• Español
  • English
  • Iniciar sesión
    o
    ¿Nuevo Usuario? Registrarse¿Has olvidado tu contraseña?
Logotipo del repositorioREPOSITORIO INSTITUCIONAL
  • Inicio
  • Comunidades
  • Navegar
  1. Inicio
  2. Examinar por materia

Examinando por Materia "Biomarker"

Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Dispositivo portátil para el análisis de la variabilidad de la frecuencia cardíaca en tiempo real
    (Universidad EIA, 2018) Chanci Arrubla, Daniela; Mejía Mejía, Elisa
    La variabilidad de la frecuencia cardíaca es una variable fisiológica que ha llamado la atención de los investigadores en los últimos años, ya que puede ser utilizada para monitorizar el sistema nervioso autónomo y está relacionada con diferentes enfermedades crónicas, como la epilepsia, que es uno de los trastornos neurológicos más comunes en el que se presentan crisis convulsivas que pueden causar lesiones y accidentes. Debido a esto, se han realizado estudios para utilizar esta variable como biomarcador para la predicción de crisis epilépticas. Este trabajo presenta el desarrollo de un dispositivo portátil para el análisis de la variabilidad de la frecuencia cardíaca en tiempo real, que incluye medidas en tiempo y no lineales. Inicialmente, se realizó una revisión bibliográfica para seleccionar la estrategia óptima para la obtención de la variabilidad de la frecuencia cardíaca y la parte del cuerpo más adecuada para la ubicación del dispositivo. Luego se construyó el circuito electrónico, realizando las pruebas de funcionamiento correspondientes para proceder a la elaboración del circuito impreso, y se desarrolló el firmware necesario para el análisis de la variable fisiológica en tiempo real. Finalmente, se construyó el componente externo y se realizaron las pruebas de funcionamiento del dispositivo final.
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Modelo computacional para la identificación de firmas de expresión génica asociadas con la respuesta a inhibidores de puntos de control en cáncer
    (Universidad EIA, 2024) Castillo Uparela, Daniel Eduardo; Castaño Portilla, Carolina
    RESUMEN: El cáncer es una enfermedad caracterizada por la pérdida de control en la proliferación celular debido a la rápida expansión y transformación de células normales en células cancerosas, lo que constituye un desafío científico crucial para el desarrollo de tratamientos menos invasivos y más efectivos. Según la Agencia Internacional para la Investigación del Cáncer, en el año 2020 la enfermedad fue responsable de casi 10 millones de defunciones a nivel mundial, representando aproximadamente una de cada seis muertes registradas. Ante el desalentador escenario del cáncer, las terapias dirigidas ofrecen una alternativa con menos efectos secundarios en comparación con tratamientos tradicionales como la quimioterapia, posicionando a la inmunoterapia como una de las opciones más prometedoras en los últimos años. A diferencia de los métodos invasivos tradicionales que atacan indiscriminadamente las células tumorales, la inmunoterapia estimula el sistema inmunitario para que sea este el encargado de destruir el tumor, demostrando ser una estrategia innovadora y menos agresiva. Esta metodología terapéutica no solo implica menos efectos secundarios, sino que también representa una oportunidad significativa para combatir la proliferación de la enfermedad a lo largo del organismo. Este trabajo propone un modelo computacional basado en inteligencia artificial y técnicas bioinformáticas para identificar firmas de expresión génica asociadas con la respuesta a la inmunoterapia basada en inhibidores de puntos de control inmunitario anti PD1/PD-L1 en cáncer. Se utilizó un enfoque metodológico robusto, que incluyó la corrección del efecto batch inducido por las máquinas de secuenciación utilizando la librería Inmoose, así como la normalización de los datos de expresión génica mediante TPM. Adicionalmente, se aplicaron técnicas de reducción dimensional como el Análisis de Componentes Principales (PCA) para la visualización bidimensional y tridimensional de los datos. El balanceo de clases se realizó empleando técnicas como SMOTE, NearMiss y SMOTETomek integradas en Scikit-learn, mejorando significativamente el rendimiento del modelo. La optimización de hiperparámetros se llevó a cabo con la biblioteca Optuna, y la identificación de firmas genéticas se realizó utilizando Mlxtend. Estos métodos permitieron la creación de un repositorio digital de datos de expresión génica de pacientes con tumores sólidos y la implementación de un modelo computacional fundamentado en algoritmos de Machine Learning para predecir la respuesta a la inmunoterapia. Los resultados obtenidos demuestran que la firma de 14 genes seleccionada es capaz de clasificar con precisión la respuesta al tratamiento en pacientes con cáncer, mostrando un notable desempeño y potencial para futuras investigaciones. Este modelo tiene el potencial de convertirse en una herramienta valiosa para guiar investigaciones adicionales y apoyar decisiones médicas en el contexto de la inmunoterapia como terapia dirigida.
Universidad EIA Biblioteca CROAI

Sede Las Palmas:

Calle 23 AA Sur Nro. 5-200, Kilómetro 2+200 Variante al Aeropuerto José María Córdova, Envigado-Antioquia.
Código Postal: 055428 Tel: (604) 354 90 90
Tel-2: 3187754729 Fax: (574) 386 11 60

Cómo llegar
Sistema DSPACE 7 - Metabiblioteca | logo