Show simple item record

dc.contributor.advisorHerrera Sánchez, Danielspa
dc.contributor.authorMejía Diez, Albertospa
dc.date.accessioned2020-08-18T21:31:05Zspa
dc.date.available2020-08-18T21:31:05Zspa
dc.date.issued2019spa
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/2472spa
dc.description69 páginasspa
dc.description.abstractAccording to the article “Stroke: A global response is needed”, at a worldwide level, brain strokes are the second cause of death and the third cause of disability on people (Johnson et al, 2016). Some of the complications that people who have suffered brain stroke can experience, listed by the Mayo Clinic, include paralysis or loss of muscle movement, difficulty speaking of swallowing, loss of memory or difficulty thinking, emotional problems, severe pain or changes in behavior and the ability of selfcare (Mayo Clinic, 2018). The methods of rehabilitation available right now are limited by the fact that they possess a short populational reach compared to the large amount of people who are affected by it. Such methods only manage to provide considerable results to those people who have suffered mild damages in their motor functions. In a study carried out by Dobkins, it was shown that only a 25% of the people who suffered from brain stroke were capable of eventually returning to an everyday life similar to the one of a healthy person (Dobkins, 2005). Currently, the market already offers devices of electrostimulation for the rehabilitation of motor functions using electromyography signals (electrical signals that result from muscle contractions) like the NESS H200. The people who have suffered from mild cerebral damages are able to activate this device due to the fact that most of them are still able to generate electrical impulses strong enough to be detected by electromyography (EMG) but not strong enough to surpass the action potential threshold needed to contract the muscle. For this reason, the necessity to develop a device that works under the same concept of electrostimulation mentioned previously but is not dependent on the residual motor functioning of the patient arises, and this way directly increasing the amount of people with more severe damages to their nervous system who can benefit from it. A brain computer interface (BCI) allows the user to control an external device by identifying specific brain signals and converting them into a series of digital commands. Such signals can be obtained by numerous ways, one of them being through electroencephalography (EEG) equipment. Once those signals are obtained, they are classified using a computational algorithm so that they can be further on expressed as electrical impulses in order to induce muscle contractions. Considering the fact that the brain signals generated when a motor movement is imagined (MI or motor imagery) are very similar to the signals generated when the actual movement is carried out, the activation of the electrostimulation device will not be affected by the residual motor capacity present on the affected patient.eng
dc.description.abstractAcorde al artículo “Stroke: A global response is needed”, a nivel mundial, los accidentes cerebrovasculares son la segunda causa de muerte y la tercera causa de discapacidad en personas (Johnson et al, 2016). Algunas de las complicaciones que pueden experimentar las personas que han sufrido de derrame cerebral, listadas por la Clínica Mayo, incluyen parálisis o perdida de movimientos musculares, dificultad en el habla o tragar, pérdida de memoria o dificultad para pensar, problemas emocionales, dolores severos y cambios en comportamiento y la habilidad de cuidado personal (Mayo Clinic, 2018). Actualmente los métodos de rehabilitación disponibles se ven limitados por el hecho de que poseen un corto alcance para una población de personas afectadas tan grande. Dichos métodos solo logran brindar resultados considerablemente notables a aquellas personas que han sufrido daños leves en sus funciones motoras. En el estudio realizado por Dobkins se comprobó que solo un 25% de las personas que sufren de derrame cerebral son capaces de eventualmente retomar una vida diaria similar a la de una persona saludable (Dobkins, 2005). Hasta ahora, el mercado ya ofrece dispositivos de electroestimulación para la rehabilitación de funciones motoras utilizando señales de electromiografía (señales eléctricas que se dan nivel muscular) como el NESS H200. Las personas que han sufrido daños leves son capaces de accionarlos debido a que la mayoría todavía son capaces de generar impulsos eléctricos lo suficiente fuertes para ser detectados por dispositivos de electromiografía (EMG) pero sin embargo muy débiles para superar el potencial de acción necesario para contraer el musculo. Por esta razón surge la necesidad de desarrollar un dispositivo que trabaje bajo el mismo concepto de electroestimulación previamente mencionado pero que no sea dependiente del funcionamiento motor residual del paciente y así mismo se lograra aumentar el alcance a personas con daños más severos de su sistema nervioso. Una interfaz cerebro maquina (BCI por sus siglas en inglés) permite identificar señales cerebrales específicas y convertirlas en una serie de comandos digitales para controlar un dispositivo externo. Dichas señales cerebrales pueden obtenidas de numerosas maneras, una de ellas siendo a través de equipos de electroencefalografía (EEG). Una vez obtenidas las señales, estas son clasificadas mediante un algoritmo computacional para posteriormente expresarlas como impulsos eléctricos para poder inducir contracciones en el musculo. Considerando el hecho que las señales cerebrales generadas cuando se imagina un movimiento (imagen motora o MI por sus siglas en inglés) son muy similares a las que se generan cuando se lleva acabo tal movimiento, la activación del dispositivo de electroestimulación no se verá afectada por la capacidad motora residual que presente el paciente afectado.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad EIAspa
dc.rightsDerechos Reservados - Universidad EIA, 2019spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceRepositorio Institucional Universidad EIAspa
dc.titleRehabilitación para pacientes postinfarto cerebral utilizando sistemas BCI/FESspa
dc.typeTrabajo de grado - Pregradospa
dc.publisher.departmentBiomédica, Mecatrónica y Mecánicaspa
dc.publisher.editorEnvigado (Antioquia, Colombia). Universidad EIA, 2019spa
dc.publisher.programIngeniería Biomédicaspa
dc.rights.licenseEl autor de la obra, actuando en nombre propio, hace entrega del ejemplar respectivo y de sus anexos en formato digital o electrónico y autoriza a la ESCUELA DE INGENIERIA DE ANTIOQUIA, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995, y demás normas generales sobre la materia, utilice y use por cualquier medio conocido o por conocer, los derechos patrimoniales de reproducción, comunicación pública, transformación y distribución de la obra objeto del presente documento. PARÁGRAFO: La presente autorización se hace extensiva no sólo a las dependencias y derechos de uso sobre la obra en formato o soporte material, sino también para formato virtual, electrónico, digital, y en red, internet, extranet, intranet, etc., y en general en cualquier formato conocido o por conocer. EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realiza sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARÁGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la ESCUELA DE INGENIERÍA DE ANTIOQUIA actúa como un tercero de buena fe.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercialspa
dc.subject.proposalMIspa
dc.subject.proposalEEGspa
dc.subject.proposalBCIspa
dc.subject.proposalElectroestimulaciónspa
dc.subject.proposalDerrame cerebralspa
dc.subject.proposalElectrostimulationeng
dc.subject.proposalBrain strokeeng
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.locationBIOM/0328spa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Biomédico(a)spa
dc.identifier.bibliographiccitationMejía Diez, A.(2019). Rehabilitación para pacientes postinfarto cerebral utilizando sistemas BCI/FES. Universidad EIA, Envigado-Antioquia. Recuperado de: http://repository.eia.edu.co/handle/11190/2472spa
dc.type.contentTextspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad EIA, 2019
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad EIA, 2019