Examinando por Materia "Alginate"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Estabilidad de nanopartículas de quitosano y alginato para aplicaciones biomédicas(Universidad EIA, 2021) Solarte Silva, Yurani Katherine; Echeverri Cuartas, Claudia ElenaRESUMEN: En la investigación biomédica, las nanopartículas han sido exploradas ampliamente en diversos campos, sin embargo, una de sus aplicaciones más prometedoras es la administración dirigida de fármacos anticáncer. Por esto, es importante resolver los retos actualmente existentes en el diseño de sistemas nanoparticulados para este tipo de aplicación, tales como: tener un tamaño que permita la circulación e internalización celular, presentar una forma que favorezca el cruce de varias barreras biológicas y poseer una carga superficial que mejore el tiempo de circulación, la adhesión e ingreso a las membranas celulares. En cuanto a biomateriales para este tipo de aplicaciones biomédicas, se destacan las nanopartículas poliméricas, debido a su excelente biocompatibilidad y biodegradabilidad, principalmente, aquellas obtenidas a partir de polímeros naturales como quitosano y alginato. Por lo anterior, el objetivo de este trabajo de grado era obtener nanopartículas de quitosano y alginato con un tamaño inferior a 200 nm y estables en condiciones fisiológicas simuladas (con un pH de 7,4, una temperatura de 37 °C y una fuerza iónica de163 mM). Para la ejecución de este proyecto, se prepararon nanopartículas a partir de entrecruzamiento iónico, se evaluó el efecto de la concentración de quitosano y alginato sobre la formación de las nanopartículas, y se evaluó el efecto de la relación molar sobre el tamaño de partícula y la carga superficial, mediante caracterizaciones por dispersión de luz (DLS) y potencial ζ. Por último, se determinó el efecto de la temperatura y el pH fisiológico sobre la estabilidad coloidal de las nanopartículas obtenidas. Los resultados mostraron la eficacia del entrecruzamiento iónico para la obtención de nanopartículas de quitosano-alginato con un tamaño de 180,1 nmy posible aplicación biomédica, al emplear concentraciones de quitosano y alginato de 0,1 mg/mL y 0,3 mg/mL, respectivamente, y una relación molar alginato:glucosamina de 0,00048:1. Sin embargo, las nanopartículas obtenidas a partir de estos dos polímeros, presentaron problemas de agregación al ser evaluadas en condiciones fisiológicas simuladas, aunque con los pesos moleculares evaluados no se identificaron procesos de precipitación de las nanopartículas, lo cual podría explorarse a futuro para la administración de agentes quimioterapéuticos por vía intravenosa.Publicación Acceso abierto Fabricación de matrices de Quitosano y Alginato para su aplicación en ingeniería de tejidos(Universidad EIA, 2016) Salazar Puerta, Ana Isabel; Londoño López, Martha ElenaActualmente se ha trabajado en la ingeniería de tejidos con andamios (Scaffolds) biodegradables, que tienen la capacidad de imitar fielmente a la matriz extracelular (MEC) y así crear un ambiente propicio para la adhesión y proliferación celular, estimulando así el crecimiento de tejido in vitro (Yildirimer, Thanh, & Seifalian, 2012). En este trabajo se propone la fabricación de matrices porosas a partir de quitosano y alginato, dos polímeros de origen natural, para la posterior evaluación de la adhesión y proliferación de Fibrolastos en ellas. Las matrices se fabricaron con una concentración de quitosano al 1,5% y al 1%, manteniendo la concentración del alginato al 1%; se utilizaron además 2 proporciones: 75/25 y 25/75 de quitosano-alginato. Como agente porogénico se utilizó bicarbonato de amonio y de sodio entrecruzadas físicamente por medio de liofilización. Se realizaron 5 tratamientos con la combinación de los parámetros anteriores, otros 5 tratamientos a las mismas concentraciones y proporciones pero sin agente porogénico y 3 controles de 100% quitosano a una concentración del 1,5%, 1% y alginato al 1%. Se realizaron técnicas de caracterización a las matrices como: pruebas de hinchamiento, Microscopia Electrónica de Barrido (SEM) para determinar las características microestructurales y porosidad, Espectrometría Infrarroja por Transformada de Fourier (FTIR) para definir los grupos funcionales, Análisis de termogravimetría (TGA) y por último se realizó el cultivo de células de ovario de hámster chino (CHO) en las matrices y se caracterizó por medio de SEM nuevamente para evaluar su adhesión y proliferación. Finalmente se observó que las matrices que tenían una mayor proporción de quitosano presentaban un porcentaje de hinchamiento mayor, por lo cual su porosidad incrementó, tenía buena interconectividad y tamaño de poro adecuado. Además se pudo evidenciar la adhesión de células CHO en 4 de los 5 tratamientos planteados, presentando mejores resultados en las matrices con un alto contenido de quitosano.Publicación Acceso abierto Matriz para células productoras de insulina(Universidad EIA, 2020) Muñoz Cuartas, Susana; Londoño López, Martha ElenaRESUMEN: La diabetes es una de las enfermedades más investigadas a nivel mundial dada su alta prevalencia, morbimortalidad y costos asociados. A pesar de los importantes avances científicos sobre su tratamiento, las alternativas disponibles para su manejo siguen presentando barreras que por diversos motivos impiden lograr en todos los pacientes la efectividad esperada. Además, no han podido dar solución definitiva a la resistencia a la insulina o la disminución progresiva de las células β. En los últimos años, el uso de biomateriales para la síntesis de matrices que cumplan con el objetivo de brindar soporte a las células β (productoras de insulina) ha sido planteado como una posible solución. Este trabajo de grado pretende aportar información, con el objetivo que en un futuro las matrices puedan ser implantadas en humanos y cumplir la función de un “páncreas artificial”. Las matrices se fabricaron de alginato-gelatina, con una concentración de 3% y 3.5% de alginato y 10% de gelatina aireada y sin airear; se utilizaron además proporciones de 70/30, 30/70 y 50/50 de gelatina-alginato. No se utilizó agente porogénico, al aprovechar las interacciones covalentes que se realizan entre la gelatina y alginato. Se efectuaron 6 tratamientos con la combinación de los parámetros anteriores y con la distinción de adicionar gelatina aireada, mientras que, como controles, se realizaron tres matrices con gelatina sin airear, alginato en 3% en las proporciones 70/30, 30/70 y 50/50. Se ejecutaron técnicas de caracterización de las matrices como Microscopia Electrónica de Barrido (SEM) para determinar propiedades morfológicas como la porosidad y microestructura, Espectrometría Infrarroja por Transformada de Fourier (FTIR) para definir las interacciones covalentes entre los biomateriales escogidos, y por último, una técnica gravimétrica para establecer la degradación en el tiempo de la matriz. En efecto se espera que las matrices fabricadas puedan ser implementadas en aplicaciones relacionadas con células productoras de insulina, de acuerdo con las pruebas de caracterización implementadas en este trabajo y con posteriores en un futuro.