• Español
  • English
  • Iniciar sesión
    o
    ¿Nuevo Usuario? Registrarse¿Has olvidado tu contraseña?
Logotipo del repositorioREPOSITORIO INSTITUCIONAL
  • Inicio
  • Comunidades
  • Navegar
  1. Inicio
  2. Examinar por materia

Examinando por Materia "Ultra-poor"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Grow the pie or have it? Using machine learning for impact heterogeneity in the Ultra-poor Graduation Model
    (Universidad EIA, 2021) Chowdhury, Reajul; Ceballos-Sierra, Federico; Sulaiman, Munshi
    ABSTRACT: Anti-poverty interventions often face a trade-off between immediate reduction in poverty, measured by consumption, and building assets for longer-term gains. An “Ultra-poor Graduation” model, found effective on both dimensions in several rigorous studies, generally leans towards asset building. By using data from a large-scale RCT in Bangladesh, we find significant variation in impact on assets where the top quintile gainers experience asset growth of 344% while asset growth is only 192% for the bottom quintile. Heterogeneity in impact on household expenditures is found to be present but of lower magnitude than that of assets. Importantly, the machine learning techniques we apply reveal contrasts in characteristics of beneficiaries who made the most in assets vs. consumption. The results identify beneficiary characteristics that can be used in targeting households either to maximize impact on the desired dimension and/or to customize interventions for balancing the asset and consumption trade-off
Universidad EIA Biblioteca CROAI

Sede Las Palmas:

Calle 23 AA Sur Nro. 5-200, Kilómetro 2+200 Variante al Aeropuerto José María Córdova, Envigado-Antioquia.
Código Postal: 055428 Tel: (604) 354 90 90
Tel-2: 3187754729 Fax: (574) 386 11 60

Cómo llegar
Sistema DSPACE 7 - Metabiblioteca | logo