Publicación:
Propuesta para el análisis de la marcha mediante fusión de sensores inerciales-magnéticos y ópticos

dc.contributor.authorCuervo, Mauro Callejasspa
dc.contributor.authorVélez-Guerrero , Manuel A.spa
dc.contributor.authorAlarcón-Aldana, Andrea C.spa
dc.date.accessioned2020-06-21 00:00:00
dc.date.accessioned2022-06-17T20:21:04Z
dc.date.available2020-06-21 00:00:00
dc.date.available2022-06-17T20:21:04Z
dc.date.issued2020-06-21
dc.description.abstractSe presenta una propuesta para el desarrollo de un protocolo de medición para el análisis del movimiento de las extremidades inferiores durante la marcha, con el uso de un sistema de medición basado en unidades de procesamiento de movimiento inercial-magnético y un sistema óptico. Inicialmente, se presenta el estado del arte en términos de métodos y herramientas para la captura biomecánica de movimientos, para finalmente explorar los protocolos utilizados en las ciencias de la salud para el análisis de la marcha. La propuesta de medición realizada en este documento utiliza características robustas de la tecnología inercial-magnética y óptica que puede ser usado en el diagnóstico médico. La aplicación de ésta propuesta puede generar herramientas que impactan positivamente en los campos de la salud y la medicina.spa
dc.description.abstractA proposed measurement protocol for the lower limbs movement analysis during walking is presented, with the use of a measurement system based on inertial-magnetic motion processing units and an optical system. Initially, the state of the art in terms of methods and tools for the biomechanical capture of movements is shown, to finally explore the protocols used in the health sciences for the gait analysis. The measurement proposal made in this document uses robust features of inertial-magnetic and optical technology that can be used in medical diagnosis. The application of this proposal can generate tools that have a positive impact in the fields of health and medicine.eng
dc.format.mimetypeapplication/pdfeng
dc.identifier.doi10.24050/reia.v17i34.1472
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5137
dc.identifier.urlhttps://doi.org/10.24050/reia.v17i34.1472
dc.language.isoengeng
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1472/1364
dc.relation.citationeditionNúm. 34 , Año 2020spa
dc.relation.citationendpage11
dc.relation.citationissue34spa
dc.relation.citationstartpage1
dc.relation.citationvolume17spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAdamová B., Kutilek P., Cakrt O., Svoboda Z., Viteckova S., Smrcka P. Quantifying postural stability of patients with cerebellar disorder during quiet stance using three-axis accelerometer. Biomed. Signal Process. Control, vol. 40. pp. 378–384, 2018.eng
dc.relation.referencesAzman A.M, Kuga H., Sagawa K., Nagai, C. Fastest Gait Parameters Estimation Precision Comparison Utilizing High-Sensitivity and Low-Sensitivity Inertial Sensor. Springer, Singapore. pp. 79–84, 2018.eng
dc.relation.referencesBaek S., Kim M. Real-Time Tracking IDs and Joints of Users. VII International Conference on Network, Communication and Computing, pp. 221-226, 2018.eng
dc.relation.referencesBevilacqua V. et al. A comprehensive approach for physical rehabilitation assessment in multiple sclerosis patients based on gait analysis BT. Advances in Intelligent Systems and Computing, vol. 590. Springer Verlag, Department of Electrical and Information Engineering, Polytechnic University of Bari, Bari, Italy. pp. 119–128, 2018.eng
dc.relation.referencesBilesan A., Behzadipour S., Tsujita T., Komizunai S., Konno A. Markerless Human Motion Tracking Using Microsoft Kinect SDK and Inverse Kinematics. 12th Asian Control Conference, ASCC 2019, vol. 12, p. 149757, 2019.eng
dc.relation.referencesBudzyńska A., Jagielski M., Żyliński M., Cybulski G., Niewiadomski W. Verification of Selected Gait Parameters Derived from Inertial Sensors Using Simple Smartphone Based Optical System. Advances in Intelligent Systems and Computing, vol. 1044, pp. 87-94, 2020.eng
dc.relation.referencesCallejas-Cuervo M., Gutierrez R.M., Hernandez A.I. Joint amplitude MEMS based measurement platform for low cost and high accessibility telerehabilitation: Elbow case study. J. Bodyw. Mov. Ther., vol. 21, no. 3. pp. 574–581, 2017.eng
dc.relation.referencesCharlton J., Xia H., Shull P., Hunt M. Validity and reliability of a shoe-embedded sensor module for measuring foot progression angle during over-ground walking. Journal of Biomechanics, vol. 89, pp. 123-127, 2019.eng
dc.relation.referencesCuervo M.C., Olaya A.F., Salamanca R.M. Biomechanical motion capture methods focused on tele-physiotherapy. 2013 Pan American Health Care Exchanges PAHCE. pp. 1–6, 2013.eng
dc.relation.referencesDawe R., et al. Expanding instrumented gait testing in the community setting: A portable, depth-sensing camera captures joint motion in older adults. PLOS ONE, vol. 14, no. 5, p. e0215995, 2019.eng
dc.relation.referencesDeligianni F., Wong C., Lo B., Yang, G.-Z. A fusion framework to estimate plantar ground force distributions and ankle dynamics. Inf. Fusion, vol. 41. pp. 255–263, 2018.eng
dc.relation.referencesEl Maachi I., Bilodeau G., Bouachir W. Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. Expert Systems with Applications, vol. 143, p. 113075, 2020.eng
dc.relation.referencesFleron M.K., Ubbesen N.C.H., Battistella F., Dejtiar D.L., Oliveira A.S. Accuracy between optical and inertial motion capture systems for assessing trunk speed during preferred gait and transition periods, Sport. Biomech. pp. 1–12, 2018.eng
dc.relation.referencesHanawa H., et al. Validity of inertial measurement units in assessing segment angles and mechanical energies of elderly persons during sit-to-stand motion. 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), 2019.eng
dc.relation.referencesIosa M., Picerno P., Paolucci S., Morone G. Wearable inertial sensors for human movement analysis. Expert Rev. Med. Devices, vol. 4444. pp. 1–19, 2017.eng
dc.relation.referencesKim M., Lee D. Wearable inertial sensor based parametric calibration of lower-limb kinematics. Sensors Actuators, A Phys., vol. 265. pp. 280–296, 2017.eng
dc.relation.referencesLeMoyne R., Mastroianni T. The rise of inertial measurement units. Smart Sensors, Measurement and Instrumentation, vol. 27. Springer International Publishing, Department of Biological Sciences, Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, AZ, United States. pp. 45–58, 2018.eng
dc.relation.referencesMcGrath T., Fineman R., Stirling L. An Auto-Calibrating Knee Flexion-Extension Axis Estimator Using Principal Component Analysis with Inertial Sensors. Sensors, vol. 18, no. 6. p. 1882, 2018.eng
dc.relation.referencesMarxreiter F., et al. Sensor-based gait analysis of individualized improvement during apomorphine titration in Parkinson’s disease. Journal of Neurology. vol. 265, no. 11. pp. 2656-2665, 2019.eng
dc.relation.referencesPark S., Ho Y., Chun M., Choi J., Moon Y. Measurement and Analysis of Gait Pattern during Stair Walk for Improvement of Robotic Locomotion Rehabilitation System. Applied Bionics and Biomechanics, vol. 2019, pp. 1-12, 2019.eng
dc.relation.referencesPetraglia F., Scarcella L., Pedrazzi G., Brancato L., Puers R., Costantino C. Inertial sensors versus standard systems in gait analysis: a systematic review and meta-analysis. European Journal of Physical and Rehabilitation Medicine, vol. 55, no. 2, 2019.eng
dc.relation.referencesQiu S., Wang Z., Zhao H., Qin K., Li Z., Hu H. Inertial/magnetic sensors based pedestrian dead reckoning by means of multi-sensor fusion. Inf. Fusion, vol. 39. pp. 108–119, 2018.eng
dc.relation.referencesRana S., Dey M., Ghavami M., Dudley S. Non-Contact Human Gait Identification through IR-UWB Edge-Based Monitoring Sensor. IEEE Sensors Journal, vol. 19, no. 20, pp. 9282-9293, 2019.eng
dc.relation.referencesRen P., et al. Movement Symmetry Assessment by Bilateral Motion Data Fusion. IEEE Transactions on Biomedical Engineering, vol. 66, no. 1, pp. 225-236, 2019.eng
dc.relation.referencesSchwartz M.H., Rozumalski A. The gait deviation index: A new comprehensive index of gait pathology. Gait Posture. vol. 28, no. 3. pp. 351–357, 2008.eng
dc.relation.referencesShiotani M., Watanabe T., Murakami K., Kuge N. Research on detection method for abnormal gait using three-dimensional thigh motion analysis with inertial sensor. Transactions of Japanese Society for Medical and Biological Engineering, vol. 57, no. 1, pp. 1-7, 2019.eng
dc.relation.referencesSprager S., Juric M.B. Inertial Sensor-Based Gait Recognition: A Review. Sensors., vol. 15, no. 9. pp. 22089–22127, 2015.eng
dc.relation.referencesSun C., Wang C., Lai W. Gait analysis and recognition prediction of the human skeleton based on migration learning. Physica A: Statistical Mechanics and its Applications, vol. 532, p. 121812, 2019.eng
dc.relation.referencesTjhai C., Steward J., Lichti D., O’Keefe K. Using a mobile range-camera motion capture system to evaluate the performance of integration of multiple low-cost wearable sensors and gait kinematics for pedestrian navigation in realistic environments. 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS. pp. 294–300, 2018.eng
dc.relation.referencesVo N., Tuan A., Van T.V., Vu N., Hau D., Thang N.D. Abnormal Gait Detection and Classification Using Depth Camera. 6th Int.Conf. Dev. Biomed. Eng. Vietnam (BME6), IFMBE Proc. pp. 1–6, 2018.eng
dc.relation.referencesWang Y., Cang S., Yu H. A survey on wearable sensor modality centred human activity recognition in health care. Expert Systems with Applications, vol. 137, pp. 167-190, 2019.eng
dc.relation.referencesWagner J., et al. Comparison of two techniques for monitoring of human movements. Meas. J. Int. Meas. Confed., vol. 111. pp. 420–431, 2017.eng
dc.relation.referencesWatanabe T., Tadano T. An Examination of Stimulation Timing Patterns for Mobile FES Cycling Under Closed-Loop Control of Low Cycling Speed. Converging Clinical and Engineering Research on Neurorehabilitation III, vol. 21, pp. 1106-1110, 2018.eng
dc.relation.referencesWolosker N., Nakano L., Rosoky R.A., Puech-Leao P. Evaluation of walking capacity over time in 500 patients with intermittent claudication who underwent clinical treatment. Arch. Intern. Med., vol. 163. pp. 2296–300, 2003.eng
dc.relation.referencesWouda F.J., et al. Estimation of Vertical Ground Reaction Forces and Sagittal Knee Kinematics During Running Using Three Inertial Sensors, Front. Physiol., vol. 9. p. 218, 2018.eng
dc.relation.referencesWhittle M.W. An Introduction to Gait Analysis. 4th ed. Oxford: Butterworth-Heinemann, 2007.eng
dc.relation.referencesXie N., Mok P.Y. Investigation on human body movements and the resulting body measurement variations. AHFE 2017 International Conference on Physical Ergonomics and Human Factors, vol. 602, Springer Verlag, The Hong Kong Polytechnic University, Kowloon, Hong Kong. pp. 387–399, 2018.eng
dc.relation.referencesXu C., He J., Zhang X., Yao C., Tseng P.-H. Geometrical kinematic modeling on human motion using method of multi-sensor fusion. Inf. Fusion, vol. 41. pp. 243–254, 2018.eng
dc.relation.referencesZago M. et al. Gait evaluation using inertial measurement units in subjects with Parkinson’s disease. J. Electromyogr. Kinesiol., vol. 42, pp. 44–48, 2018.eng
dc.rightsRevista EIA - 2020eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2eng
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0eng
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1472eng
dc.subjectInertial magnetic sensoreng
dc.subjectgait analysiseng
dc.subjecthuman motioneng
dc.subjectdepth cameraseng
dc.subjectsensor fusioneng
dc.subjectSensor magnético inercialspa
dc.subjectanálisis de la marchaspa
dc.subjectmovimiento humanospa
dc.subjectcámaras de profundidadspa
dc.subjectfusión de sensoresspa
dc.titlePropuesta para el análisis de la marcha mediante fusión de sensores inerciales-magnéticos y ópticosspa
dc.title.translatedProposal for Gait Analysis Using Fusion of Inertial-Magnetic and Optical Sensorseng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFeng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng
dspace.entity.typePublication
Archivos