Examinando por Materia "Agarosa"
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Hidrogel inyectable con posible aplicación en el cáncer de mama(Universidad EIA, 2022) Giraldo Salazar, Juan Camilo; Agudelo Pérez, Natalia Andrea; Echeverri Cuartas, Claudia ElenaABSTRACT: Breast cancer is considered a public health problem, being the cause of countless deaths in the world, so multiple treatments have been developed to eliminate cancer cells; however, they have a limited immune response rate and side effects. In fact, breast cancer is a public health problem and is considered one of the main causes of cancer mortality in women in Colombia and in a large number of Latin American and Caribbean countries. For this reason, it is important to solve the challenges that currently persist in the treatment of cancer, in a less invasive, costly way, with reduced side effects and with a higher rate of immune response. In the case of biomaterials and nanotechnology for this type of biomedical applications, the use of polymeric nanoparticles has stood out thanks to their biodegradability and biocompatibility characteristics, where natural polymers such as agarose and chitosan stand out. In addition, injectable hydrogels have become an important issue in cancer therapy, since they provide high local drug concentration, minimal invasiveness, sustained release characteristics and low systemic toxicities. Therefore, the objective of the present exploratory work was to propose an injectable hydrogel with possible application for breast cancer therapy. For the development of the project, it was necessary to design a methodological plan to obtain an injectable hydrogel together with its characterization. For its execution, a list of needs, requirements and morphological matrix of the project was made, once the polymers were selected, a solubility analysis of chitosan and agarose was carried out, then, a synthesis of carboxymethyl chitosan was made and the agarose was oxidized, then the concentrations of 10 mg/mL and 20 mg/mL, and the proportions 1:1, 1:3, 3:1 and 3:5 of the mixture of oxidized agarose and carboxymethyl chitosan were evaluated. Finally, the gelation time, injectability, syringeability, mechanical properties and swelling rate were evaluated. These tests were evaluated under different temperature conditions. The results showed a good swelling rate and mechanical properties for the 20 mg/mL concentrations. In addition, injectivity tests indicated optimal values in hydrogel compressive strength, being suitable to be administered through a needle. It should be added that the proportions 1:3 and 3:1 of oxidized agarose and carboxymethyl chitosan were not considered for their characterization because from the beginning they did not present ideal characteristics to continue working in the formation of the hydrogel.