• Español
  • English
  • Iniciar sesión
    o
    ¿Nuevo Usuario? Registrarse¿Has olvidado tu contraseña?
Logotipo del repositorioREPOSITORIO INSTITUCIONAL
  • Inicio
  • Comunidades
  • Navegar
  1. Inicio
  2. Examinar por materia

Examinando por Materia "combinatorial optimization"

Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónSólo datos
    UN ALGORITMO GENÉTICO HÍBRIDO Y UN ENFRIAMIENTO SIMULADO PARA SOLUCIONAR EL PROBLEMA DE PROGRAMACIÓN DE PEDIDOS JOB SHOP (A HYBRID GENETIC ALGORITHM AND A SIMULATED ANNEALING FOR SOLVING THE JOB SHOP SCHEDULING PROBLEM)
    (Fondo Editorial EIA - Universidad EIA, 2013-10-02) Meisel, José David; Prado, Liliana Katherine
    La programación de pedidos para el problema de producción Job Shop(JSP), catalogado como NP-Hard, ha constituido un reto para la comunidad científica, debido a que alcanzar una solución óptima a este problemase dificulta en la medida que crece en número de máquinas y trabajos. Numerosas técnicas, entre ellas las metaheurísticas, se han empleadopara su solución, sin embargo, su eficiencia, en cuanto a tiempo computacional, no ha sido muy satisfactoria. Por lo anterior y para contribuir a la soluciónde este problema, se planteó el uso de unenfriamiento simulado propuesto (ESP) y de un algoritmo genético mejorado (AGM). Para el AGM se implementó una estrategia de enfriamiento simulado en la fase de mutación, que permite al algoritmo intensificar y diversificar las soluciones al mismo tiempo, con el fin de que no converja prematuramente a un óptimo local. Los resultados mostraron que los algoritmos propuestos arrojan buenos resultados, con desviaciones alrededor de los mejore svalores encontrados que no superan el 5 % para los problemas más complejos.
  • Cargando...
    Miniatura
    PublicaciónSólo datos
    PLANEAMIENTO MULTIOBJETIVO DE SISTEMAS DE DISTRIBUCIÓN USANDO UN ALGORITMO EVOLUTIVO NSGA-II (MULTIOBJECTIVE DISTRIBUTION SYSTEM PLANNING USING AN NSGA-II EVOLUTIONARY ALGORITHM)
    (Fondo Editorial EIA - Universidad EIA, 2013-10-01) López, Libardo; Hincapié, Ricardo Alberto; Gallego, Ramón Alfonso
    En este artículo se presenta una metodología para solucionar el problema del planeamiento de sistemas de distribución empleando una técnica de optimización multiobjetivo. En el modelo propuesto se consideran la ubicación y dimensionamiento de nuevos elementos y la repotenciación de elementos existentes. En el planteamiento del problema se incluyen en la función objetivo los costos de inversión y de operación y la confiabilidad de la red. Este tema de investigación es de relevancia para las empresas distribuidoras de energía eléctrica, ya que permite contar con nuevas herramientas que acercan el problema a situaciones reales, tales como considerar varios objetivos, lo cual incide favorablemente en las finanzas y en la operación del sistema. En la solución del modelo se emplea un algoritmo elitista de ordenamiento no dominado (NSGA-II), y para verificar su eficiencia se recurre a un caso de la literatura especializada, que corresponde a una red de distribución de un sistema eléctrico.Abstract: This paper presents a methodology to solve the problem of distribution system planning, using a multi--objective optimization technique. In the proposed model the location and design of new elements and the upgrading of existing elements are considered. In the problem approach, investment and operation costs and network reliability are included in the objective function. This research topic is relevant to the electricity distribution companies, as it allows for new tools that bring the problem to real situations, such as considering multiple objectives, which has a positive impact on the finances and on operation of the system. In the model solution, an elitist non-dominated sorting algorithm (NSGA-II) is used, and to verify its efficiency a case of specialized literature is used, which corresponds to a distribution network of an electrical system.
  • Cargando...
    Miniatura
    PublicaciónSólo datos
    RESOLUCIÓN DEL PROBLEMA DE ENRUTAMIENTO DE VEHÍCULOS CON LIMITACIONES DE CAPACIDAD UTILIZANDO UN PROCEDIMIENTO METAHEURÍSTICO DE DOS FASES (SOLVING THE CAPACITATED VEHICLE ROUTING PROBLEM USING A TWOPHASE METAHEURISTIC PROCEDURE)
    (Fondo Editorial EIA - Universidad EIA, 2013-10-02) Daza, Julio Mario; Montoya, Jairo R.; Narducci, Francesco
    Este artículo presenta un procedimiento alternativo para resolver el problema de enrutamiento de vehículos con limitaciones de capacidad y flota homogénea (CVRP). Se propone un algoritmo metaheurístico que consta de la combinación de dos fases: diseño de rutas y planificación de la flota. La primera fase está compuesta de procedimientos heurísticos y metaheurísticos donde se construye una solución inicial que es mejorada mediante búsqueda tabú obteniendo soluciones no dominadas en tiempo de cálculo polinomial. Para la segunda fase, correspondiente a la planificación (scheduling) de la flota, se propone abordar el problema partiendo de una analogía con el problema de programación de máquinas paralelas idénticas. Este procedimiento tiene como función objetivo minimizar el costo fijo causado por la utilización de la capacidad instalada. Esta alternativa se aplicó sobre una instancia generada aleatoriamente y una instancia real arrojando resultados significativos al compararse con las heurísticas evaluadas.Abstract: This paper presents an alternative procedure to solve the Capacitated Vehicle Routing Problem (CVRP) with homogeneous fleet. The paper proposes a two-phase metaheuristic algorithm: routes design and fleet scheduling. The first phase is based on heuristics and metaheuristics procedures in order to build an initial solution that is then improved using tabu search to obtain non-dominated solutions in polynomial computational time. For the second phase, corresponding to fleet scheduling, the problem is approached using an analogy with the identical parallel machine scheduling problem. This procedure looks for the minimization of the fixed cost of using installed capacity as the objective function. The proposed procedure was tested using both a random-generated instance and real data, giving competitive results in comparison with other heuristics tested.
Universidad EIA Biblioteca CROAI

Sede Las Palmas:

Calle 23 AA Sur Nro. 5-200, Kilómetro 2+200 Variante al Aeropuerto José María Córdova, Envigado-Antioquia.
Código Postal: 055428 Tel: (604) 354 90 90
Tel-2: 3187754729 Fax: (574) 386 11 60

Cómo llegar
Sistema DSPACE 7 - Metabiblioteca | logo