Publicación:
Precisión en implantación de electrodos para estimulación cerebral profunda para manejo de trastornos del movimiento.

dc.contributor.authorOrdoñez Castillo, Jorge Albertospa
dc.contributor.authorEscobar Vidarte, Oscar Andrésspa
dc.contributor.authorOrozco Mera, Javierspa
dc.date.accessioned2021-12-31 11:53:27
dc.date.accessioned2022-06-17T20:21:07Z
dc.date.available2021-12-31 11:53:27
dc.date.available2022-06-17T20:21:07Z
dc.date.issued2021-12-31
dc.description.abstractEn la implantación de electrodos cerebrales profundos el gran reto del cirujano es la más precisa implantación de electrodos en el lugar seleccionado, presentamos el análisis de la técnica quirúrgica estándar internacional y análisis de una cohorte de pacientes implantados en términos de precisión lograda en un estudio observacional descriptivo retrospectivo de doce pacientes, se analizó la precisión en implantación de electrodos con la técnica quirúrgica estándar internacional, comparando la posición de los electrodos en el post operatorio inmediato con la posición de los electrodos planeada antes del procedimiento quirúrgico. El estudio incluye doce pacientes con Enfermedad de Parkinson (9), distonía cervical (1), síndrome tardío (1) y Enfermedad de Gilles de la Tourette (1), implantados con técnica quirúrgica estándar internacional. Todos los pacientes fueron implantados bilateralmente, para un total de 24 electrodos implantados. En la medición de la distancia entre el blanco quirúrgico planeado en el preoperatorio y la localización final del electrodo, encontramos una distancia promedio de 0.89 milímetros, con un rango entre 0 y 2.5 milímetros. Encontramos que la implantación de electrodos cerebrales por estereotaxia, imágenes, software y microregistro, en paciente despierto, con micro y macro estimulación, es un procedimiento preciso y seguro con diferencia promedio 0,89 milímetros.spa
dc.description.abstractIn the implantation of deep brain electrodes, the great challenge for the surgeon is the most precise implantation of electrodes in the selected place. We present the analysis of the international standard surgical technique and analysis of a cohort of implanted patients in terms of precision achieved in an observational study. descriptive retrospective of twelve patients, the precision in electrode implantation was analyzed with the international standard surgical technique, comparing the position of the electrodes in the immediate postoperative period with the position of the electrodes planned before the surgical procedure. The study includes twelve patients with Parkinson's disease (9), cervical dystonia (1), late syndrome (1) and Gilles de la Tourette's disease (1), implanted with international standard surgical technique. All patients were implanted bilaterally, for a total of 24 implanted electrodes. In the measurement of the distance between the planned surgical target in the preoperative period and the final location of the electrode, we found an average distance of 0.89 millimeters, with a range between 0 and 2.5 millimeters. We found that the implantation of brain electrodes by stereotaxy, images, software and microregistration, in an awake patient, with micro and macro stimulation, is a precise and safe procedure with an average difference of 0.89 millimeters.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v19i37.1480
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5141
dc.identifier.urlhttps://doi.org/10.24050/reia.v19i37.1480
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1480/1435
dc.relation.citationeditionNúm. 37 , Año 2022 :spa
dc.relation.citationendpage15
dc.relation.citationissue37spa
dc.relation.citationstartpage37004 pp. 1
dc.relation.citationvolume19spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAbelson, J. L. et al. (2005) ‘Deep brain stimulation for refractory obsessive-compulsive disorder.’, Biological psychiatry. United States, 57(5), pp. 510–516. doi: 10.1016/j.biopsych.2004.11.042.spa
dc.relation.referencesAbosch, A. et al. (2013) ‘An international survey of deep brain stimulation procedural steps.’, Stereotactic and functional neurosurgery. Switzerland, 91(1), pp. 1–11. doi: 10.1159/000343207.spa
dc.relation.referencesAires, A. et al. (2018) ‘The impact of deep brain stimulation on health related quality of life and disease-specific disability in Meige Syndrome (MS).’, Clinical neurology and neurosurgery. Netherlands, 171, pp. 53–57. doi: 10.1016/j.clineuro.2018.05.012.spa
dc.relation.referencesAltinel, Y. et al. (2019) ‘Outcomes in Lesion Surgery versus Deep Brain Stimulation in Patients with Tremor: A Systematic Review and Meta-Analysis.’, World neurosurgery. United States, 123, pp. 443-452.e8. doi: 10.1016/j.wneu.2018.11.175.spa
dc.relation.referencesBalachandran, R. et al. (2010) ‘Effect of MR distortion on targeting for deep-brain stimulation.’, IEEE transactions on bio-medical engineering, 57(7), pp. 1729–1735. doi: 10.1109/TBME.2010.2043675.spa
dc.relation.referencesBenabid, A. L. et al. (1991) ‘Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus.’, Lancet (London, England). England, 337(8738), pp. 403–406. doi: 10.1016/0140-6736(91)91175-t.spa
dc.relation.referencesBétry, C. et al. (2018) ‘Deep brain stimulation as a therapeutic option for obesity: A critical review.’, Obesity research & clinical practice. Netherlands, 12(3), pp. 260–269. doi: 10.1016/j.orcp.2018.02.004.spa
dc.relation.referencesBjartmarz, H. and Rehncrona, S. (2007) ‘Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation.’, Stereotactic and functional neurosurgery. Switzerland, 85(5), pp. 235–242. doi: 10.1159/000103262.spa
dc.relation.referencesContarino, M. F. et al. (2013) ‘Postoperative displacement of deep brain stimulation electrodes related to lead-anchoring technique.’, Neurosurgery. United States, 73(4), pp. 681–8; discussion 188. doi: 10.1227/NEU.0000000000000079.spa
dc.relation.referencesCury, R. G. et al. (2017) ‘Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia.’, Neurology. United States, 89(13), pp. 1416–1423. doi: 10.1212/WNL.0000000000004295.spa
dc.relation.referencesD’Haese, P.-F. et al. (2010) ‘Clinical accuracy of a customized stereotactic platform for deep brain stimulation after accounting for brain shift.’, Stereotactic and functional neurosurgery, 88(2), pp. 81–87. doi: 10.1159/000271823.spa
dc.relation.referencesDalton, B., Campbell, I. C. and Schmidt, U. (2017) ‘Neuromodulation and neurofeedback treatments in eating disorders and obesity.’, Current opinion in psychiatry. United States, 30(6), pp. 458–473. doi: 10.1097/YCO.0000000000000361.spa
dc.relation.referencesDougherty, D. D. (2018) ‘Deep Brain Stimulation: Clinical Applications.’, The Psychiatric clinics of North America. United States, 41(3), pp. 385–394. doi: 10.1016/j.psc.2018.04.004.spa
dc.relation.referencesElia, A. E. et al. (2018) ‘Deep brain stimulation for dystonia due to cerebral palsy: A review.’, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society. England, 22(2), pp. 308–315. doi: 10.1016/j.ejpn.2017.12.002.spa
dc.relation.referencesFitzpatrick, J. M. et al. (2005) ‘Accuracy of customized miniature stereotactic platforms.’, Stereotactic and functional neurosurgery. Switzerland, 83(1), pp. 25–31. doi: 10.1159/000085023.spa
dc.relation.referencesGielen, F. L. H. (2003) ‘Deep brain stimulation: current practice and challenges for the future’, in First International IEEE EMBS Conference on Neural Engineering, 2003. Conference Proceedings., pp. 489–491. doi: 10.1109/CNE.2003.1196869.spa
dc.relation.referencesHoll, E. et al. (2010) Improving Targeting in Image-Guided Frame-Based Deep Brain Stimulation, Neurosurgery. doi: 10.1227/NEU.0b013e3181f7422a.spa
dc.relation.referencesHolloway, K. L. et al. (2005) ‘Frameless stereotaxy using bone fiducial markers for deep brain stimulation.’, Journal of neurosurgery. United States, 103(3), pp. 404–413. doi: 10.3171/jns.2005.103.3.0404.spa
dc.relation.referencesHolslag, J. A. H. et al. (2018) ‘Deep Brain Stimulation for Essential Tremor: A Comparison of Targets.’, World neurosurgery. United States, 110, pp. e580–e584. doi: 10.1016/j.wneu.2017.11.064.spa
dc.relation.referencesItakura, T. (ed.) (2014) Deep brain stimulation for neurological disorders : theoretical background and clinical application / Toru Itakura, editor. Cham : Springer, [2014].spa
dc.relation.referencesKohl, S. and Baldermann, J. C. (2018) ‘Progress and challenges in deep brain stimulation for obsessive-compulsive disorder.’, Pharmacology & therapeutics. England, 186, pp. 168–175. doi: 10.1016/j.pharmthera.2018.01.011.spa
dc.relation.referencesKonrad, P. E. et al. (2011) ‘Customized, miniature rapid-prototype stereotactic frames for use in deep brain stimulator surgery: initial clinical methodology and experience from 263 patients from 2002 to 2008.’, Stereotactic and functional neurosurgery, 89(1), pp. 34–41. doi: 10.1159/000322276.spa
dc.relation.referencesLaxton, A. W. et al. (2010) ‘A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease.’, Annals of neurology. United States, 68(4), pp. 521–534. doi: 10.1002/ana.22089.spa
dc.relation.referencesLi, Z. et al. (2016) ‘Review on Factors Affecting Targeting Accuracy of Deep Brain Stimulation Electrode Implantation between 2001 and 2015.’, Stereotactic and functional neurosurgery. Switzerland, 94(6), pp. 351–362. doi: 10.1159/000449206.spa
dc.relation.referencesMacerollo, A. and Deuschl, G. (2018) ‘Deep brain stimulation for tardive syndromes: Systematic review and meta-analysis.’, Journal of the neurological sciences. Netherlands, 389, pp. 55–60. doi: 10.1016/j.jns.2018.02.013.spa
dc.relation.referencesMaciunas, R. J., Galloway, R. L. J. and Latimer, J. W. (1994) ‘The application accuracy of stereotactic frames.’, Neurosurgery. United States, 35(4), pp. 682–685. doi: 10.1227/00006123-199410000-00015. Magown, P. et al. (2018) ‘Deep brain stimulation parameters for dystonia: A systematic review.’, Parkinsonism & related disorders. England, 54, pp. 9–16. doi: 10.1016/j.parkreldis.2018.04.017.spa
dc.relation.referencesMao, Z. et al. (2019) ‘Comparison of Efficacy of Deep Brain Stimulation of Different Targets in Parkinson’s Disease: A Network Meta-Analysis.’, Frontiers in aging neuroscience, p. 23. doi: 10.3389/fnagi.2019.00023.spa
dc.relation.referencesMartini, M. L., Mocco, J. and Panov, F. (2019) ‘Neurosurgical Approaches to Levodopa-Induced Dyskinesia.’, World neurosurgery. United States, 126, pp. 376–382. doi: 10.1016/j.wneu.2019.03.056.spa
dc.relation.referencesMedical Advisory Secretariat (2005) ‘Deep brain stimulation for Parkinson’s disease and other movement disorders: an evidence-based analysis.’, Ontario health technology assessment series, 5(2), pp. 1–56.spa
dc.relation.referencesvan den Munckhof, P. et al. (2010) ‘Postoperative curving and upward displacement of deep brain stimulation electrodes caused by brain shift.’, Neurosurgery. United States, 67(1), pp. 44–49. doi: 10.1227/01.NEU.0000370597.44524.6D.spa
dc.relation.referencesO’Gorman, R. L. et al. (2009) ‘CT/MR image fusion in the postoperative assessment of electrodes implanted for deep brain stimulation.’, Stereotactic and functional neurosurgery. Switzerland, 87(4), pp. 205–210. doi: 10.1159/000225973.spa
dc.relation.referencesPatel, N. K., Plaha, P. and Gill, S. S. (2007) ‘Magnetic resonance imaging-directed method for functional neurosurgery using implantable guide tubes.’, Neurosurgery. United States, 61(5 Suppl 2), pp. 356–358. doi: 10.1227/01.neu.0000303994.89773.01.spa
dc.relation.referencesPezeshkian, P. et al. (2011) ‘Accuracy of frame-based stereotactic magnetic resonance imaging vs frame-based stereotactic head computed tomography fused with recent magnetic resonance imaging for postimplantation deep brain stimulator lead localization.’, Neurosurgery. United States, 69(6), pp. 1299–1306. doi: 10.1227/NEU.0b013e31822b7069.spa
dc.relation.referencesRebelo, P. et al. (2018) ‘Thalamic Directional Deep Brain Stimulation for tremor: Spend less, get more.’, Brain stimulation. United States, 11(3), pp. 600–606. doi: 10.1016/j.brs.2017.12.015.spa
dc.relation.referencesSabour, S. (2013) ‘A quantitative assessment of the accuracy and reliability of O-arm images for deep brain stimulation surgery.’, Neurosurgery. United States, p. E696. doi: 10.1227/NEU.0b013e318282d66e.spa
dc.relation.referencesSankar, T. et al. (2015) ‘Deep Brain Stimulation Influences Brain Structure in Alzheimer’s Disease.’, Brain stimulation, 8(3), pp. 645–654. doi: 10.1016/j.brs.2014.11.020.spa
dc.relation.referencesSharma, M. et al. (2014) ‘Accuracy and precision of targeting using frameless stereotactic system in deep brain stimulator implantation surgery.’, Neurology India. India, 62(5), pp. 503–509. doi: 10.4103/0028-3886.144442.spa
dc.relation.referencesSmith, A. P. and Bakay, R. A. E. (2011) ‘Frameless deep brain stimulation using intraoperative O-arm technology. Clinical article.’, Journal of neurosurgery. United States, 115(2), pp. 301–309. doi: 10.3171/2011.3.JNS101642.spa
dc.relation.referencesStarr, P. A. et al. (2010) ‘Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy.’, Journal of neurosurgery, 112(3), pp. 479–490. doi: 10.3171/2009.6.JNS081161.spa
dc.relation.referencesTolleson, C. et al. (2015) ‘The optimal pallidal target in deep brain stimulation for dystonia: a study using a functional atlas based on nonlinear image registration.’, Stereotactic and functional neurosurgery, 93(1), pp. 17–24. doi: 10.1159/000368441.spa
dc.relation.referencesVelasco, F. et al. (2010) ‘Deep brain stimulation for epilepsy’, in Rho, J. M., Sankar, R., and Stafstrom, C. E. (eds) Epilepsy : mechanisms, models, and translational perspectives / edited by, Jong M. Rho, Raman Sankar, Carl E. Stafstrom. Boca Raton, Fla. : London: Boca Raton, Fla. : CRC, pp. 345–360.spa
dc.relation.referencesZrinzo, L. et al. (2009) ‘Avoiding the ventricle: a simple step to improve accuracy of anatomical targeting during deep brain stimulation.’, Journal of neurosurgery. United States, 110(6), pp. 1283–1290. doi: 10.3171/2008.12.JNS08885.spa
dc.relation.referencesZrinzo, L. (2012) ‘Pitfalls in precision stereotactic surgery.’, Surgical neurology international, 3(Suppl 1), pp. S53-61. doi: 10.4103/2152-7806.91612.spa
dc.rightsRevista EIA - 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1480spa
dc.subjectEstimulación cerebral profundaspa
dc.subjectEstereotaxiaspa
dc.subjectImplantaciónspa
dc.subjectPrecisiónspa
dc.subjectDeep brain stimulationeng
dc.subjectStereotaxyeng
dc.subjectImplantationeng
dc.subjectAccuracyeng
dc.titlePrecisión en implantación de electrodos para estimulación cerebral profunda para manejo de trastornos del movimiento.spa
dc.title.translatedPrecision in implantation of electrodes for deep brain stimulation for management of movement disorders.eng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos