Examinando por Autor "Jiménez Posada, León Darío"
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Efecto de las fuerzas viscoelásticas, friccionales e inerciales en la potencia mecánica pulmonar(Universidad EIA, 2024) Palacio Sánchez, Andrés Felipe ; Montagut Ferizzola, Yeison Javier; Jiménez Posada, León DaríoRESUMEN: la ventilación mecánica es crucial en el manejo de la insuficiencia respiratoria y puede inducir la lesión pulmonar inducida por ventilador (ventilator-induced lung injury, VILI) si no se administra correctamente. La comprensión de la potencia mecánica pulmonar, definida como la energía transferida al sistema respiratorio por unidad de tiempo, es esencial para minimizar este riesgo. Este estudio evalúa cómo la resistencia en la vía aérea, la compliance y las fuerzas viscoelásticas e inerciales afectan la potencia mecánica y, consecuentemente, el riesgo de VILI. Se empleó una metodología de simulación computacional para explorar la relación entre la potencia y los factores mecánicos pulmonares mencionados. Se realizaron múltiples simulaciones variando la resistencia en la vía aérea, la compliance y las propiedades viscoelásticas e inerciales, evaluando su impacto en la potencia mecánica, así como en los niveles de estrés y strain pulmonar. Los resultados revelaron que, aunque la resistencia en la vía aérea y las fuerzas viscoelásticas tienen un impacto claro en la potencia mecánica (r = 0.385 y r = 0.648, respectivamente), su influencia en los niveles de estrés y strain es limitada. Inversamente, la compliance mostró una relación negativa significativa con la potencia mecánica —r correlación negativa significativa—, indicando que, a mayor compliance, menor es la potencia aplicada. Este factor también tuvo el efecto más pronunciado en la reducción del strain pulmonar, con una fuerte correlación negativa (r = –1.00) y una influencia significativa en la reducción del estrés pulmonar (r = –0.878). La sensibilidad y la especificidad para detectar condiciones lesivas fueron analizadas utilizando los resultados de las simulaciones computacionales. Según la ecuación propuesta, se reveló que la potencia mecánica no identificó correctamente ningún caso lesivo basado en los criterios definidos de estrés y strain. Este resultado era esperado, ya que las simulaciones no alcanzaron valores que cumplieran con los criterios definidos para el estrés y el strain, y, por tanto, se anticipaba una baja sensibilidad debido a la ausencia de simulaciones que demostraran un compromiso significativo de ellos. La especificidad, del 50 %, indicó que la medida fue moderadamente efectiva en identificar correctamente las condiciones no lesivas. Este estudio aporta evidencia importante sobre cómo diversos factores mecánicos influencian la potencia mecánica y su rol en el desarrollo de la VILI, subrayando la importancia de ajustar cuidadosamente la configuración de la ventilación mecánica para mitigar el riesgo de lesión pulmonar. Los hallazgos sugieren nuevas direcciones para futuras investigaciones y la optimización de las prácticas de ventilación mecánica en pacientes críticamente enfermos.