Publicación:
Evaluación del Apantallamiento electromagnético del concreto

dc.contributor.authorGranados, Camilospa
dc.contributor.authorRojas, Herbertspa
dc.contributor.authorSantamaria, Franciscospa
dc.date.accessioned2020-06-21 00:00:00
dc.date.accessioned2022-06-17T20:19:52Z
dc.date.available2020-06-21 00:00:00
dc.date.available2022-06-17T20:19:52Z
dc.date.issued2020-06-21
dc.description.abstractEste artículo analiza la efectividad de apantallamiento electromagnético de varias estructuras de concreto en función de la variación del grosor y el contenido o nivel de humedad (NH), para un rango de frecuencias definido. El estudio se fundamenta en la implementación de simulaciones en dos dimensiones (2D) usando un software basado en el método de elementos finitos (FEM) y se desarrolló a partir de un conjunto de valores obtenidos de la aplicación de modelos matemáticos para medios dieléctricos. Inicialmente, se caracterizan las propiedades eléctricas complejas (permitividad dieléctrica y conductividad) de las estructuras aplicando el modelo matemático de Jonscher de tres variables. Posteriormente, se evalúan dichas propiedades en un rango de frecuencias determinado. Como resultado, se observa que el blindaje electromagnético ofrecido por el concreto aumenta cuando se incrementa el NH y el grosor de las estructuras. Adicionalmente, las pruebas evidencian que las pérdidas de energía por absorción son mayores en comparación con los demás tipos de pérdidas analizadas en el estudio.spa
dc.description.abstract   This article analyzes the effectiveness of electromagnetic shielding of several concrete structures based on the variation of the thickness and the content or humidity level (NH), for a defined frequency range. The study is based on the implementation of simulations in two dimensions (2D) using a software based on the finite element method (FEM) and was developed from a set of values obtained from the application of mathematical models for dielectric media. Initially, the complex electrical properties (dielectric permittivity and conductivity) of the structures are characterized by applying the Jonscher mathematical model of three variables. Subsequently, these properties are evaluated in a specific frequency range. As a result, it is observed that the electromagnetic shielding offered by the concrete increases when the NH and the thickness of the structures are increased. Additionally, the evidence shows that energy losses due to absorption are greater compared to the other types of losses analyzed in the study eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v17i34.1231
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5040
dc.identifier.urlhttps://doi.org/10.24050/reia.v17i34.1231
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1231/1325
dc.relation.citationeditionNúm. 34 , Año 2020spa
dc.relation.citationendpage12
dc.relation.citationissue34spa
dc.relation.citationstartpage1
dc.relation.citationvolume17spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesA Shaari, Millard, S. and Bungey, J. (2002) ‘Measurement of Radar Properties of Concrete for in Situ Structural Elements’, IEEE International Conference on Ground Penetrating Radar (GPR), pp. 756–758.spa
dc.relation.referencesAchedad, C. and Giménez, L. (2008) Ingeniería de organización: Modelos y aplicaciones. Madrid, España.spa
dc.relation.referencesAnoop, S. et al. (2011) ‘Synthesis, charge transport studies, and microwave shielding behavior of nanocomposites of polyaniline with Ti-doped γ-Fe2O3’, Journal of Materials Science, 47(5), pp. 2461–2471.spa
dc.relation.referencesAntonini, G., Orlandi, A. and Stefano, D. (2003) ‘Shielding Effects of Reinforced Concrete Structures to Electromagnetic Fields due to GSM and UMTS Systems’, IEEE Transactions on Magnetics. New York, USA, 39(3), pp. 1582–1585.spa
dc.relation.referencesAskeland, D. (1998) Ciencia e Ingenieria de los Materiales. USA, New York.spa
dc.relation.referencesCelozzi, S., Araneo, R. and Lovat, G. (1999) Electromagnetic Shielding. Italy, Roma. doi: 10.1002/047134608X.W3403.spa
dc.relation.referencesChahine, K. et al. (2009) ‘On the variants of Jonscher’s model for the electromagnetic characterization of concrete’, IEEE International Conference on Ground Penetrating Radar (GPR). Nantes, Francia, (9), pp. 1–6.spa
dc.relation.referencesChoudhary, V., Dhawan, S. and Saini, P. (2012) ‘Polymer based nanocomposites for electromagnetic interference ( EMI ) shielding’, Indian Institute of Technology, 661(2).spa
dc.relation.referencesChung, D. (2000) ‘Materials for Electromagnetic Interference Shielding’, Materials engineering and performance, 9(5), pp. 350–354.spa
dc.relation.referencesColombo, J. (2012) Análisis y mediciones de los parámetros de dispersión o Scattering parameters en un cuadripolo o en una red de n puertos (multipolo). Universidad tecnológica nacional.spa
dc.relation.referencesCOMSOL (2013) Meshing Considerations for Linear Static Problems.spa
dc.relation.referencesCOMSOL Multiphysics (2013) Introduction to COMSOL Multiphysics, Version 4.3b. U.S.spa
dc.relation.referencesDalke, R. et al. (2000) ‘Effects of Reinforced Concrete Structures on RF Comunications’, IEEE Transactions on Electromagnetic Compatibility. New York, USA, 42(4), pp. 486–496.spa
dc.relation.referencesFeitor, B. et al. (2011) Estimation of Dielectric Concrete Properties from Power Measurements at 18 . 7 and 60 GHz. Leiria, Portugal.spa
dc.relation.referencesGalao, O. (2012) Matrices cementicias multifuncionales mediante adición de nanofibras de carbono. Universidad de Alicante.spa
dc.relation.referencesGuan, H. et al. (2006) ‘Cement based electromagnetic shielding and absorbing building materials’, Cement and Concrete Composites, 28(5), pp. 468–474. doi: 10.1016/j.cemconcomp.2005.12.004.spa
dc.relation.referencesGuzman, G. (1992) Verificación de efectividad de blindaje electromagnético por teorema se reciprocidad. Universidad Autónoma de Nuevo León.spa
dc.relation.referencesHemming, L. (1992) Architectural Electromagnetic Shielding Handbook. USA, New York: IEEE The institute of Electrical and Engineer.spa
dc.relation.referencesHernández, J. (1999) Teoría de líneas de trasmisión e ingeniería de microondas. Mexicali, México.spa
dc.relation.referencesIhamouten, A. et al. (2011) ‘On Variants of the Frequency Power Law for the Electromagnetic Characterization of Hydraulic Concrete’, 60(11), pp. 3658–3668.spa
dc.relation.referencesInternational Electrotechnical Commission IEC (2000) International standard IEC 61000 1-1, Electromagnetic compatibility (EMC) - Part 1-1: General - Application and interpretation of fundamental definitions and terms. Suiza.spa
dc.relation.referencesJonscher, A. (1990a) ‘The “Universal” Dielectric Reponse: Part I’, IEEE Electrical Insulation Magazine, 6(2), pp. 16–22.spa
dc.relation.referencesJonscher, A. (1990) ‘The “Universal” Dielectric Reponse: Part II’, IEEE Electrical Insulation Magazine, 6(3), pp. 24–28.spa
dc.relation.referencesJonscher, A. (1990b) ‘The “Universal” Dielectric Reponse: Part III’, IEEE Electrical Insulation Magazine, 6(4), pp. 19–24.spa
dc.relation.referencesKaur, M., Kakar, S. and Mandal, D. (2011) ‘Electromagnetic interference’, IEEE International Conference on Electronics Computer Technology (ICECT). Punjab, India: IEEE, 4, pp. 1–5.spa
dc.relation.referencesKeshtkar, A., Maghoul, A. and Kalantarnia, A. (2010) ‘Investigation of Shielding Effectiveness Caused by Incident Plane Wave on Conductive Enclosure in UHF Band’, IEEE International Conference on Mechanical and Aerospace Engineering. Tabriz, Iran, 110, pp. 485–490.spa
dc.relation.referencesKim, H. et al. (2004) ‘Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst’, Applied Physics Letters, 84(4), p. 589.spa
dc.relation.referencesLaurens, S. et al. (2003) ‘Non destructive evaluation of concrete moisture by GPR technique: experimental study and direct modeling’, Materials and Structures, 38(9), pp. 827–832.spa
dc.relation.referencesOgunsola, A., Reggiani, U. and Sandrolini, L. (2005) ‘Shielding effectiveness of concrete buildings’, IEEE International Symposium Electromagnetic Compatibility and Electromagnetic Ecology, pp. 65–68.spa
dc.relation.referencesOgunsola, A., Reggiani, U. and Sandrolini, L. (2006) ‘Modelling shielding properties of concrete’, IEEE International Zurich Symposium on Electromagnetic Compatibility. Londres, Inglaterra, pp. 34–37.spa
dc.relation.referencesOgunsola, A., Reggiani, U. and Sandrolini, L. (2009) ‘Shielding properties of conductive concrete against transient electromagnetic disturbances’, IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems. Bologna, Italia, 1, pp. 1–5. doi: 10.1109/COMCAS.2009.5385975.spa
dc.relation.referencesPokkuluri, K. (1998) Effect of Admixtures , Chlorides , and Moisture on Dielectric Properties of Portland Cement Concrete in the Low Microwave Frequency Range. Ph.D. dissertation, Civil Eng. Dept.,Virginia Polytechnic Institute and State University.spa
dc.relation.referencesR. Haddad and Al-Qadi, I. (1998) ‘Characterization of portland cement concrete using electromagnetic waves over the microwave frequencies’, Elsevier Science Ltd, 28(10), pp. 1379–1391.spa
dc.relation.referencesRender, B. (2004) Principios de administración de operaciones. Seguin, USA.spa
dc.relation.referencesRhim, H. and Buyukozturk, O. (1998) ‘Electromagnetic Properties of Concrete at Microwave Frequency Range’, ACI Materials, 95(3), pp. 262–271.spa
dc.relation.referencesRobert, A. (1998) ‘Dielectric permittivity of concrete between 50 Mhz and 1 Ghz and GPR measurements for building materials evaluation’, Journal of Applied Geophysics. Montreal, Canadá, 40(1–3), pp. 89–94.spa
dc.relation.referencesRomanca, M. et al. (2008) ‘Methods of Investigating Construction Materials used for Intelligent Building Shielding’, IEEE International Conference on Optimization of Electrical and Electronic Equipment. Braşov, Romania, 1, pp. 191–196.spa
dc.relation.referencesSaini, P. et al. (2009) ‘Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding’, Materials Chemistry and Physics, 113(2–3), pp. 919–926. doi: 10.1016/j.matchemphys.2008.08.065.spa
dc.relation.referencesSaini, P. et al. (2011) ‘Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0GHz range’, Synthetic Metals. Elsevier B.V., 161(15–16), pp. 1522–1526.spa
dc.relation.referencesSandrolini, L., Reggiani, U. and Ogunsola, A. (2007) ‘Modelling the electrical properties of concrete for shielding effectiveness prediction’, Journal of Physics D: Applied Physics, 40(17), pp. 5366–5372. doi: 10.1088/0022-3727/40/17/053.spa
dc.relation.referencesSingh, B. et al. (2012) ‘Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding’, AIP Advances, 2(2).spa
dc.relation.referencesSoutsos, M. et al. (2001) ‘Dielectric properties of concrete and their influence on radar testing’, NDT and E International. Liverpool, Inglaterra, 34(6), pp. 419–425.spa
dc.relation.referencesVillain, G., Ihamouten, A. and Dérobert, X. (2011) Use of Frequency Power Law to Link the Results of Two EM Testing Methods for the Characterization of Humid Concretes. Nantes, Francia.spa
dc.relation.referencesYada, H., Nagai, M. and Tanaka, K. (2008) ‘Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy’, Chemical Physics Letters. Elsevier B.V., 464(4–6), pp. 166–170.spa
dc.rightsRevista EIA - 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1231spa
dc.subjectApantallamiento electromagnéticospa
dc.subjectconcretospa
dc.subjectpropiedades eléctricas complejasspa
dc.subjectmodelo de Jonscherspa
dc.subjectCompatibilidad Electromagnéticaspa
dc.titleEvaluación del Apantallamiento electromagnético del concretospa
dc.title.translatedEvaluation of electromagnetic shielding of concreteeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos