Publicación:
Evaluación técnico-económica del proceso de producción de glutamato monosódico por la ruta fermentativa utilizando bagazo de caña de azúcar

dc.contributor.authorPerez Sanchez, Amauryspa
dc.date.accessioned2021-05-31 00:00:00
dc.date.accessioned2022-06-17T20:21:09Z
dc.date.available2021-05-31 00:00:00
dc.date.available2022-06-17T20:21:09Z
dc.date.issued2021-05-31
dc.description.abstractEl glutamato monosódico (GMS) es una de los aditivos más empleados a nivel mundial en los alimentos comerciales. En el presente trabajo se efectuó la evaluación técnico-económica preliminar de una propuesta tecnológica de producción de GMS por la ruta fermentativa, empleando bagazo de caña de azúcar como materia prima principal y bajo las condiciones económicas actuales de Cuba. Para ello se empleó el simulador profesional SuperPro Designer® versión 10. La planta tiene una capacidad de producción de 3,85 toneladas de cristales de GMS por año. Será necesario invertir alrededor de USD $ 8,75 millones para construir la planta de producción propuesta. Se obtienen Ganancias Netas anuales de USD $ 2.004.000, un Margen Bruto de 44,91 % y un Retorno de la Inversión de 22,90 %. A partir de los resultados obtenidos del Valor Actual Neto (USD $ 6.723.000), Tasa Interna de Retorno (25,23 %) y Período de Recuperación de la Inversión (4,37 años), se puede concluir que la planta de producción es rentable y factible desde el punto de vista económico. La propuesta tecnológica comienza a ser no rentable a partir de un valor del costo unitario del bagazo de USD $ 45,4/kg.spa
dc.description.abstractMonosodium glutamate (MSG) is one of the most widely used additives in commercial foods worldwide. In the present work, the preliminary techno-economic evaluation of a technological proposal for the production of MSG by the fermentation route was carried out, using sugarcane bagasse as the main raw material and under the current economic conditions of Cuba. For that, the professional simulator SuperPro Designer® version 10 was used. The plant has a production capacity of 3.85 tons of MSG crystals per year. It will be necessary to invest around USD $ 8.75 million to build the proposed production plant. Annual Net Profits of USD $ 2,004,000, a Gross Margin of 44.91% and a Return on Investment of 22.90% were obtained. Based on the results obtained from the Net Present Value (USD $ 6,723,000), the Internal Rate of Return (25.23%) and the Payback Time (4.37 years), it can be concluded that the production plant is profitable and feasible from the economic point of view. The technological proposal begins to be not profitable from a value of the bagasse unit cost of USD $ 45.4/kg.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v18i36.1489
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5144
dc.identifier.urlhttps://doi.org/10.24050/reia.v18i36.1489
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1489/1419
dc.relation.citationeditionNúm. 36 , Año 2021 :spa
dc.relation.citationendpage20
dc.relation.citationissue36spa
dc.relation.citationstartpage36014 pp. 1
dc.relation.citationvolume18spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAccardi, D. S., Russo, P., Lauri, R., Pietrangeli, B., & Palma, L. D. (2015). From Soil Remediation to Biofuel: Process Simulation of Bioethanol Production from Arundo donax. Chemical Engineering Transactions, 43, pp. 2167-2172. https://doi.org/10.3303/CET1543362.spa
dc.relation.referencesAdsul, M. G., Varma, A. J., & Gokhale, D. V. (2007). Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chemistry, 9(1), pp. 58-62. doi: https://doi.org/10.1039/b605839f.spa
dc.relation.referencesAguiar, A. C. d., Osorio-Tobón, J. F., Silva, L. P. S., Barbero, G. F., & Martínez, J. (2018). Economic analysis of oleoresin production from malagueta peppers (Capsicum frutescens) by supercritical fluid extraction. The Journal of Supercritical Fluids, 133, pp. 86-93. https://doi.org/10.1016/j.supflu.2017.09.031.spa
dc.relation.referencesAlharbi, N. S., Kadaikunnan, S., Khaled, J. M., Almanaa, T. N., Innasimuthu, G. M., Rajoo, B., Alanzi, K. F., & Rajaram, S. K. (2020). Optimization of glutamic acid production by Corynebacterium glutamicum using response surface methodology. Journal of King Saud University – Science, 32, pp. 1403-1408. https://doi.org/10.1016/j.jksus.2019.11.034.spa
dc.relation.referencesAmores, I., Ballesteros, I., Manzanares, P., Sáez, F., Michelena, G., & Ballesteros, M. (2013). Ethanol Production from Sugarcane Bagasse Pretreated by Steam Explosion. Electronic Journal of Energy & Environment, 1(1), pp. 25-36. https://doi.org/10.7770/ejee-V1N1-art486.spa
dc.relation.referencesAuli, N. A., Sakinah, M., Bakri, A. M. M. A., Kamarudin, H., & Norazian, M. N. (2013). Simulation Of Xylitol Production: A Review. Australian Journal of Basic and Applied Sciences, 7(5), pp. 366-372.spa
dc.relation.referencesChandler, C., Villalobos, N., González, E., Arenas1, E., Mármol, Z., Ríos, J., & Mazzarri, C. A. (2012). Hidrólisis ácida diluida en dos etapas de bagazo de caña de azúcar para la producción de azúcares fermentables. Multiciencias, 12(3), pp. 245-253.spa
dc.relation.referencesChoi, S.-U., Nihira, T., & Yoshida, T. (2004). Enhanced Glutamic Acid Production of Brevibacterium sp. with Temperature Shift-Up Cultivation. Journal of Bioscience and Bioengineering, 98(3), pp. 211-213.spa
dc.relation.referencesDitzel, F., & Pacheco, F. (2015). Diseño y evaluación técnico-económica de la producción de glutamato monosódico por fermentación. (Proyecto de Carrera), Chile, Pontificia Universidad Católica De Valparaíso Facultad De Ingeniería, 252 pp. Diponible en: https://es.scribd.com/document/467397681/UCD1766-01-1-pdf.spa
dc.relation.referencesGao, Y., Xu, J., Yuan, Z., Zhang, Y., Liang, C., & Liu, Y. (2014). Ethanol Production from High Solids Loading of Alkali-Pretreated Sugarcane Bagasse with an SSF Process. BioResources, 9(2), pp. 3466-3479. https://doi.org/10.15376/biores.9.2.3466-3479.spa
dc.relation.referencesGil, I. D., Guevara, J. R., García, J. L., Leguizamón, A., & Rodríguez, G. (2016). Process Analysis and Simulation in Chemical Engineering. USA, Springer, pp. 1-3. Disponible en: https://b-ok.lat/book/2620666/978c33.spa
dc.relation.referencesGomes, A. d. C., Rodrigues, M. I., Passos, D. d. F., Castro, A. M. d., Anna, L. M. M. S., & Pereira, N. (2019). Acetone–butanol–ethanol fermentation from sugarcane bagasse hydrolysates: Utilization of C5 and C6 sugars. Electronic Journal of Biotechnology, 42, pp. 16-22. https://doi.org/10.1016/j.ejbt.2019.10.004.spa
dc.relation.referencesGuilherme, A. d. A., Dantas, P. V. F., Padilha, C. E. d. A., Santos, E. S. d., & Macedo, G. R. d. (2019). Ethanol production from sugarcane bagasse: Use of different fermentation strategies to enhance an environmental-friendly process. Journal of Environmental Management, 234, pp. 44-51. https://doi.org/10.1016/j.jenvman.2018.12.102.spa
dc.relation.referencesHag, I.-U., Javed, M. M., & Khan, T. S. (2006). Sugar cane bagasse pretreatment: An attempt to enhance the production potential of cellulases by Humicola insolens TAS-13. BIOKEMISTRI, 18(2), pp. 83-88.spa
dc.relation.referencesHarrison, R. G., Todd, P. W., Rudge, S. R., & Petrides, D. P. (2015). Bioseparations Science and Engineering (2nd ed.). USA, Oxford University Press, pp. 577-578. Disponible en: https://b-ok.lat/book/2488909/fd1544.spa
dc.relation.referencesHeinzle, E., Biwer, A. P., & Cooney, C. L. (2006). Development of Sustainable Bioprocesses Modeling and Assessment. United Kingdom, John Wiley & Sons Inc., pp. 81-117. Disponible en: https://b-ok.lat/book/1082325/ac15ab.spa
dc.relation.referencesHumphreys, K. K. (2005). Project and Cost Engineers’ Handbook (4th ed.). USA, Marcel Dekker, pp. 338. Disponible en: https://b-ok.lat/book/1127974/89cc50.spa
dc.relation.referencesICIDCA. (2000). Manual de los Derivados de la Caña de Azúcar (3ra ed.). Ciudad de la Habana, Cuba, Instituto Cubano de Investigaciones de los Derivados de la Caña de Azúcar, pp. 31-34.spa
dc.relation.referencesJenkins, S. (2020). Economic Indicators. Chemical Engineering, 127(12), pp. 104.spa
dc.relation.referencesJonglertjunya, W., Makkhanon, W., Siwanta, T., & Prayoonyong, P. (2014). Dilute Acid Hydrolysis of Sugarcane Bagasse for Butanol Fermentation. Chiang Mai J. Sci., 41(1), pp. 60-70.spa
dc.relation.referencesKoók, L., Szabó, Á., Bakonyi, P., Tóth, G., Bélafi-Bakó, K., & Nemestóthy, N. (2014). Process simulation of integrated biohydrogen production: hydrogen recovery by membrane separation. Journal of Agricultural Informatics, 5(2), pp. 45-54.spa
dc.relation.referencesKumar, R. S., Moorthy, I. M. G., & Baskar, R. (2013). Modeling and Optimization of Glutamic Acid Production Using Mixed Culture of Corynebacterium glutamicum NCIM2168 and Pseudomonas reptilivora NCIM2598. Preparative Biochemistry & Biotechnology, 43, pp. 668-681. https://doi.org/10.1080/10826068.2013.772064.spa
dc.relation.referencesLam, K. F., Leung, C. C. J., Lei, H. M., & Lin, C. S. K. (2014). Economic feasibility of a pilot-scale fermentative succinic acid production from bakery wastes. Food and Bioproducts Processing, 92, pp. 282-290. https://doi.org/10.1016/j.fbp.2013.09.001.spa
dc.relation.referencesLaopaiboon, P., Thani, A., Leelavatcharamas, V., & Laopaiboon, L. (2010). Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresource Technol, 101, pp. 1036-1043. https://doi.org/10.1016/j.biortech.2009.08.091.spa
dc.relation.referencesMatche. (2014). Chemical Equipment Cost. Disponible en http://www.matche.com.spa
dc.relation.referencesMéndez, J., Passos, D. d. F., Wischral, D., Modesto, L. F., & Pereira, N. (2019). Second-generation ethanol production by separate hydrolysis and fermentation from sugarcane bagasse with cellulose hydrolysis using a customized enzyme cocktail. Biofuels, pp. 1-7. https://doi.org/10.1080/17597269.2019.1608034.spa
dc.relation.referencesMichailos, S., Parker, D., & Webb, C. (2016). A multicriteria comparison of utilizing sugar cane bagasse for methanol to gasoline and butanol production. Biomass and Bioenergy, 95, pp. 436-448. https://doi.org/10.1016/j.biombioe.2016.06.019.spa
dc.relation.referencesMOLYCHEM. (2019). Price List 2019-2021, India, Molychem, 160 p.spa
dc.relation.referencesMthembu, L. D. (2015). Production of Levulinic Acid from Sugarcane Bagasse. (Master in Applied Sciences), South Africa, Durban University of Technology, Faculty of Applied Sciences, 135 pp. Disponible en: https://openscholar.dut.ac.za /handle/10321/1713.spa
dc.relation.referencesMustafa, A., Misailidis, N., & Petrides, D. (2020). Production of Monosodium Glutamate (MSG) Modeling and Evaluation with SuperPro Designer®. USA, Intelligen Inc., 15 p.spa
dc.relation.referencesNampoothiri, K. M., & Pandey, A. (1999). Fermentation and recovery of l-glutamic acid from cassava starch hydrolysate by ion-exchange resin column. Revista de Microbiología, 30, pp. 258-264.spa
dc.relation.referencesONEI. (2020). Anuario Estadistico de Cuba 2019. Capitulo 10: Minería y Energía, Cuba, Oficina Nacional de Estadistica e Información, 19 p.spa
dc.relation.referencesOxford. (2020). Price List 2020-2021. India, Oxford Lab Fine Chem LLP, 136 p.spa
dc.relation.referencesPal, P., Kumar, R., Vikrama Chakravarthi, D., & Chakrabortty, S. (2016). Modeling and simulation of continuous production of L (+) glutamic acid in a membrane-integrated bioreactor. Biochemical Engineering Journal, 106, pp. 68-86. https://doi.org/10.1016/j.bej.2015.11.008.spa
dc.relation.referencesParsons, C., & Banqueth, E. R. (2004). Diseño de una planta piloto para la producción de etanol a partir de bagazo de la caña de azúcar. (Trabajo de grado en Ingeniería química), Colombia, Universidad Industrial de Santander, Facultad de Ingenierías Fisicoquímicas, 103 pp. Disponible en: http://tangara.uis.edu.co /biblioweb/tesis/2004/114451.pdf.spa
dc.relation.referencesPatil, P. M., Gupta, N., Gaudani, H., Gupta, M., Gupta, G., Krishna, V., Trivedi, S., & Londhe, M. (2009). Production of Glutamic acid using whole and immobilised cells of Corynebacterium glutamicum. International Journal of Microbiology Research, 1(1), pp. 8-13.spa
dc.relation.referencesPeters, M. S., Timmerhaus, K. D., & West, R. E. (2003). Plant Design and Economics for Chemical Engineers (5th ed.). USA, McGraw-Hill, pp. 529-873.spa
dc.relation.referencesPetrides, D. (2020). Corn Stover to Ethanol Conversion (Cellulosic Bio-Ethanol) - Process Modeling and Techno-Economic Assessment (TEA) using SuperPro Designer, USA, Intelligen, Inc., 12 p.spa
dc.relation.referencesPol, E. C. v. d., Eggink, G., & Weusthuis, R. A. (2016). Production of l(+)lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy. Biotechnology for Biofuels, 9(1), pp. 1-12. https://doi.org/10.1186/s13068-016-0646-3.spa
dc.relation.referencesReddy, K. (2016). Evaluation of biohydrogen production potential of sugarcane bagasse using activated sludge in a dark fermentation process. (Master in Applied Science: Biotechnology), South Africa, The Durban University of Technology, Faculty of Applied Sciences, 129 pp. Diponible en: https://openscholar.dut.ac.za /handle/10321/1753.spa
dc.relation.referencesRodríguez, L. E. G., Sánchez, A. P., & Zayas, L. M. Z. (2019). Rentabilidad económica y análisis de sensibilidad de una planta de producción de ácido cítrico a partir de bagazo de caña de azúcar. Revista de Ciencia y Tecnología, 21(31), pp. 80-88.spa
dc.relation.referencesSalomão, G. S. B., Agnezi, J. C., Paulinoa, L. B., Hencker, L. B., Lira, T. S. d., Tardioli, P. W., & Pinotti, L. M. (2019). Production of cellulases by solid state fermentation using natural and pretreated sugarcane bagasse with different fungi. Biocatalysis and Agricultural Biotechnology, 17, pp. 1-6. https://doi.org/10.1016 /j.bcab.2018.10.019.spa
dc.relation.referencesSamadi, S., Mohammadi, M., & Najafpour, G. D. (2016). Production of Single Cell Protein from Sugarcane Bagasse by Saccharomyces cerevisiae in Tray Bioreactor. International Journal of Engineering, 29(8), pp. 1029-1036.spa
dc.relation.referencesSayar, N. A., Pinar, O., Kazan, D., & Sayar, A. A. (2019). Bioethanol Production From Turkish Hazelnut Husk Process Design and Economic Evaluation. Waste Biomass Valor, 10, pp. 909-923. https://doi.org/10.1007/s12649-017-0103-y.spa
dc.relation.referencesShyamkumar, R., Moorthy, I. M. G., Ponmurugan, K., & Baskar, R. (2014). Production of L-glutamic Acid with Corynebacterium glutamicum (NCIM 2168) and Pseudomonas reptilivora (NCIM 2598): A Study on Immobilization and Reusability. Avicenna Journal of Medical Biotechnology, 6(3), pp. 163-168.spa
dc.relation.referencesSigma-Aldrich. (2020). Reagents Cost Catalog. Disponible en https://www. sigmaaldrich.com/catalog/spa
dc.relation.referencesSilva, M. C. (1975). Proyecto de una planta productora de glutamato de sodio. (Trabajo de Diploma en Ingeniería Quimica Industrial), México, Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, 60 pp. Diponible en: https://tesis.ipn.mx/jspui/bitstream/123456789 /16829/1/25-1-3843.pdf.spa
dc.relation.referencesSilla, H. (2003). Chemical Process Engineering Design and Economics. USA, Marcel Dekker, pp. 483. Disponible en: https://b-ok.lat/book/600539/f8ef6e.spa
dc.relation.referencesSinnott, R. K. (2005). Chemical Engineering Design (4th ed. Vol. 6), United Kingdom, Elsevier Butterworth-Heinemann, pp. 1055. Disponible en: https://b-ok.lat/book/600898/84860e.spa
dc.relation.referencesSRL. (2019). Catalogue 2019-20, India: Sisco Research Laboratories PVT. LTD., 273 p.spa
dc.relation.referencesTavakkoli, M., Hamidi-Esfahani, Z., & Azizi, M. H. (2012). Optimization of Corynebacterium glutamicum Glutamic Acid Production by Response Surface Methodology. Food Bioprocess Technol, 5, pp. 92-99. https://doi.org/10.1007 /s11947-009-0242-7.spa
dc.relation.referencesThuy, L. N., Salanta, L. C., Tofana, M., Socaci, S. A., Fărcaș, A. C., & Pop, C. R. (2020). A Mini Review About Monosodium Glutamate. Bulletin UASVM Food Science and Technology, 77(1), pp. 1-12. https://doi.org/10.15835/buasvmcn-fst: 2019.0029spa
dc.relation.referencesTowler, G., & Sinnott, R. (2013). Chemical Engineering Design. Principles, Practice and Economics of Plant and Process Design (2nd ed.), United Kingdom, Butterworth-Heinemann, pp. 1269. Disponible en: https://b-ok.lat/book/2353533/ 87956e.spa
dc.relation.referencesVučurović, D. G., Dodić, S. N., Popov, S. D., Dodić, J. M., & Grahovac, J. A. (2012). Process model and economic analysis of ethanol production from sugar beet raw juice as part of the cleaner production concept. Bioresource Technology, 104, pp. 367-372. https://doi.org/10.1016/j.biortech.2011.10.085.spa
dc.relation.referencesWanderley, M. C. d. A., Martín, C., Rocha, G. J. d. M., & Gouveia, E. R. (2013). Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bioresource Technology, 128, pp. 448–453. https://doi.org/10.1016/j.biortech.2012.10.131.spa
dc.relation.referencesWijayasekara, K., & Wansapala, J. (2017). Uses, effects and properties of monosodium glutamate (MSG) on food & nutrition. International Journal of Food Science and Nutrition, 2(3), pp. 132-143.spa
dc.relation.referencesWong, Y. C., & Sanggari, V. (2014). Bioethanol Production from Sugarcane Bagasse using Fermentation Process. Oriental Journal of Chemistry, 30(2), pp. 507-513. http://doi.org/10.13005/ojc/300214.spa
dc.relation.referencesYadegary, M., Hamidi, A., Alavi, S. A., Khodaverdi, E., Yahaghi, H., Sattari, S., Bagherpour, G., & Yahaghi, E. (2013). Citric Acid Production From Sugarcane Bagasse through Solid State Fermentation Method Using Aspergillus niger Mold and Optimization of Citric Acid Production by Taguchi Method. Jundishapur J Microbiol., 6(9), pp. 1-6. https://doi.org/10.5812/jjm.7625.spa
dc.relation.referencesZareian, M., Ebrahimpour, A., Mohamed, A. K. S., & Saari, N. (2013). Modeling of glutamic acid production by Lactobacillus plantarum MNZ. Electronic Journal of Biotechnology, 16(4), pp. 1-16. https://doi.org/10.2225/vol16-issue4-fulltext-10.spa
dc.rightsRevista EIA - 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1489spa
dc.subjectSugarcane bagasseeng
dc.subjectCostseng
dc.subjectMonosodium glutamateeng
dc.subjectSimulationeng
dc.subjectProfitabilityeng
dc.subjectBagazo de caña de azúcarspa
dc.subjectCostosspa
dc.subjectGlutamato monosódicospa
dc.subjectRentabilidadspa
dc.subjectSimulaciónspa
dc.titleEvaluación técnico-económica del proceso de producción de glutamato monosódico por la ruta fermentativa utilizando bagazo de caña de azúcarspa
dc.title.translatedTechno-economic assessment of the monosodium glutamate production process through fermentative route using sugarcane bagasseeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos