Publicación:
Técnicas de inteligencia artificial utilizadas en el procesamiento de imágenes y su aplicación en el análisis de pavimentos

dc.contributor.authorReyes Ortiz, Oscar Javierspa
dc.contributor.authorMejia, Marcelaspa
dc.contributor.authorUseche Castelblanco, Juan Sebastianspa
dc.date.accessioned2019-01-20 00:00:00
dc.date.accessioned2022-06-17T20:19:48Z
dc.date.available2019-01-20 00:00:00
dc.date.available2022-06-17T20:19:48Z
dc.date.issued2019-01-20
dc.description.abstractDebido al incremento en los costos de mantenimiento, rehabilitación y construcción de vías, estudiar las estructuras de pavimento para determinar su comportamiento y sus características mecánicas propias analizando la distribución y posición de sus partículas, se ha vuelto un campo de gran importancia en la ingeniería. Las nuevas herramientas de análisis buscan hacer este estudio más eficiente reduciendo su costo y tiempo de ejecución mediante el procesamiento digital de imágenes. El procesamiento digital tradicional está limitado en su sensibilidad ante perturbaciones externas que puedan modificar la imagen, por eso se han implementado diferentes técnicas de inteligencia artificial (IA) para optimizar los algoritmos. Este trabajo presenta una revisión de las diferentes aplicaciones de técnicas de IA recientes en el procesamiento de  imágenes. Después se revisan los trabajos realizados específicamente con imágenes de pavimentos y se proponen posibles aplicaciones para implementar en este campo con inteligencia artificialspa
dc.description.abstractDebido al incremento en los costos de mantenimiento, rehabilitación y construcción de vías, estudiar las estructuras de pavimento para determinar su comportamiento y sus características mecánicas propias analizando la distribución y posición de sus partículas, se ha vuelto un campo de gran importancia en la ingeniería. Las nuevas herramientas de análisis buscan hacer este estudio más eficiente reduciendo su costo y tiempo de ejecución mediante el procesamiento digital de imágenes. El procesamiento digital tradicional está limitado en su sensibilidad ante perturbaciones externas que puedan modificar la imagen, por eso se han implementado diferentes técnicas de inteligencia artificial (IA) para optimizar los algoritmos. Este trabajo presenta una revisión de las diferentes aplicaciones de técnicas de IA recientes en el procesamiento de  imágenes. Después se revisan los trabajos realizados específicamente con imágenes de pavimentos y se proponen posibles aplicaciones para implementar en este campo con inteligencia artificialeng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v16i31.1215
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5034
dc.identifier.urlhttps://doi.org/10.24050/reia.v16i31.1215
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1215/1229
dc.relation.citationeditionNúm. 31 , Año 2019spa
dc.relation.citationendpage207
dc.relation.citationissue31spa
dc.relation.citationstartpage189
dc.relation.citationvolume16spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAbdullah, S. & Abdolrazzagh-nezhad, M., 2014. Fuzzy job-shop scheduling problems : A review. Information Sciences, 278, pp.380–407. Available at: http://dx.doi.org/10.1016/j.ins.2014.03.060.spa
dc.relation.referencesAli, M. et al., 2015. An image watermarking scheme in wavelet domain with optimized compensation of singular value decomposition via artificial bee colony. Information Sciences, 301, pp.44–60. Available at: http://dx.doi.org/10.1016/j.ins.2014.12.042.spa
dc.relation.referencesApostolidis, G.K. & Hadjileontiadis, L.J., 2017. Swarm decomposition : A novel signal analysis using swarm intelligence. Signal Processing journal, 132, pp.40–50.spa
dc.relation.referencesArjmandzadeh, Z., Safi, M. & Nazemi, A., 2017. A new neural network model for solving random interval linear programming problems. Neural Networks, 89, pp.11–18.spa
dc.relation.referencesAthertya, J.S. & Saravana Kumar, G., 2016. Automatic segmentation of vertebral contours from CT images using fuzzy corners. Computers in Biology and Medicine, 72, pp.75–89.spa
dc.relation.referencesBabashamsi, P. et al., 2016. Evaluation of pavement life cycle cost analysis : Review and analysis. International Journal of Pavement Research and Technology, 9, pp.241–254. Available at: http://dx.doi.org/10.1016/j.ijprt.2016.08.004.spa
dc.relation.referencesBanitalebi, A. et al., 2015. Enhanced compact artificial bee colony. INFORMATION SCIENCES, 298, pp.491–511. Available at: http://dx.doi.org/10.1016/j.ins.2014.12.015.spa
dc.relation.referencesBayar, N. et al., 2015. Fault detection , diagnosis and recovery using Arti fi cial Immune Systems : A review. Engineering Applications of Artificial Intelligence, 46, pp.43–57.spa
dc.relation.referencesBerrocal, C.G.. et al., 2016. Characterisation of bending cracks in R/FRC using image analysis. submitted to: Materials and Structures, 90, pp.104–116.spa
dc.relation.referencesBessa, I.S., Castelo Branco, V.T.F. & Soares, J.B., 2012. Evaluation of different digital image processing software for aggregates and hot mix asphalt characterizations. Construction and Building Materials, 37, pp.370–378.spa
dc.relation.referencesBianconi, F. et al., 2015. Grain-size assessment of fine and coarse aggregates through bipolar area morphology. Machine Vision and Applications, 26(6), pp.775–789. Available at: http://link.springer.com/10.1007/s00138-015-0692-z.spa
dc.relation.referencesBose, A. & Mali, K., 2016. Fuzzy-based artificial bee colony optimization for gray image segmentation. Signal, Image and Video Processing, 10, pp.1089–1096.spa
dc.relation.referencesBouchet, A. et al., 2016. Fuzzy mathematical morphology for color images defined by fuzzy preference relations. Pattern Recognition, 60, pp.720–733.spa
dc.relation.referencesCao, W. et al., 2017. A review on neural networks with random weights. Neurocomputing, 0, pp.1–10.spa
dc.relation.referencesCasti, P. et al., 2015. Analysis of structural similarity in mammograms for detection of bilateral asymmetry. IEEE Trans. Med. Imaging, 34(2), pp.662–671.spa
dc.relation.referencesCordeiro, F.R., Santos, W.P. & Silva-Filho, A.G., 2016. A semi-supervised fuzzy GrowCut algorithm to segment and classify regions of interest of mammographic images. Expert Systems with Applications, 65, pp.116–126.spa
dc.relation.referencesCosta, G., Matos, W. & Martinez, R., 2017. Artificial immune systems applied to fault detection and isolation : A brief review of immune response-based approaches and a case study. Applied Soft Computing Journal, 57, pp.118–131. Available at: http://dx.doi.org/10.1016/j.asoc.2017.03.031.spa
dc.relation.referencesCristea, V., Leblebici, Y. & Almási, A., 2016. Neurocomputing Review of advances in neural networks : Neural design technology stack. Neurocomputing, 174, pp.31–41.spa
dc.relation.referencesCui, L. et al., 2017. A novel artificial bee colony algorithm with an adaptive population size for numerical function optimization. Information Sciences, 414, pp.53–67.spa
dc.relation.referencesEspinoza, K. et al., 2016. Combination of image processing and artificial neural networks as a novel approach for the identification of Bemisia tabaci and Frankliniella occidentalis on sticky traps in greenhouse agriculture. Computers and Electronics in Agriculture, 127, pp.495–505.spa
dc.relation.referencesFerrari, A., Lombardi, S. & Signoroni, A., 2017. Bacterial colony counting with Convolutional Neural Networks in Digital Microbiology Imaging. Pattern Recognition journal, 61, pp.629–640.spa
dc.relation.referencesGaldámez, P.L., Raveane, W. & Arrieta, A.G., 2017. A brief review of the ear recognition process using deep neural networks. Journal of Applied Logic, 24, pp.62–70. Available at: http://dx.doi.org/10.1016/j.jal.2016.11.014.spa
dc.relation.referencesGong, T. et al., 2016. Magnetic resonance imaging-clonal selection algorithm : An intelligent adaptive enhancement of brain image with an improved immune algorithm. Engineering Applications of Artificial Intelligence, (October).spa
dc.relation.referencesHan, J. et al., 2016. 2D image analysis method for evaluating coarse aggregate characteristic and distribution in concrete. Construction and Building Materials, 127, pp.30–42.spa
dc.relation.referencesHatata, A.Y. & Sedhom, B.E., 2017. Proposed Sandia frequency shift for anti-islanding detection method based on artificial immune system. Alexandria Engineering Journal.spa
dc.relation.referencesHekayati, J. & Rahimpour, M.R., 2017. Estimation of the saturation pressure of pure ionic liquids using MLP arti fi cial neural networks and the revised isofugacity criterion. Journal of Molecular Liquids journal, 230, pp.85–95.spa
dc.relation.referencesHelena, G., Miranda, B. & Cezar, J., 2015. Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization. , 64, pp.334–346.spa
dc.relation.referencesHu, L. et al., 2016. Effect of three-dimensional macrotexture characteristics on dynamic frictional coefficient of asphalt pavement surface. Construction and Building Materials, 126, pp.720–729.spa
dc.relation.referencesHuang, C., Li, H. & Li, W., 2017. Store classification using Text-Exemplar-Similarity and Hypotheses- Weighted-CNN. J. Vis. Commun. Image R. journal, 44, pp.21–28.spa
dc.relation.referencesHugo, V. et al., 2009. Evaluation of multilayer perceptron and self-organizing map neural network topologies applied on microstructure segmentation from metallographic images. NDT & E International, 42, pp.644–651.spa
dc.relation.referencesIslam, S. et al., 2014. Solid waste bin detection and classification using Dynamic Time Warping and MLP classifier. Waste Management, 34, pp.281–290.spa
dc.relation.referencesJani, D.B., Mishra, M. & Sahoo, P.K., 2017. Application of arti fi cial neural network for predicting performance of solid desiccant cooling systems – A review. Renewable and Sustainable Energy Reviews, 80(November 2016), pp.352–366. Available at: http://dx.doi.org/10.1016/j.rser.2017.05.169.spa
dc.relation.referencesJiang, J. et al., 2017. Effect of the contact structure characteristics on rutting performance in asphalt mixtures using 2D imaging analysis. Construction and Building Materials, 136, pp.426–435.spa
dc.relation.referencesKnabben, R.M. et al., 2016. Evaluation of sound absorption capacity of asphalt mixtures. Applied Acoustics, 114, pp.266–274. Available at: http://dx.doi.org/10.1016/j.apacoust.2016.08.008.spa
dc.relation.referencesKumar, D. & Mishra, K.K., 2017. Portfolio optimization using novel co-variance guided Artificial Bee Colony algorithm. Swarm and Evolutionary Computation journal, 33(April 2016), pp.119–130.spa
dc.relation.referencesKuo, R.., Tseng, Y.. & Yao Chen, Z., 2016. Integration of fuzzy neural network and artificial immune system-based back-propagation neural network for sales forecasting using qualitative and quantitative data. Journal of Intelligent Manufacturing, 27, pp.1191–1207.spa
dc.relation.referencesLi, B. et al., 2016. Optik Image retrieval via balance-evolution artificial bee colony algorithm and lateral inhibition. , 127, pp.11775–11785.spa
dc.relation.referencesLi, Q. et al., 2011. FoSA: F* Seed-growing Approach for crack- line detection from pavement images. Image and Vision Computing, 29(12), pp.861–872.spa
dc.relation.referencesLim, C.H., Vats, E. & Seng, C., 2015. Fuzzy human motion analysis : A review. Pattern Recognition journal, 48, pp.1773–1796.spa
dc.relation.referencesMagna, G. et al., 2015. Adaptive classification model based on artificial immune system for breast cancer detection. Proceedings of the Eighteenth AISEM Annual Conference.spa
dc.relation.referencesMagna, G. et al., 2016. Identification of mammography anomalies for breast cancer detection by an ensemble of classification models based on artificial immune system. Knowle dge-Based Systems, 101, pp.60–70.spa
dc.relation.referencesMashaly, A.F. & Alazba, A.A., 2016. MLP and MLR models for instantaneous thermal efficiency prediction of solar still under hyper-arid environment. Computers and Electronics in Agriculture, 122, pp.146–155.spa
dc.relation.referencesMavrovouniotis, M., Li, C. & Yang, S., 2017. A survey of swarm intelligence for dynamic optimization : Algorithms and applications. Swarm and Evolutionary Computation journal, 33(January), pp.1–17.spa
dc.relation.referencesMejía, M. & Alzate, M., 2015. Clasificación automática de formas patológicas de eritrocitos humanos Automatic classification of pathological shapes in human erythrocytes. Revista Ingeniería, 21(1), pp.31–48.spa
dc.relation.referencesMichalska-Po??oga, I. et al., 2016. Towards the usage of image analysis technique to measure particles size and composition in wood-polymer composites. Industrial Crops and Products, 92, pp.149–156.spa
dc.relation.referencesMollajan, A., Ghiasi-Freez, J. & Memarian, H., 2016. Improving pore type identification from thin section images using an integrated fuzzy fusion of multiple classifiers. Journal of Natural Gas Science and Engineering, 31, pp.396–404.spa
dc.relation.referencesNebti, S. & Boukerram, A., 2017. Swarm intelligence inspired classi fi ers for facial recognition. Swarm and Evolutionary Computation, 32, pp.150–166.spa
dc.relation.referencesNgan, S., 2017. A unified representation of intuitionistic fuzzy sets , hesitant fuzzy sets and generalized hesitant fuzzy sets based on their u-maps. , 69, pp.257–276.spa
dc.relation.referencesPriya, E. & Srinivasan, S., 2016. ScienceDirect Automated object and image level classification of TB images using support vector neural network classifier. , pp.1–9.spa
dc.relation.referencesRadopoulou, S.C. & Brilakis, I., 2015. Patch detection for pavement assessment. Automation in Construction, 53, pp.95–104.spa
dc.relation.referencesReza, M. et al., 2011. Permanent deformation analysis of asphalt mixtures using soft computing techniques. Expert Systems with Applications, 38, pp.6081–6100.spa
dc.relation.referencesSchmidt, B. et al., 2017. Optimizing an artificial immune system algorithm in support of flow-Based internet traffic classification. Applied Soft Computing j, 54, pp.1–22.spa
dc.relation.referencesSebari, I. & He, D., 2013. Automatic fuzzy object-based analysis of VHSR images for urban objects extraction. ISPRS Journal of Photogrammetry and Remote Sensing, 79, pp.171–184.spa
dc.relation.referencesSebari & He, 2009. Approach to nonparametric cooperative multiband segmentation with adaptive threshold. Applied Optics, 20, pp.3967–3978.spa
dc.relation.referencesShafabakhsh, G. & Tanakizadeh, A., 2015. Investigation of loading features effects on resilient modulus of asphalt mixtures using Adaptive Neuro-Fuzzy Inference System. Construction and Building Materials, 76, pp.256–263.spa
dc.relation.referencesShafabakhsh, G.H., Ani, O.J. & Talebsafa, M., 2015. Artificial neural network modeling ( ANN ) for predicting rutting performance of nano-modified hot-mix asphalt mixtures containing steel slag aggregates. Construction and Building Materials journal, 85, pp.136–143.spa
dc.relation.referencesShang, R. et al., 2014. Engineering Applications of Arti fi cial Intelligence Change detection in SAR images by arti fi cial immune multi-objective clustering. Engineering Applications of Artificial Intelligence, 31, pp.1–15. Available at: http://dx.doi.org/10.1016/j.engappai.2014.02.004.spa
dc.relation.referencesSun, L., Ning, G. & Tan, S., 2014. AUTOMATIC PAVEMENT CRACK RECOGNITION BASED ON BP NEURAL NETWORK. Swarm Intelligence in Transportation Engineering, 26(1), pp.11–22.spa
dc.relation.referencesTan, J.H. et al., 2017. Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. Journal of Computational Science.spa
dc.relation.referencesTedeschi, A. & Benedetto, F., 2017. A real-time automatic pavement crack and pothole recognition system for mobile Android-based devices. Advanced Engineering Informatics, 32, pp.11–25.spa
dc.relation.referencesYangyan, L. et al., 2015. Joint Embeddings of Shapes and Images via CNN Image Purification. ACM Transactions on Graphics, 34(6), pp.1–12.spa
dc.relation.referencesYoo, H. & Kim, Y., 2016. Development of a Crack Recognition Algorithm from Non-routed Pavement Images using Artificial Neural Network and Binary Logistic Regression. KSCE Journal of Civil Engineering, 20, pp.1151–1162.spa
dc.relation.referencesYu, X. et al., 2016. Infrared Physics & Technology Target extraction of banded blurred infrared images by immune dynamical algorithm with two-dimensional minimum distance immune field. , 77, pp.94–99.spa
dc.relation.referencesZhang, G. et al., 2017. SIFT Matching with CNN Evidences for Particular Object Retrieval. Neurocomputing, 0, pp.1–11.spa
dc.relation.referencesZhang, W. et al., 2016. Learning structure of stereoscopic image for no-reference quality assessment with convolutional neural network. Pattern Recognition journal, 59, pp.176–187.spa
dc.rightsRevista EIA - 2019spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1215spa
dc.subjectPavimentosspa
dc.subjectInteligencia Artificialspa
dc.subjectProcesamiento Digital de Imágenesspa
dc.titleTécnicas de inteligencia artificial utilizadas en el procesamiento de imágenes y su aplicación en el análisis de pavimentosspa
dc.title.translatedTécnicas de inteligencia artificial utilizadas en el procesamiento de imágenes y su aplicación en el análisis de pavimentoseng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos