• Español
  • English
  • Iniciar sesión
    o
    ¿Nuevo Usuario? Registrarse¿Has olvidado tu contraseña?
Logotipo del repositorioREPOSITORIO INSTITUCIONAL
  • Inicio
  • Comunidades
  • Navegar
  1. Inicio
  2. Examinar por materia

Examinando por Materia "Tiempo de estancia"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Modelo predictivo para el pronóstico de tiempos de estancia de pacientes en unidades de cuidados intensivos
    (Universidad EIA, 2021) David Martínez, Cristian Camilo; Bonet Cruz, Isis; Camacho Cogollo, Javier Enrique
    RESUMEN: La ciudad de Medellín es una de las más grandes en Colombia, y sigue en crecimiento, lo cual implica un reto para muchos sectores, entre ellos el sector de la salud, que tiene que aprovechar al máximo sus recursos para poder cubrir la gran demanda que se genere. Uno de los recursos más esenciales y limitados que puede ofrecer un hospital son las unidades de cuidados intensivos (UCI), pues estás unidades deben estar equipadas con alta tecnología con la capacidad de mantener a un paciente en condiciones constantes y monitoreo las 24 horas, y por estas necesidades, es complicado expandir constantemente estás unidades, obligando a buscar otras alternativas a la atención de más personas con los mismos recursos. Por ello, se plantea la implementación de un sistema de inteligencia artificial, el cual ayude en la administración de las unidades de cuidados intensivos, ofreciendo estimaciones de uso con base a los datos del paciente, para garantizar una planeación más acertada y poder aprovechar en todo momento estás unidades. Para ello se entrenaron diferentes modelos de inteligencia artificial y se evaluó la efectividad de cada uno de estos prediciendo los tiempos de estancia en las unidades de cuidados intensivos y así se determinó el más útil para una institución de salud local. Como resultando, diferentes tipos de modelos tanto de regresión como clasificación categórica fueron entrenados y dentro de estos se puede resaltar modelos basados en arboles de decisiones como el Random Forest con una precisión del 69%, modelos probabilísticos como Naive Bayes con una precisión del 64.3% brindando prioridad sobre los peores casos y dentro de los modelos de regresión podemos destacar el XGBoost con una desviación estándar de 7.43 días de estancia.
Universidad EIA Biblioteca CROAI

Sede Las Palmas:

Calle 23 AA Sur Nro. 5-200, Kilómetro 2+200 Variante al Aeropuerto José María Córdova, Envigado-Antioquia.
Código Postal: 055428 Tel: (604) 354 90 90
Tel-2: 3187754729 Fax: (574) 386 11 60

Cómo llegar
Sistema DSPACE 7 - Metabiblioteca | logo