• Español
  • English
  • Iniciar sesión
    o
    ¿Nuevo Usuario? Registrarse¿Has olvidado tu contraseña?
Logotipo del repositorioREPOSITORIO INSTITUCIONAL
  • Inicio
  • Comunidades
  • Navegar
  1. Inicio
  2. Examinar por materia

Examinando por Materia "Ácido fólico"

Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Efecto de la modificación con ácido fólico sobre la vectorización de nanopartículas de Quitosano-Peg
    (Universidad EIA, 2023) Romero Ruiz, Daniela Paola; Agudelo Pérez, Natalia Andrea; Echeverri Cuartas, Claudia Elena
    RESUMEN: el cáncer es una de las enfermedades con una alta tasa de mortalidad en el mundo. Por lo tanto, existen diferentes tratamientos, y la quimioterapia es uno de los tratamientos más empleados. Sin embargo, no es especifico, ya que ataca tanto a células sanas como a cancerígenas. Ante esto, la nanotecnología propone el campo de la nanomedicina, que es una ciencia que aplica los conocimientos de la nanotecnología en el campo de la salud. Como resultado de la investigación biomédica, las nanopartículas se han explorado en diversos campos de la medicina. Uno de ellos es la administración de principios activos, donde se busca que los fármacos sean más específicos y solo ataquen a células cancerígenas. Por lo tanto, es necesario diseñar adecuadamente las nanopartículas, teniendo en cuenta parámetros como la carga superficial, el tamaño, la forma, el PDI, el potencial ζ, ya que estos afectan la estabilidad coloidal de las nanopartículas, de circulación e internalización celular, así como su adhesión e ingreso a las membranas celulares. Existen diferentes biomateriales para la preparación de las nanopartículas. El quitosano es uno de los polímeros más empleados debido a sus propiedades excepcionales. Este polímero tiene grupos amina libres (-NH2), los cuales le confieren propiedades químicas destacables, como su carga positiva y su capacidad de modificación química (Gonçalves et al., 2014). Sin embargo, las nanopartículas de quitosano presentan una limitación cuando se administran por vías con un pH neutro, ya que estudios previos han demostrado que no son estables en estas condiciones. Por lo anterior, el objetivo de este proyecto fue preparar nanopartículas de quitosano (Q) modificado con polietilenglicol (PEG) y ácido fólico (AF) mediante dos métodos. En ambos métodos, se utilizó Q modificado con PEG (QPEG), y las variaciones consistieron en que, en el primer método, se modificó el Q con AF para obtener QAF y las partículas se prepararon a partir de una mezcla de ambos polímeros; en el segundo método, se prepararon las partículas con QPEG y se realizó una modificación superficial con AF. Después de preparar las partículas mediante ambos métodos, se evaluaron su tamaño, índice de polidispersidad y su potencial ζ. Además, se analizó la estabilidad en condiciones fisiológicas simuladas (con un pH de 7,4, una temperatura de 37 °C y una fuerza iónica de 167 mM) para evaluar el efecto del método de modificación en la estabilidad de las partículas. Los resultados mostraron que ambos métodos permiten obtener nanopartículas menores a 200 nm. En cuanto al potencial ζ, el método de conjugación empleado no afecta este parámetro, ya que los valores no cambian. Adicionalmente, el valor obtenido (alrededor de 16 mV) indicaron una estabilidad electrostática mínima, aunque se debe tener en cuenta que el PEG proporciona una estabilidad estérica adicional. En relación con la estabilidad en condiciones fisiológicas las nanopartículas obtenidas mediante el segundo método son estables coloidalmente en las condiciones simuladas de pH, fuerza iónica y temperatura.
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Encapsulación del ácido fólico en matriz de alginato de sodio/alcohol polivinílico para su posible integración en productos nutracéuticos
    (Universidad EIA, 2022) Araque Ruiz, Valentina; González Pérez, Juliana; Echeverri Cuartas, Claudia Elena
    RESUMEN: El interés por la adición de compuestos bioactivos a los productos alimenticios ha aumentado en las últimas décadas, en donde el ácido fólico es uno de los compuestos que más se ha estudiado para esta aplicación. El ácido fólico (AF) es una de las vitaminas más importantes en el cuerpo humano, debido a que juega un papel fundamental en la síntesis normal del ADN, aminoácidos y de nucleoproteínas. Sin embargo, se sabe que cinco factores, tales como los rayos ultravioleta tipo A y B (UVA/UVB), temperaturas superiores a 180 °C, el oxígeno, el pH y su concentración (respecto a exposiciones de radiación), propician su degradación, por lo que es necesario protegerlo por medio de una encapsulación que le permita llegar al sitio de acción para cumplir su función. El alginato de sodio (ALG) es un biopolímero que presenta gran biocompatibilidad; sin embargo, por sí solo presenta propiedades mecánicas débiles que pueden representar una deficiencia en la integración de productos nutracéuticos. Por esta razón, usualmente, se combina con otros polímeros, tales como el alcohol polivinílico (PVA), que ofrecen una mejoría a sus propiedades mecánicas. En esta investigación se encapsuló el ácido fólico en una matriz polimérica de alginato sódico y alcohol polivinílico, que se utilizan comúnmente en nutracéuticos, con el fin de proteger el principio bioactivo de su degradación por los factores físicos mencionado anteriormente. Se usó un método de gelificación iónica y extrusión para la formación de microesferas, en el cual el cloruro de calcio actuó como agente entrecruzante. Las microesferas fueron caracterizadas a nivel morfológico mediante la toma de imágenes en un estereoscopio y microscopia electrónica de barrido (SEM), y a nivel estructural a través de espectroscopia de rayos X por dispersión de energía (EDS) y espectroscopia infrarroja por transformada de Fourier con reflectancia total atenuada (ATR-FTIR). Se elaboró un protocolo para la obtención de microesferas de ALG/PVA, en donde se logró un diámetro promedio de 1,37 mm. Se encapsuló una concentración inicial de 0,5 mg/mL de ácido fólico en la matriz polimérica y se encontró que la morfología y química externa no dependían de la encapsulación. En general las microesferas con y sin principio activo presentaron una morfología esférica y una superficie rugosa. Adicionalmente, para una concentración inicial de 2 mg/mL del principio activo, la eficiencia de encapsulación del ácido fólico y la capacidad de carga de la matriz polimérica fueron de 77 % y 24 %, respectivamente. Se espera, en un futuro, mejorar la solubilización de la matriz polimérica y realizar ensayos de cinética de liberación para corroborar la liberación del principio activo en un medio simulado.
Universidad EIA Biblioteca CROAI

Sede Las Palmas:

Calle 23 AA Sur Nro. 5-200, Kilómetro 2+200 Variante al Aeropuerto José María Córdova, Envigado-Antioquia.
Código Postal: 055428 Tel: (604) 354 90 90
Tel-2: 3187754729 Fax: (574) 386 11 60

Cómo llegar
Sistema DSPACE 7 - Metabiblioteca | logo