Examinando por Materia "Metagenomic"
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Exploración y comparación de métodos de inteligencia artificial para la clasificación taxonómica en análisis metagenómicos(Universidad EIA, 2014) Montoya Ramírez, Widerman Stid; Bonet Cruz, IsisLa mayor diversidad genética está presente en las comunidades de microorganismos, el conocer estas especies, sus funciones y diferencias constituye un papel importante para solucionar problemas diversas áreas, como la salud, la alimentación y el medio ambiente. El método tradicional para realizar este tipo de investigaciones consiste en aislar el microorganismo de una muestra del entorno y así estudiar su constitución genética, sin embargo menos del 1% de los microorganismos pueden ser aislados y cultivados en los laboratorios. Gracias a las técnicas de secuenciación modernas cada vez más accesibles surge la metagenómica proponiendo una alternativa para poder estudiar el otro 99%. La metagenómica se encarga de estudiar la secuenciación de una muestra del entorno para descubrir a qué organismos pertenecen los fragmentos secuenciados. Sin embargo el problema radica en que los procesos necesarios para identificar el tipo de organismos en la muestra demandan mucho tiempo y recursos computacionales. En este trabajo se utilizan diferentes algoritmos de inteligencia artificial para agrupar los fragmentos de secuencias según su similitud en conjuntos puros, es decir, conjuntos cuyos fragmentos pertenezcan a un solo organismo o a un mismo grupo taxonómico de organismos. Además se propone un nuevo algoritmo que se basa en la aplicación del k-means de manera iterativa perfeccionando los grupos según la distancia entre ello. Se compararon los resultados con métodos de agrupamientos clásicos y se comprobó que con este último método se obtienen grupos más puros. Este resultado ayuda a que los procesos de ensamblado o de comparación serán más eficientes y rápidos, debido a que se tiene como entrada inicial una muestra más condensada y uniforme, disminuyendo el tiempo y los recursos consumidos durante los proyectos metagenómicos, al mismo tiempo que pueden realizarse de una forma más enfocada.