Construcción de modelos para la optimización de portafolios de inversión en renta variable, con base en Markowitz, Blacklitterman y optimización heurística
...
García Suaza, Andrés | 2021
RESUMEN: La presente propuesta de investigación plantea el desarrollo de modelos automatizados en Python para la construcción de portafolios de inversión, como métodos alternativos e innovadores, a partir de los cuales se busca optimizar tiempo, capital de trabajo y lograr los objetivos planteados por los inversionistas en la relación riesgo-retorno respecto a un benchmark. Estas herramientas son un instrumento crucial para diferentes instituciones financieras que actualmente utilizan mecanismos estáticos (Excel) y modelos tradicionales de manera independiente, como Markowitz y/o Black-Litterman, sin dar solución a los inconvenientes de cada uno. Lo anterior se lleva a cabo a través de mejoras a los modelos tradicionales Markowitz y Black-Litterman, la implementación de un tercer modelo basado en optimización heurística (que incorpora elementos de la inteligencia computacional) y la combinación de los anteriores para aumentar la diversificación. En cuanto a las mejoras de los dos primeros, para Markowitz se tiene el cálculo de la varianza condicional mediante el modelo GARCH; para Black-Litterman, el cálculo objetivo de la tabla de views, según un horizonte de tiempo, mediante información obtenida a través del análisis de sentimiento de noticias, análisis de indicadores fundamentales y el pronóstico de retornos con una red neuronal LSTM. En lo referente al tercero, se optó por la programación de un modelo de algoritmo genético que busca maximizar una función objetivo, definida como la relación riesgo-retorno premiada por la rentabilidad adicional al benchmark y castigada por su sensibilidad con el mismo. Por otro lado, la combinación de modelos se efectuó mediante dos criterios: el primero, promediando los pesos resultantes de cada metodología; y el segundo, efectuando una ponderación de acuerdo a los resultados individuales de los modelos en indicadores de desempeño seleccionados. Para la evaluación óptima de las carteras arrojadas por los modelos mencionados anteriormente, se realizó un backtesting comprendido entre el 2013 y el 2019 (omitiendo los años siguientes con el fin de evitar el ruido generado por la pandemia como escenario extremo), en los cuales se implementaron rebalanceos periódicos en el portafolio de acuerdo a los plazos de inversión definidos (corto, mediano y largo plazo). Igualmente, se evaluaron los modelos en tiempo real para un periodo de un mes (marzo 2021). De lo anterior, en el backtesting todos los modelos propuestos, además de representar una ventaja frente a los tradicionales gracias a su automatización, arrojaron indicadores mejorados y rentabilidades superiores al benchmark de evaluación (S&P500), éste último seleccionado por la alta liquidez de los activos que lo conforman. Ahora, en referencia a la evaluación en tiempo real, se concluye que los modelos no tuvieron una buena respuesta bajo un escenario de estrés como lo es la contingencia actual. Los resultados finales muestran que el modelo de Markowitz mejorado presenta el mejor ratio de Sharpe para el corto y mediano plazo, mientras que el modelo de Black-Litterman y los modelos integrados se destacan por el desempeño en el mediano y largo plazo. Al tiempo, el algoritmo genético se presenta como un importante generador de alfa en el corto y mediano plazo. Es importante tener en cuenta que estos resultados pueden varían por la composición del portafolio y el periodo de tiempo en que se realiza el proceso de optimización.
LEER