Examinando por Materia "Inteligencia Artificial generativa"
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Generación de imágenes sintéticas de radiografía de tórax con enfermedad pulmonar obstructiva crónica utilizando técnicas de inteligencia artificial(Universidad EIA, 2023) Sánchez Ocampo, María Manuela; Bonet Cruz, Isis; Montagut, YeisonRESUMEN: La implementación de modelos generativos en la medicina, particularmente en la generación de imágenes diagnósticas de la Enfermedad Pulmonar Obstructiva Crónica (EPOC), representa un avance significativo en la convergencia entre la inteligencia artificial y la práctica clínica. En el presente trabajo se proponen dos modelos de redes neuronales. El primero es AEPOC, diseñado para clasificar la EPOC partiendo de imágenes médicas, con una arquitectura que combina dos autoencoders para extraer los patrones distintivos de cada clase. El segundo modelo es LunGAN, un modelo generativo que sintetiza imágenes que reflejan las características de la EPOC a partir de datos clínicos derivados de los exámenes de función pulmonar. El presente trabajo aborda cuatro etapas importantes. La primera se enfoca en la adquisición y procesamiento de los datos clínicos de la base de datos obtenida del Hospital Pablo Tobón Uribe. La segunda etapa se dedica al análisis detallado de la información estructurada y no estructurada que permiten comprender la patología. La tercera etapa implica el diseño e implementación de múltiples modelos con la finalidad de crear imágenes que presenten las características relevantes de la patología. Finalmente, se realizó la evaluación de la calidad de las imágenes, que permite tener una visión integral sobre la semejanza entre las imágenes reales y generadas, lo cual respalda la capacidad de los modelos para imitar con precisión las imágenes de radiografía de tórax. EL modelo generativo propuesto posee un potencial para transformar los datos clínicos en representaciones visuales, abriendo posibilidades de formación y el aprendizaje de profesionales médicos al simular diversidad de escenarios y manifestaciones de enfermedad sin la necesidad de un gran número de pacientes reales. Este avance señala un futuro prometedor en la unión de la inteligencia artificial con el campo de la medicina, ofreciendo nuevas perspectivas para afrontar y avanzar en los desafíos actuales del tratamiento y diagnóstico pulmonar, con el objetivo de mejorar constantemente la calidad de la atención médica.