Publicación:
Enfoque para perfilar la actividad de almacenamiento usando la información histórica de las órdenes de los clientes

dc.contributor.authorOsorio Sierra, Lauraspa
dc.contributor.authorSuárez Estrada, Juan Joséspa
dc.contributor.authorMontoya, Jose Alejandrospa
dc.contributor.authorArrieta Posada, Juan Gregoriospa
dc.date.accessioned2020-02-03 00:00:00
dc.date.accessioned2022-06-17T20:20:33Z
dc.date.available2020-02-03 00:00:00
dc.date.available2022-06-17T20:20:33Z
dc.date.issued2020-02-03
dc.description.abstractEn una cadena de suministro, el proceso de almacenamiento representa un porcentaje significativo en los costos logísticos. En esta actividad, la toma objetiva de decisiones juega un importante rol, porque permite el mejoramiento de los procesos y la reducción de costos. Por esta razón, antes de la toma de decisiones es necesario realizar un análisis sistemático y estadístico del proceso. En este estudio, se presenta un enfoque cuantitativo para perfilar la actividad de almacenamiento, usando la información histórica de las órdenes de los clientes. Para caracterizar las órdenes, se evalúan el número de líneas por orden y la afinidad en un conjunto de órdenes. Adicionalmente, para estimar la afinidad entre órdenes, se presenta un nuevo procedimiento. El resultado, es un conjunto de grupos, los cuáles, identifican diferentes perfiles de órdenes en la actividad de almacenamiento. Finalmente, se desarrolla un caso de estudio donde se realiza la aplicación del enfoque presentado.spa
dc.description.abstractIn a supply chain, the warehousing process represents a significant percentage of the total logistics costs. Making objective decisions in this activity plays an important role because they are translated into improvement of the process or into making the process cost-effective. Therefore, before making decisions, it is necessary to provide a systematic analysis and a statistical measurement of the process. In this study, we present an approach for profiling the warehousing activity based on the customer's order history. This approach is a quantitative analysis for characterizing the warehousing activity according to the number of lines per order and the affinity in a set of orders. For estimating the order affinity, we present a novel procedure. The result of this approach are clusters that identify the different profiles of orders in the warehousing activity. Finally, we present a numerical case of study to illustrate the application of the presented approach.eng
dc.format.mimetypeapplication/pdfeng
dc.identifier.doi10.24050/reia.v17i33.1348
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5096
dc.identifier.urlhttps://doi.org/10.24050/reia.v17i33.1348
dc.language.isoengeng
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1348/1286
dc.relation.citationeditionNúm. 33 , Año 2020spa
dc.relation.citationendpage10
dc.relation.citationissue33spa
dc.relation.citationstartpage33010 pp. 1
dc.relation.citationvolume17spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAccorsi, R., Manzini, R. and Maranesi, F. (2014) ‘A decision-support system for the design and management of warehousing systems’, Computers in Industry. Elsevier, 65(1), pp. 175–186.eng
dc.relation.referencesAgrawal, R., Imieliński, T. and Swami, A. (1993) ‘Mining association rules between sets of items in large databases’, in Acm sigmod record, pp. 207–216.eng
dc.relation.referencesAndres, B. (ed.) (2018) Encuesta Nacional Logística 2018. Available at: https://onl.dnp.gov.co/es/Publicaciones/SiteAssets/Paginas/Forms/AllItems/Informe de resultados Encuesta Nacional Logística 2018.pdf.eng
dc.relation.referencesBaker, P. and Canessa, M. (2009) ‘Warehouse design: A structured approach’, European Journal of Operational Research. Elsevier, 193(2), pp. 425–436.eng
dc.relation.referencesBartholdi, J. J. and Hackman, S. T. (2008) Warehouse & Distribution Science: Release 0.89. Supply Chain and Logistics Institute.eng
dc.relation.referencesChackelson, C., Errasti, A. and Tanco, M. (2011) ‘A World Class Order Picking Methodology: An Empirical Validation’, in IFIP International Conference on Advances in Production Management Systems, pp. 27–36.eng
dc.relation.referencesChen, M.-C. et al. (2005) ‘Aggregation of orders in distribution centers using data mining’, Expert Systems with Applications. Elsevier, 28(3), pp. 453–460.eng
dc.relation.referencesChuang, Y.-F., Lee, H.-T. and Lai, Y.-C. (2012) ‘Item-associated cluster assignment model on storage allocation problems’, Computers & industrial engineering. Elsevier, 63(4), pp. 1171–1177.eng
dc.relation.referencesErrasti, A. et al. (2011) ‘Diseño de un sistema de picking producto a operario. Aplicación del diseño de experimentos mediante simulación de eventos discretos.’, Dyna, 86(5), pp. 515–522.eng
dc.relation.referencesFrazelle, E. (2002a) Supply Chain Strategy : The Logistics of Supply Chain Management, The McGraw-Hill Companies. doi: 10.1036/0071418172.eng
dc.relation.referencesFrazelle, E. (2002b) World-Class Warehousing and Material Handling, New York. Edited by McGraw-Hill. McGraw-Hill.eng
dc.relation.referencesVan Gils, T. et al. (2018) ‘Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review’, European Journal of Operational Research. Elsevier, 267(1), pp. 1–15.eng
dc.relation.referencesGoetschalckx, M. and Ashayeri, J. (1989) ‘Classification and design of order picking’, Logistics World. MCB UP Ltd, 2(2), pp. 99–106.eng
dc.relation.referencesHan, J., Pei, J. and Kamber, M. (2011) Data mining: concepts and techniques. Elsevier.eng
dc.relation.referencesHsieh, L. and Tsai, L. (2006) ‘The optimum design of a warehouse system on order picking efficiency’, The International Journal of Advanced Manufacturing Technology. Springer, 28(5–6), pp. 626–637.eng
dc.relation.referencesDe Koster, R., Le-Duc, T. and Roodbergen, K. J. (2007) ‘Design and control of warehouse order picking: A literature review’, European journal of operational research. Elsevier, 182(2), pp. 481–501.eng
dc.relation.referencesPark, B. C. (2011) ‘Order Picking Performance’, 대한산업공학회지, 37(4), pp. 271–278.eng
dc.relation.referencesRouwenhorst, B. et al. (2000) ‘Warehouse design and control: Framework and literature review’, European Journal of Operational Research. Elsevier, 122(3), pp. 515–533.eng
dc.relation.referencesSPSS (2001) The SPSS TwoStep Cluster Component A scalable component enabling more efficient customer segmentation.eng
dc.relation.referencesYener, F. and Yazgan, H. R. (2019) ‘Optimal warehouse design: Literature review and case study application’, Computers & Industrial Engineering. Elsevier, 129, pp. 1–13.eng
dc.rightsRevista EIA - 2020eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2eng
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0eng
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1348eng
dc.subjectApproach for profilingeng
dc.subjectWarehousing activity profilingeng
dc.subjectCustomer’s order dataeng
dc.subjectOrder affinityeng
dc.subjectEnfoque para perfilarspa
dc.subjectPerfilado de la actividad de almacenamientospa
dc.subjectAfinidad de las órdenesspa
dc.subjectInformación de las órdenes de los clientesspa
dc.titleEnfoque para perfilar la actividad de almacenamiento usando la información histórica de las órdenes de los clientesspa
dc.title.translatedApproach for profiling warehousing activity using customer's order data history.eng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFeng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng
dspace.entity.typePublication
Archivos