00:00:00
dc.date.available2022-06-17T20:20:32Z
dc.date.issued2020-06-21
dc.description.abstractLa contaminación atmosférica por Material Particulado (PM) es un problema claramente reconocido a nivel mundial como uno de los factores de riesgo más importantes para la salud humana, en los últimos años han surgido diferentes modelos basados en inteligencia artificial para predecir la concentración de PM, con el fin de generar sistemas de alerta temprana que eviten la exposición de las personas. En este trabajo, se analizó un esquema de caracterización en el dominio tiempo-frecuencia usando la transformada Wavelet para la predicción de series temporales de PM10 y PM2.5 usando un algoritmo de Regresión por Vectores de Soporte optimizado por Enjambre de Partículas (SVR-PSO), además, se evaluó el efecto de la imputación de datos sobre las estimaciones. Los resultados obtenidos mostraron que, empleando características temporales, más las características tiempo-frecuencia propuestas, se obtiene el mejor desempeño de la SVR-PSO, además se encontró que el uso de la imputación de datos no afecta el desempeño de la SVR-PSO. El sistema propuesto en este trabajo permite disminuir el error de las estimaciones de concentración de PM10 y PM2.5 haciendo uso de características tiempo-frecuencia y es capaz de operar de forma robusta contra datos perdidos, aumentando su viabilidad de ser implementado en escenarios reales.spa
dc.description.abstractAtmospheric pollution by particulate matter is a problem recognized worldwide as a major risk factor for human health, over last years different models based on artificial intelligence has been proposed to forecast particulate matter concentration with the purpose of generate early warning systems that avoid people exposition. This paper analyzed a characterization scheme in time-frequency domain using the Wavelet to predict time series of PM10 and PM2.5 using the Support Vector Regression optimized with Particle Swarm Optimization (SVR-PSO). This paper also evaluated the effect of data imputation over estimations. Results showed that using time characteristics along with time-frequency characteristics SVR-PSO reach its best performance, also, it was found that use of data imputation does not affect SVR-PSO performance. The system proposed in this paper allow to estimate PM10 and PM2.5 concentrations with less error through time-frequency characteristics, in addition, it is capable to operate robustly against missing data, which improve its viability to be implemented in real scenarios.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v17i34.1347
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5095
dc.identifier.urlhttps://doi.org/10.24050/reia.v17i34.1347
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1347/1340
dc.relation.citationeditionNúm. 34 , Año 2020spa
dc.relation.citationendpage15
dc.relation.citationissue34spa
dc.relation.citationstartpage1
dc.relation.citationvolume17spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAhmat Zainuri, N., Aziz Jemain, A. and Muda, N. (2015) ‘A Comparison of Various Imputation Methods for Missing Values in Air Quality Data (Perbandingan Pelbagai Kaedah Imputasi bagi Data Lenyap untuk Data Kualiti Udara)’, Sains Malaysiana, 44(3), pp. 449–456. Available at: http://www.ukm.edu.my/jsm/pdf_files/SM-PDF-44-3-2015/17 NuryAzmin.pdf.spa
dc.relation.referencesAraghi, A. et al. (2015) ‘Using wavelet transforms to estimate surface temperature trends and dominant periodicities in Iran based on gridded reanalysis data’, Atmospheric Research. Elsevier B.V., 155, pp. 52–72. doi: 10.1016/j.atmosres.2014.11.016.spa
dc.relation.referencesBai, L. et al. (2018) ‘Air pollution forecasts: An overview’, International Journal of Environmental Research and Public Health, 15(4), pp. 1–44. doi: 10.3390/ijerph15040780.spa
dc.relation.referencesBaklanov, A. et al. (2007) ‘Integrated systems for forecasting urban meteorology, air pollution and population exposure’, Atmospheric Chemistry and Physics, 7(3), pp. 855–874. doi: 10.5194/acp-7-855-2007.spa
dc.relation.referencesBetancur Alarcon, L. (2017) ‘Atencion de males por calidad del aire cuesta 1,6 billones al año’, El Tiempo, May.spa
dc.relation.referencesBrugha, R., Edmondson, C. and Davies, J. C. (2018) ‘Outdoor air pollution and cystic fibrosis’, Paediatric Respiratory Reviews, 28, pp. 80–86. doi: https://doi.org/10.1016/j.prrv.2018.03.005.spa
dc.relation.referencesChen, M. et al. (2015) ‘A clustering algorithm for sample data based on environmental pollution characteristics’, Atmospheric Environment. Elsevier Ltd, 107, pp. 194–203. doi: 10.1016/j.atmosenv.2015.02.042.spa
dc.relation.referencesChen, Y. et al. (2013) ‘Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis’, Atmospheric Environment. Elsevier Ltd, 74, pp. 346–359. doi: 10.1016/j.atmosenv.2013.04.002.spa
dc.relation.referencesDelpont, B. et al. (2018) ‘Environmental Air Pollution: An Emerging Risk Factor for Stroke’, in Vasan, R. S. and Sawyer, D. B. (eds) Encyclopedia of Cardiovascular Research and Medicine. Oxford: Elsevier, pp. 231–237. doi: https://doi.org/10.1016/B978-0-12-809657-4.99588-7.spa
dc.relation.referencesDonnelly, A., Misstear, B. and Broderick, B. (2015) ‘Real time air quality forecasting using integrated parametric and non-parametric regression techniques’, Atmospheric Environment. Elsevier Ltd, 103(2), pp. 53–65. doi: 10.1016/j.atmosenv.2014.12.011.spa
dc.relation.referencesErtu\ugrul, Ö. F. and Ta\ugluk, M. E. (2017) ‘A novel version of k nearest neighbor: Dependent nearest neighbor’, Applied Soft Computing Journal, 55, pp. 480–490. doi: 10.1016/j.asoc.2017.02.020.spa
dc.relation.referencesFeng, X. et al. (2015) ‘Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation’, Atmospheric Environment, 107, pp. 118–128. doi: 10.1016/j.atmosenv.2015.02.030.spa
dc.relation.referencesGallego, A. J. et al. (2018) ‘Clustering-based k-nearest neighbor classification for large-scale data with neural codes representation’, Pattern Recognition. Elsevier Ltd, 74, pp. 531–543. doi: 10.1016/j.patcog.2017.09.038.spa
dc.relation.referencesGarcía Nieto, P. J. et al. (2017) ‘Air Quality Modeling Using the PSO-SVM-Based Approach, MLP Neural Network, and M5 Model Tree in the Metropolitan Area of Oviedo (Northern Spain)’, Environmental Modeling & Assessment. doi: 10.1007/s10666-017-9578-y.spa
dc.relation.referencesDe Gennaro, G. et al. (2013) ‘Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean’, Science of the Total Environment. Elsevier B.V., 463–464, pp. 875–883. doi: 10.1016/j.scitotenv.2013.06.093.spa
dc.relation.referencesHu, C. et al. (2014) ‘Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery’, Applied Energy. Elsevier Ltd, 129, pp. 49–55. doi: 10.1016/j.apenergy.2014.04.077.spa
dc.relation.referencesHu, X. P., Dong, X. D. and Yu, B. H. (2016) ‘Method of Optimal Design with SVR-PSO for Ultrasonic Cutter Assembly’, Procedia CIRP, 50, pp. 779–783. doi: 10.1016/j.procir.2016.04.180.spa
dc.relation.referencesKalteh, A. M. (2015) ‘Wavelet Genetic Algorithm-Support Vector Regression (Wavelet GA-SVR) for Monthly Flow Forecasting’, Water Resources Management, 29(4), pp. 1283–1293. doi: 10.1007/s11269-014-0873-y.spa
dc.relation.referencesKazem, A. et al. (2013) ‘Support vector regression with chaos-based firefly algorithm for stock market price forecasting’, in Applied Soft Computing. Elsevier B.V., pp. 947–958. doi: 10.1016/j.asoc.2012.09.024.spa
dc.relation.referencesKhaniabadi, Y. O. et al. (2018) ‘Mortality and morbidity due to ambient air pollution in Iran’, Clinical Epidemiology and Global Health. doi: https://doi.org/10.1016/j.cegh.2018.06.006.spa
dc.relation.referencesLINDSAY, P. H. and NORMAN, D. A. (1977) ‘Neural information processing’, Human Information Processing, 8226(November), pp. 190–254. doi: 10.1016/B978-0-12-450960-3.50010-5.spa
dc.relation.referencesMarini, F. and Walczak, B. (2015) ‘Particle swarm optimization (PSO). A tutorial’, Chemometrics and Intelligent Laboratory Systems. Elsevier B.V., 149, pp. 153–165. doi: 10.1016/j.chemolab.2015.08.020.spa
dc.relation.referencesMartínez, J. and Castro, R. (2002) ‘Análisis de la teoría ondículas orientada a las aplicaciones en ingeniería eléctrica:Fundamentos’, E.T.D.I. Industriales Dpt. de ingeniería eléctrica, p. 161.spa
dc.relation.referencesMuñoz, A., Quiroz, C. and Paz, J. (2006) Efectos de la contaminación atmosférica sobre la salud en adultos. Universidad de Antioquia.spa
dc.relation.referencesMurillo-Escobar, J. et al. (2019) ‘Forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: Case study in Aburrá Valley, Colombia’, Urban Climate. Elsevier, 29(March), p. 100473. doi: 10.1016/j.uclim.2019.100473.spa
dc.relation.referencesPartal, T. and Küçük, M. (2006) ‘Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey)’, Physics and Chemistry of the Earth, 31(18), pp. 1189–1200. doi: 10.1016/j.pce.2006.04.043.spa
dc.relation.referencesPrasad, K., Gorai, A. K. and Goyal, P. (2016) ‘Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time’, Atmospheric Environment. Elsevier Ltd, 128, pp. 246–262. doi: 10.1016/j.atmosenv.2016.01.007.spa
dc.relation.referencesQin, S. et al. (2014) ‘Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models’, Atmospheric Environment. Elsevier Ltd, 98, pp. 665–675. doi: 10.1016/j.atmosenv.2014.09.046.spa
dc.relation.referencesSchraufnagel, D. E. et al. (2018) ‘Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems’, Chest. doi: https://doi.org/10.1016/j.chest.2018.10.041.spa
dc.relation.referencesShahraiyni, H. T. and Sodoudi, S. (2016) ‘Statistical modeling approaches for pm10 prediction in urban areas; A review of 21st-century studies’, Atmosphere, 7(2), pp. 10–13. doi: 10.3390/atmos7020015.spa
dc.relation.referencesShen, C. H., Huang, Y. and Yan, Y. N. (2016) ‘An analysis of multifractal characteristics of API time series in Nanjing, China’, Physica A: Statistical Mechanics and its Applications. Elsevier B.V., 451(June 2000), pp. 171–179. doi: 10.1016/j.physa.2016.01.061.spa
dc.relation.referencesSiata (2017) Estabilidad atmosférica en el Valle de Áburra. Colombia.spa
dc.relation.referencesSmola, a J. and Scholkopf, B. (2004) ‘A tutorial on support vector regression’, Statistics and Computing, 14(3), pp. 199–222. doi: Doi 10.1023/B:Stco.0000035301.49549.88.spa
dc.relation.referencesSun, W. et al. (2013) ‘Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California’, Science of the Total Environment. Elsevier B.V., 443, pp. 93–103. doi: 10.1016/j.scitotenv.2012.10.070.spa
dc.relation.referencesZhang, Y. et al. (2012) ‘Real-time air quality forecasting, Part II: State of the science, current research needs, and future prospects’, Atmospheric Environment. Elsevier Ltd, 60, pp. 656–676. doi: 10.1016/j.atmosenv.2012.02.041.spa
dc.relation.referencesZhang, Z. et al. (2017) ‘Application of a novel hybrid method for spatiotemporal data imputation: A case study of the Minqin County groundwater level’, Journal of Hydrology. Elsevier B.V., 553, pp. 384–397. doi: 10.1016/j.jhydrol.2017.07.053.spa
dc.rightsRevista EIA - 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1347spa
dc.subjectSVRspa
dc.subjectPSOspa
dc.subjectTransformada Waveletspa
dc.subjectImputación de datosspa
dc.subjectPredicciónspa
dc.subjectRegresiónspa
dc.subjectSVReng
dc.subjectPSOeng
dc.subjectWavelet Transformeng
dc.subjectData imputationeng
dc.subjectPredictioneng
dc.subjectRegressioneng
dc.titleAnálisis de características tiempo-frecuencia para la predicción de series temporales de Material Particulado usando Regresión por Vectores de Soporte y Optimización por Enjambre de Partículasspa
dc.title.translatedTime-Frequency characteristics analysis for forecasting time series of particulate matter using Support Vector Regression and Particle Swarm Optimizationeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos