Examinando por Autor "Echeverri Cuartas, Claudia Elena"
Mostrando 1 - 20 de 35
Resultados por página
Opciones de ordenación
Ítem Acceso abierto Absorción óptica en puntos cuánticos de materiales semiconductores biofuncionalizados(2024-09) Restrepo Arango, Ricardo León; Prada, A.; Agudelo Pérez, Natalia Andrea; Echeverri Cuartas, Claudia ElenaDadas las propiedades optoelectrónicas del arseniuro de galio (GaAs), actualmente es un candidato prometedor para el desarrollo de plataformas óptimas para dispositivos de biosensores ópticos. La biofuncionalización de este semiconductor se puede lograr utilizando biomateriales ampliamente explorados en las ciencias de la vida para diagnósticos. En este estudio, investigamos el impacto sinérgico de una capa de biomaterial funcional y un potencial de confinamiento diatómico en las propiedades electrónicas y ópticas de los puntos cuánticos esféricos de GaAs/AlGaAs/Bioshell. Los cálculos se realizaron mediante aproximaciones de masa efectiva y banda parabólica, y la ecuación de Schrödinger se resolvió para un electrón confinado utilizando el método de elementos finitos (FEM). Nuestros hallazgos revelan que las alteraciones en el tamaño del núcleo de GaAs, la capa de AlGaAs, la capa de biomaterial y los parámetros de potencial de confinamiento dan como resultado variaciones significativas en las energías de los puntos cuánticos de electrones y en el espectro de absorción óptica. Concluimos que los parámetros del potencial de confinamiento diatómico permiten ajustar las energías de los estados excitados y el fundamental, modulando así las amplitudes y posiciones de los picos en las propiedades ópticas obtenidas. Este control matizado sobre las propiedades de los puntos cuánticos es prometedor para adaptar el rendimiento de los dispositivos en aplicaciones de bio-detección óptica. Al mejorar la sensibilidad y la especificidad en la detección de biomoléculas, estos dispositivos podrían revolucionar el diagnóstico biomédico, ofreciendo una detección rápida y precisa de enfermedades o biomarcadores.Publicación Acceso abierto Andamio para cultivo de células productoras de insulina para futuras aplicaciones en pacientes diabéticos(Universidad EIA, 2020) Betancur Rodríguez, Manuela; Londoño López, Martha Elena; Echeverri Cuartas, Claudia ElenaRESUMEN: La diabetes es un grupo de enfermedades que aumentan el nivel de glucosa en la sangre, resultado de defectos en la capacidad del cuerpo para producir o usar insulina. Debido a que los tratamientos actuales son poco eficientes para tratar esta enfermedad, desde el área de biomateriales e ingeniería de tejidos, se desarrolló un andamio poroso de Alginato/Quitosano, entrecruzado con Genipina y funcionalizado con Factor de crecimiento vascular endotelial (VEGF), biomateriales con aminoácidos similares a los de Fibronectina, Colágeno y Laminina, biocompatibles y biodegradables. De acuerdo con los resultados, se obtuvieron andamios degradables, capaces de absorber fluido, porosos, con poros interconectados de diámetros menores de 1 hasta 280 µm, que cumplen con los requerimientos para el cultivo de células productoras de insulina. La interconexión de poros presente en los andamios permitirá la interacción celular para su desarrollo, función y comunicación, generar respuestas frente a los cambios en su microambiente y que se favorezca el intercambio de nutrientes. Al promover la vascularización, se espera que la supervivencia de los islotes pancreáticos se vea mejorada, y se reduzca la apoptosis causada por hipoxia ya que la formación de vasos sanguíneos dentro del andamio a partir de vasos preexistentes en el tejido adyacente es fundamental para que las células consigan nutrientes y oxígeno a través de la sangre.Publicación Acceso abierto Andamios para cultivo de células productoras de insulina.(Universidad EIA, 2021) Sánchez Cardona, Yesenia; Londoño López, Martha Elena; Echeverri Cuartas, Claudia Elena; Rocío Moreno, Natalia; Echeverri Cuartas, Claudia ElenaLa diabetes se ha convertido en un problema a nivel mundial, no solo por su mortalidad, incidencia y prevalencia. sino por las complicaciones de salud, que recaen sobre las personas que la padecen, afectando su calidad de vida, empeorando su condición y aumentando los riesgos de discapacidad. Actualmente existen 463 millones de diabéticos adultos en el mundo y 1,1 millones de niños y adolescentes menores de 20 años. Se espera que la cifra de adultos diabéticos aumente a 700 millones para 2045 (International Diabetes Federation (FID), 2019). Se han identificado varios tipos de diabetes, siendo las más comunes y prevalentes la diabetes mellitus tipo 1 y tipo 2. En estas se ven afectadas las células β disminuyendo la masa celular en un 70-100 % en la primera y de un 10-64 % en la segunda. En la actualidad se han utilizado varios materiales de origen naturales o sintéticos para elaboración de andamios con el fin de aumentar la replicación de estas células preexistentes o mejorar su función in vivo e in vitro (Saik-kia K. Goh et al., 2013). Sin embargo, la mayoría de estos andamios no imitan la complejidad de la composición y estructura de la MEC pancreática, no favorecen las adhesiones focales y las interacciones célula-célula o célula -material. Por lo cual aún sigue siendo un problema complejo mantener estas células en cultivo debido a sus complejos mecanismos de regulación, su dependencia de oxígeno, la arquitectura de su entorno nativo, el trasporte de nutrientes y la baja tasa de proliferación in vivo e in vitro (Cheng et al., 2011). Se prepararon andamios en diferentes proporciones en peso de quitosano (Q), gelatina (Ge) y alcohol polivinílico (PVA) mediante ciclos de congelación-descongelación y liofilización, para su uso en el cultivo de células β. Una vez obtenida los andamios se implementaron técnicas de caracterización como FTIR, SEM, porosidad, degradación y velocidad de hinchamiento. La resistencia a la compresión de los andamios de mezclas ternarias (Q/Ge/PVA) mejoró en comparación con los andamios de mezcla binaria (Ge / PVA); se observó un aumento en el módulo de Young y en la resistencia a la compresión con el aumento de la proporción en peso de la gelatina. La resistencia a la compresión más alta alcanzó los 101,6 Pa. Todas las muestras tuvieron una buena estructura de red tridimensional. El porcentaje de porosidad de las mezclas ternarias fue superior al 80 %, mientras que en los controles la porosidad varió entre 55,6 ± 9,6 – 90,6 ± 1,5 %. Las microestructuras están interconectadas con micro y macroporos que se distribuyen uniformemente en la superficie y la distribución del tamaño de diámetros de poros en las mezclas ternarias fue (0,6 - 265 μm) y en los controles (0,8 -248 μm). Se presentaron diferencias significativas (p<0,05) en las mezclas ternarias comparadas con los controles en cuanto a la distribución de diámetros de poros. Los andamios de mezclas ternarias presentaron tasas controlables de pérdida de masa en comparación con los andamios de mezclas binarias. La capacidad de hinchamiento de las muestras aumentó con el aumento de la proporción en peso de quitosano. Los andamios de quitosano, gelatina, PVA mostraron una leve citotoxicidad para las células BRIN-BD11. Por lo tanto, estos andamios muestran un potencial prometedor para mejorar la viabilidad de las células β in vitroPublicación Acceso abierto Biomaterial basado en alginato y gelatina para el desarrollo de cultivos tridimensionales(Universidad EIA, 2023) Ríos Vergara, Julieta; Toro, Lenka; Echeverri Cuartas, Claudia ElenaRESUMEN: los biomateriales en cultivo celular permiten imitar el comportamiento de la matriz extracelular (MEC) fielmente brindando soporte y nutrientes. La gelatina y el alginato de sodio son biomateriales muy utilizados en cultivo por su biocompatibilidad y baja citotoxicidad. Por otro lado, los esferoides celulares facilitan la formación de interacciones célula-célula en las tres dimensiones, como se encuentra en la fisiología de los organismos. En búsqueda de un cultivo celular que brinde la oportunidad de imitar ambos comportamientos, se planteó la encapsulación de esferoides en matrices Alg-Gel en tres proporciones distintas (50:50, 70:30 y 80:20) para encapsular esferoides de NIH3T3 (línea celular de fibroblastos de ratón) cultivados usando el método de gota colgante, a través del entrecruzamiento iónico con CaCl2 100 mM. Se caracterizaron las matrices de Alg-Gel (espectrometría de transformada de Fourier -FTIR-, evaluación de morfología, hinchamiento y degradación por gravimetría, evaluación de esterilidad y evaluación de citotoxicidad) y el cultivo de esferoides en sus pre y post encapsulación (microscopia óptica, microscopia de fluorescencia y ensayo MTT) con el fin de observar el comportamiento de estos y los posibles factores asociados a la matriz que influyan sobre su crecimiento y desarrollo. Al final se demostró que la matriz Alg-Gel 80:20 presentaba el mayor porcentaje de hinchamiento (34.91 %) demostrando una posible mayor presencia de poros; además, se evidenció que el medio de cultivo celular afecta la integridad de las matrices, dificultando su manipulación a largo plazo. Se determinó que el tamaño promedio de los esferoides antes de ser encapsulados era de 181.85 ± 9.70 μm y, además, se observó que el ensayo de MTT para la evaluación de los esferoides tuvo absorbancias bajas, aun cuando este se trataba de un esferoide viable, ya que se evidenció la formación de cristales de formazán y se observó la morfología de este por microscopia electrónica de barrido -SEM. Los esferoides encapsulados en las matriz Alg-Gel mostraron tener menor tamaño que el control (control = 211.55 ± 19.68 μm; 50:50 = 193.77 ± 18.67 μm; 70:30 = 191.20 ± 16.63;y 80:20 = 183.54 ± 19.14 μm), y la disminución de su tamaño se relacionó con la cantidad de Alg, lo cual brindaría la oportunidad de un cultivar esferoides con control de tamaño. Todas las matrices de Alg-Gel demostraron ser viables según la norma ISO 10993 tanto para los ensayos de citotoxicidad directa e indirecta a esferoides, resaltando el hecho que en ambos casos la matriz Alg-Gel 80:20 representaba una alta viabilidad, con porcentajes equivalente a 113.58 % (indirecta) y 99.36 % (directa). Estos resultados sugieren que la matriz Alg-Gel 80:20 puede tener un uso prometedor para la encapsulación de esferoides; sin embargo, se debe indagar más a fondo con respecto a los métodos de evaluación de esferoides para corroborar el efecto positivo de Alg. Además, se recomienda la implementación de métodos que mejoren las características en presencia del medio de cultivo de las matrices, en general.Publicación Acceso abierto Comparación de la cinética de liberación de la curcumina desde partículas nanométricas y micrométricas basadas en quitosano(Universidad EIA, 2025) Durango Durango, Juan Pablo; Agudelo Pérez, Natalia Andrea; Echeverri Cuartas, Claudia ElenaRESUMEN: Los sistemas de liberación de principios activos, como micropartículas y nanopartículas, se destacan por ofrecer ventajas considerables en términos de eficacia, reducción de toxicidad y efectos secundarios, optimizando la administración y la absorción celular. Sin embargo, la influencia de propiedades fisicoquímicas como tamaño y forma en la liberación del principio activo es un punto clave para tener en cuenta. El proyecto se centra en mejorar la efectividad terapéutica de la curcumina, que enfrenta limitaciones debido a su baja solubilidad y rápida metabolización. La propuesta radica en emplear matrices poliméricas basadas en quitosano para encapsular la curcumina y permitir su liberación controlada. Esta estrategia busca superar las barreras actuales para su aplicación médica. El enfoque principal del proyecto consiste en comparar la cinética de liberación de la curcumina cuando se encapsula en micropartículas y nanopartículas basadas en quitosano. La falta de información específica sobre esta comparación es un vacío que esta investigación busca llenar. Al evaluar el efecto de la escala de la partícula en la liberación de curcumina, se espera generar resultados experimentales valiosos para la comunidad científica. Estos datos pueden tener un impacto significativo, ya que podrían ser fundamentales para optimizar no solo la administración de la curcumina, sino también otros compuestos bioactivos. Además, se prevé que los hallazgos contribuyan al diseño de sistemas de administración de fármacos más eficientes y adaptados a necesidades específicas, abriendo nuevas posibilidades en el campo de la medicina y la terapia farmacológica.Publicación Acceso abierto Dispositivo de liberación controlada de principio activo por vía transdermal(Universidad EIA, 2021) Bedoya Herrera, Valentina; Montoya Góez, Yesid; Agudelo Pérez, Natalia Andrea; Echeverri Cuartas, Claudia ElenaRESUMEN: El aumento en la población mundial y en parte la mejora de la calidad de vida en el último siglo en cuanto al campo farmacéutico se da debido en gran medida al desarrollo de medicamentos y los sistemas de liberación controlada de los mismos, esto ha beneficiado así una parte de la población que padece de enfermedades reumáticas, la cual se compone en gran parte de personas con edad avanzada. En el caso del Ibuprofeno, el cual es un fármaco con propiedades antiinflamatorias, que también es utilizado por su acción como antipirético y analgésico, es comúnmente administrado por vía oral y en menor medida por vía tópica, es decir, por medio de ungüentos; estos últimos con ciertos inconvenientes como adherencia a la ropa, incomodidad por causar sensación grasosa, entre otros. En este trabajo de grado se presentan los resultados del desarrollo de un dispositivo de liberación controlada de principio activo por vía transdermal, usando como fármaco modelo Ibuprofeno sódico. La documentación incluye la descripción de los procesos de extracción del Ibuprofeno a partir tabletas comerciales, protocolo de encapsulamiento, caracterización y diseño de concepto del sistema de liberación.Ítem Acceso abierto Efecto de la actividad antioxidante de un extracto vegetal sobre la síntesis de nanoestructuras de oro usadas en aplicaciones de salud(2024-09) Echeverri Cuartas, Claudia Elena; Agudelo Pérez, Natalia Andrea; Torijano Gutiérrez, Sandra Adela; Patiño-González, M. C.Las nanobarras de oro (AuNR) han surgido con materiales promisorios para ser usados en nuevos tratamientos alternativos como la terapia fototérmica para el tratamiento de cáncer. Estas nanoestructuras tienen tamaños aproximadamente de 10 nm de ancho y 40 nm de largo; exhiben propiedades ópticas que depende del plasmón de resonancia superficial longitudinal (LSPR) y transversal (TSPR), las cuales se observan como dos bandas de absorción en el espectro visible. De acuerdo con la anterior, la presencia de los plasmones de resonancia permite identificar diferentes morfologías de oro obtenidas al variar las condiciones de síntesis. En esta investigación se utilizó el método sin semilla y, adicionalmente, se hizo uso del proceso de “síntesis verde” de nanoestructuras al utilizar un extracto acuoso de frutas como agente reductor débil de la síntesis de las nanoestructuras de oro. Por lo anterior, para conocer el efecto de estos agentes reductores verdes, sobres las características finales de las nanoestructuras de oro obtenidas, inicialmente, se seleccionaron dos frutas a través de una matriz de calificación y del estudio de la capacidad antioxidante y de la cantidad de fenoles totales. A partir de este estudio se seleccionaron la mora y la gulupa como las frutas con las cuales se iba a preparar el extracto para obtener las nanoestructuras de oro. Posteriormente, se llevó a cabo un proceso de optimización a través de un diseño de experimentos de superficie de respuesta con cinco variables de entrada y cuya variable de salida era el LSPR, con el cual se buscaba identificar las condiciones experimentales que condujeran a la obtención de nanoestructuras de oro. De las caracterizaciones morfológicas y ópticas se evidenció que la capacidad antioxidante tiene un efecto en las características finales de las nanoestructuras obtenidas en términos de la cantidad aparente de partículas obtenidas, del tamaño de las partículas y del tipo de partícula (esferas, barras, cubos, “hueso”).Publicación Acceso abierto Efecto de la modificación con ácido fólico sobre la vectorización de nanopartículas de Quitosano-Peg(Universidad EIA, 2023) Romero Ruiz, Daniela Paola; Agudelo Pérez, Natalia Andrea; Echeverri Cuartas, Claudia ElenaRESUMEN: el cáncer es una de las enfermedades con una alta tasa de mortalidad en el mundo. Por lo tanto, existen diferentes tratamientos, y la quimioterapia es uno de los tratamientos más empleados. Sin embargo, no es especifico, ya que ataca tanto a células sanas como a cancerígenas. Ante esto, la nanotecnología propone el campo de la nanomedicina, que es una ciencia que aplica los conocimientos de la nanotecnología en el campo de la salud. Como resultado de la investigación biomédica, las nanopartículas se han explorado en diversos campos de la medicina. Uno de ellos es la administración de principios activos, donde se busca que los fármacos sean más específicos y solo ataquen a células cancerígenas. Por lo tanto, es necesario diseñar adecuadamente las nanopartículas, teniendo en cuenta parámetros como la carga superficial, el tamaño, la forma, el PDI, el potencial ζ, ya que estos afectan la estabilidad coloidal de las nanopartículas, de circulación e internalización celular, así como su adhesión e ingreso a las membranas celulares. Existen diferentes biomateriales para la preparación de las nanopartículas. El quitosano es uno de los polímeros más empleados debido a sus propiedades excepcionales. Este polímero tiene grupos amina libres (-NH2), los cuales le confieren propiedades químicas destacables, como su carga positiva y su capacidad de modificación química (Gonçalves et al., 2014). Sin embargo, las nanopartículas de quitosano presentan una limitación cuando se administran por vías con un pH neutro, ya que estudios previos han demostrado que no son estables en estas condiciones. Por lo anterior, el objetivo de este proyecto fue preparar nanopartículas de quitosano (Q) modificado con polietilenglicol (PEG) y ácido fólico (AF) mediante dos métodos. En ambos métodos, se utilizó Q modificado con PEG (QPEG), y las variaciones consistieron en que, en el primer método, se modificó el Q con AF para obtener QAF y las partículas se prepararon a partir de una mezcla de ambos polímeros; en el segundo método, se prepararon las partículas con QPEG y se realizó una modificación superficial con AF. Después de preparar las partículas mediante ambos métodos, se evaluaron su tamaño, índice de polidispersidad y su potencial ζ. Además, se analizó la estabilidad en condiciones fisiológicas simuladas (con un pH de 7,4, una temperatura de 37 °C y una fuerza iónica de 167 mM) para evaluar el efecto del método de modificación en la estabilidad de las partículas. Los resultados mostraron que ambos métodos permiten obtener nanopartículas menores a 200 nm. En cuanto al potencial ζ, el método de conjugación empleado no afecta este parámetro, ya que los valores no cambian. Adicionalmente, el valor obtenido (alrededor de 16 mV) indicaron una estabilidad electrostática mínima, aunque se debe tener en cuenta que el PEG proporciona una estabilidad estérica adicional. En relación con la estabilidad en condiciones fisiológicas las nanopartículas obtenidas mediante el segundo método son estables coloidalmente en las condiciones simuladas de pH, fuerza iónica y temperatura.Ítem Acceso abierto Efecto del grado de sustitución sobre la formación y estabilidad de nanopartículas de quitosano-polietilenglicol(Universidad EIA, 2023) López Ruiz, Paola Vanessa; Echeverri Cuartas, Claudia ElenaRESUMEN: los materiales poliméricos están siendo ampliamente usados en el campo farmacéutico y biomédico para muchas aplicaciones, entre ellas, el desarrollo de sistemas de liberación controlada de principios activos. El quitosano es uno de estos polímeros de gran interés al ser un material con propiedades de biodegradabilidad, biocompatibilidad, alta carga positiva, actividad antimicrobiana, notable afinidad a las proteínas, entre otras; por lo que la preparación de nanopartículas mediante el método de gelación ionotrópica, utilizando tripolifosfato pentasódico, es el mejor método, ya que forma las nanopartícula de manera rápida, y además homogéneas. Sin embargo, estas nanopartículas son inestables en medio fisiológico (pH 7,2 a 7,4) y como alternativa, se potencia el uso del polietilenglicol (PEG) para modificar el quitosano y obtener nanopartículas más estables, pero según investigaciones recientes aun es incierto si su grado de sustitución si afecta a la estabilidad de dichas partículas. Con este fin, se exploró la posibilidad de mejorar la estabilidad de las nanopartículas de quitosano modificándolas con PEG cuando se usa un grado de sustitución mayor al 1 %. De acuerdo a la metodología planteada, primero se realiza la modificación del biopolímero de quitosano con PEG, para luego dar paso a la formación de las nanopartículas mediante gelación ionotrópica. Una vez obtenidas dichas nanopartículas se determina el efecto del grado de modificación sobre el tamaño y la carga superficial, esperando obtener nanopartículas Q-g-PEG con un tamaño inferior a 200 nm, además de estables en condiciones fisiológicas simuladas (con un pH de 7.4, una temperatura de 37 °C y una fuerza iónica de 163 mM), lo cual se determinó a través de un análisis de DLS y potencial ζ (Nanoplus, Micromeritics, EEUU). Finalmente, se obtuvo un protocolo de funcionalización para la formación de nanopartículas del copolímero Q-g-PEG, con grado de sustitución mayor al 1 % del cual se estableció que, al simular a condiciones fisiológicas, las nanopartículas no fueron estables debido al aumento en su tamaño y PDI.Publicación Acceso abierto Encapsulación de vitamina D en nanopartículas de s(PEES) para su potencial uso en el tratamiento de la osteoporosis(Universidad EIA, 2022) Valest González, Sofía; Agudelo Pérez, Natalia Andrea; Echeverri Cuartas, Claudia ElenaRESUMEN: La osteoporosis es una enfermedad que disminuye la microarquitectura del tejido óseo y la masa ósea, aumentando el riesgo de fractura, por ende, el paciente desarrolla una dependencia de terceros, y en las situaciones más críticas, la muerte. Estudios han comprobado que las personas que padecen esta enfermedad también presentan una deficiencia de vitamina D —la cual juega un papel importante en la mineralización ósea—, por lo que su ausencia afecta la integridad del hueso. Uno de los tratamientos sugeridos por expertos es el consumo de esta vitamina. Sin embargo, una administración no controlada del fármaco puede generar una hipervitaminosis D, causándole efectos secundarios al paciente (como la hipercalcemia). Lo anterior, abre la posibilidad de encapsular la vitamina D en nanopartículas para favorecer su liberación controlada. Para ello, se propone utilizar el polímero poli-éter-éter-sulfona sulfonado, más conocido como s(PEES), por sus propiedades de biodegradabilidad, biocompatibilidad y a su vez, porque se han reportado estudios de implantes dentales y regeneración de tejido óseo utilizando este polímero, por lo que lo hace un buen candidato para encapsular vitamina D por sus propiedades ortopédicas. Además, en el año 2018 se reportó que se realizaron nanopartículas estables utilizando este polímero, pero no se logró encapsular ningún principio activo. Debido a lo anterior, en este trabajo se evaluó la encapsulación de vitamina D en nanopartículas de s(PEES) para su potencial uso en el tratamiento de la osteoporosis. Para lograr lo anterior, se prepararon nanopartículas sin vitamina D y con vitamina D, a las cuales se les realizó un análisis de estabilidad en el tiempo a 37 °C por un período de 39 horas y en condiciones fisiológicas simuladas de pH y fuerza iónica. Posteriormente, se evaluó la eficiencia de encapsulación de vitamina D y capacidad de carga de las nanopartículas para evaluar su utilidad como sistema de nanotransporte. Estos procesos permitieron obtener nanopartículas de un tamaño inferior a 200 nm y un PDI inferior a 0,3, por lo que estos nanotransportadores tendrían potencial para la liberación controlada de vitamina D. Debido a lo anterior, se concluyó que es posible la encapsulación de vitamina D en nanopartículas de sPEES, y estas podrían ser utilizadas, en un futuro, como un posible tratamiento para la osteoporosis.Publicación Acceso abierto Encapsulación del ácido fólico en matriz de alginato de sodio/alcohol polivinílico para su posible integración en productos nutracéuticos(Universidad EIA, 2022) Araque Ruiz, Valentina; González Pérez, Juliana; Echeverri Cuartas, Claudia Elena; Echeverri Cuartas, Claudia ElenaRESUMEN: El interés por la adición de compuestos bioactivos a los productos alimenticios ha aumentado en las últimas décadas, en donde el ácido fólico es uno de los compuestos que más se ha estudiado para esta aplicación. El ácido fólico (AF) es una de las vitaminas más importantes en el cuerpo humano, debido a que juega un papel fundamental en la síntesis normal del ADN, aminoácidos y de nucleoproteínas. Sin embargo, se sabe que cinco factores, tales como los rayos ultravioleta tipo A y B (UVA/UVB), temperaturas superiores a 180 °C, el oxígeno, el pH y su concentración (respecto a exposiciones de radiación), propician su degradación, por lo que es necesario protegerlo por medio de una encapsulación que le permita llegar al sitio de acción para cumplir su función. El alginato de sodio (ALG) es un biopolímero que presenta gran biocompatibilidad; sin embargo, por sí solo presenta propiedades mecánicas débiles que pueden representar una deficiencia en la integración de productos nutracéuticos. Por esta razón, usualmente, se combina con otros polímeros, tales como el alcohol polivinílico (PVA), que ofrecen una mejoría a sus propiedades mecánicas. En esta investigación se encapsuló el ácido fólico en una matriz polimérica de alginato sódico y alcohol polivinílico, que se utilizan comúnmente en nutracéuticos, con el fin de proteger el principio bioactivo de su degradación por los factores físicos mencionado anteriormente. Se usó un método de gelificación iónica y extrusión para la formación de microesferas, en el cual el cloruro de calcio actuó como agente entrecruzante. Las microesferas fueron caracterizadas a nivel morfológico mediante la toma de imágenes en un estereoscopio y microscopia electrónica de barrido (SEM), y a nivel estructural a través de espectroscopia de rayos X por dispersión de energía (EDS) y espectroscopia infrarroja por transformada de Fourier con reflectancia total atenuada (ATR-FTIR). Se elaboró un protocolo para la obtención de microesferas de ALG/PVA, en donde se logró un diámetro promedio de 1,37 mm. Se encapsuló una concentración inicial de 0,5 mg/mL de ácido fólico en la matriz polimérica y se encontró que la morfología y química externa no dependían de la encapsulación. En general las microesferas con y sin principio activo presentaron una morfología esférica y una superficie rugosa. Adicionalmente, para una concentración inicial de 2 mg/mL del principio activo, la eficiencia de encapsulación del ácido fólico y la capacidad de carga de la matriz polimérica fueron de 77 % y 24 %, respectivamente. Se espera, en un futuro, mejorar la solubilización de la matriz polimérica y realizar ensayos de cinética de liberación para corroborar la liberación del principio activo en un medio simulado.Publicación Acceso abierto Esferas basadas en alginato, gelatina y polivinil alcohol con potencial aplicación en el cultivo de condrocitos(Universidad EIA, 2021) Lenis Arias, Karen Gisella; Montoya Góez, Yesid de Jesús; Echeverri Cuartas, Claudia ElenaRESUMEN: La ingeniería de tejido cartilaginoso ha tomado relevancia a través del tiempo, debido a que las enfermedades degenerativas como la artrosis afectan este tejido y están en constante aumento a nivel mundial, lo cual pone en peligro el bienestar de la población. Lo anterior ha motivado a muchos investigadores a buscar soluciones ante esta problemática, por medio del desarrollo de andamios hechos de materiales poliméricos con geometrías esféricas. Sin embargo, aunque estas mezclas de polímeros han resultado viables en el cultivo de condrocitos, aún se encuentra en estudio una composición de biomateriales que sea capaz de soportar las cargas mecánicas del cartílago y ayuden a la regeneración del mismo. Considerando la importancia de esta aplicación, en este trabajo se fabricaron microesferas con diferentes proporciones de polímeros naturales, como alginato (Alg) y gelatina (Gel), que fueron combinados con el polímero sintético, polivinil alcohol (PVA). La elección de estos materiales se realizó debido a las buenas propiedades mecánicas y biológicas para aplicaciones relacionadas con la ingeniería de tejidos; en particular, las propiedades mecánicas se evaluaron mediante un ensayo que permite identificar la resistencia a compresión, siendo uno de los esfuerzos que realiza el cartílago en su funcionamiento cotidiano y al cual está expuesto constantemente el condrocito. Así mismo, con el fin de comparar las esferas experimentales con otros andamios posibles se modelan por medio de CAD y se evalúan mediante un software de análisis de elementos finitos otras geometrías usadas en la ingeniería de tejidos como la cúbica, la cilíndrica y la prismática rectangular, las cuales se usaron para establecer la mejor geometría y método de fabricación mediante un ensayo de esfuerzo a compresión simulado, teniendo en cuenta las propiedades mecánicas del material. Finalmente, se hizo un estudio de mecánica de contacto para establecer el esfuerzo máximo de las esferas fabricadas en el laboratorio, los cuales una vez fueron comparados con los esfuerzos de las simulaciones, esta comparación dio como resultado que las geometría más viables mecánicamente son la prismática rectangular y la esférica, ya que poseen un esfuerzo máximo de compresión más bajo respecto a las otras, sin embargo, no solo se debe tener en cuenta dichas propiedades mecánicas, puesto que se debe garantizar una relación entre la matriz y el condrocito para lograr así una mimetización en el tejido cartilaginoso, es por esto que siendo el condrocito una celular de morfología esférica se plantea que el mejor andamio son las esferas experimentales más específicamente las del tratamiento N° 8 las cuales se fabricaron con una proporción de 10 % de Gel sobre la mezcla de 80 % Alg y 10 % PVA.Publicación Acceso abierto Esferas de alginato de sodio y alcohol polivinílico con potenciales aplicaciones en ingeniería de tejidos(Universidad EIA, 2011) Arias Barreneche, Alejandra; Vanegas Patiño, Adriana; Echeverri Cuartas, Claudia Elena; Echeverri Cuartas, Claudia ElenaRESUMEN: En este proyecto se buscó obtener un material con potenciales aplicaciones en ingeniería de tejidos, a partir de la mezcla de dos polímeros biocompatibles, Alginato de Sodio (SA) y Alcohol Polivinílico (PVA) usados para este tipo de aplicaciones. En estudios realizados previamente en el Grupo de Investigación de Ingeniería Biomédica EIA-CES (GIBEC), se habían estudiado el alginato de sodio de forma esférica como material de encapsulación de condrocitos y el alcohol polivinílico modificándolo con diversos agentes porogénicos para hacerlo apto para matriz de cultivo. La mezcla de polímeros es un método usado para mejorar las propiedades de ambos materiales como una nueva propuesta para futuros estudios en la línea Biotecnológica en Salud y Biomateriales. Se construyeron esferas de PVASA a 4 diferentes concentraciones y se sometieron a 3 y 6 ciclos de congelación/descongelación (C/D) para entrecruzar el material y observar cual estructura tridimensional puede ser una mejor opción para aplicaciones en ingeniería de tejidos donde se usa como estrategia para, por ejemplo, hacer el papel de matriz en implantación autóloga de condrocitos en reparación de lesiones, para la liberación de medicamentos, entre muchas otras aplicaciones.Publicación Acceso abierto Estabilidad de nanopartículas de carboximetil quitosano con potencial aplicación en la liberación de principios activos(Universidad EIA, 2022) Zapata Gonzalez, Tito Alejandro; Agudelo Pérez, Natalia Andrea; Echeverri Cuartas, Claudia ElenaRESUMEN: El carboximetil quitosano (CMQ), es un derivado del quitosano el cual es biocompatible, no tóxico y biodegradable, además, es soluble a pH neutro y en soluciones básicas, lo que permite el uso del polímero en diversas aplicaciones como transporte de principios activos, terapia génica e ingeniería de tejidos (Moaddab et al., 2018). Las características propias del CMQ están fuertemente relacionadas con las condiciones intrínsecas del quitosano (como el %DD y el peso molecular). La estructura química del CMQ posee grupos carboxilato, los cuales están cargados negativamente (-COO-); estos grupos pueden llevar a cabo interacciones iónicas con iones de carga positiva, como es el caso de los iones de calcio (Ca2+), provenientes de la sal de cloruro de calcio (CaCl2). Las interacciones entre las cadenas del polímero y estos iones con carga positiva permiten la formación de agregados de cadenas, de tal forma que es posible hablar de la formación de partículas a través de un proceso de compactación de dichas cadenas poliméricas. Con el fin de obtener partículas con tamaños menores a 200 nm, que puedan ser usadas a futuro como sistemas de liberación de principios activos, en este trabajo se llevó a cabo la formación de partículas de CMQ evaluando el efecto del peso molecular del polímero sobre el tamaño de las partículas. De manera análoga se evaluó el efecto de la concentración de CaCl2 sobre el tamaño y el índice de polidispersidad de las partículas obtenidas. Finalmente, se evaluó su estabilidad bajo condiciones fisiológicas simuladas para determinar su viabilidad como sistema de nanotransporte de principios activos dentro del cuerpo humano.Publicación Acceso abierto Estabilidad de nanopartículas de quitosano y alginato para aplicaciones biomédicas(Universidad EIA, 2021) Solarte Silva, Yurani Katherine; Echeverri Cuartas, Claudia Elena; Echeverri Cuartas, Claudia ElenaRESUMEN: En la investigación biomédica, las nanopartículas han sido exploradas ampliamente en diversos campos, sin embargo, una de sus aplicaciones más prometedoras es la administración dirigida de fármacos anticáncer. Por esto, es importante resolver los retos actualmente existentes en el diseño de sistemas nanoparticulados para este tipo de aplicación, tales como: tener un tamaño que permita la circulación e internalización celular, presentar una forma que favorezca el cruce de varias barreras biológicas y poseer una carga superficial que mejore el tiempo de circulación, la adhesión e ingreso a las membranas celulares. En cuanto a biomateriales para este tipo de aplicaciones biomédicas, se destacan las nanopartículas poliméricas, debido a su excelente biocompatibilidad y biodegradabilidad, principalmente, aquellas obtenidas a partir de polímeros naturales como quitosano y alginato. Por lo anterior, el objetivo de este trabajo de grado era obtener nanopartículas de quitosano y alginato con un tamaño inferior a 200 nm y estables en condiciones fisiológicas simuladas (con un pH de 7,4, una temperatura de 37 °C y una fuerza iónica de163 mM). Para la ejecución de este proyecto, se prepararon nanopartículas a partir de entrecruzamiento iónico, se evaluó el efecto de la concentración de quitosano y alginato sobre la formación de las nanopartículas, y se evaluó el efecto de la relación molar sobre el tamaño de partícula y la carga superficial, mediante caracterizaciones por dispersión de luz (DLS) y potencial ζ. Por último, se determinó el efecto de la temperatura y el pH fisiológico sobre la estabilidad coloidal de las nanopartículas obtenidas. Los resultados mostraron la eficacia del entrecruzamiento iónico para la obtención de nanopartículas de quitosano-alginato con un tamaño de 180,1 nmy posible aplicación biomédica, al emplear concentraciones de quitosano y alginato de 0,1 mg/mL y 0,3 mg/mL, respectivamente, y una relación molar alginato:glucosamina de 0,00048:1. Sin embargo, las nanopartículas obtenidas a partir de estos dos polímeros, presentaron problemas de agregación al ser evaluadas en condiciones fisiológicas simuladas, aunque con los pesos moleculares evaluados no se identificaron procesos de precipitación de las nanopartículas, lo cual podría explorarse a futuro para la administración de agentes quimioterapéuticos por vía intravenosa.Publicación Acceso abierto Estabilidad de una emulsión con aceite esencial de limoneno elaborada en la empresa Sosteli Group S.A(Universidad EIA, 2021) Botero Yepes, Juan Carlos; Londoño Londoño, Julián; Echeverri Cuartas, Claudia ElenaRESUMEN: Una emulsión es la mezcla entre dos líquidos inmiscibles, aplicada en diferentes áreas como cosméticos, asfalto, alimentos, fármacos y entre otras. Ésta es inestable por naturaleza, sin embargo, existen métodos de elaboración con equipos y materiales que contribuyen a proporcionar mayor estabilidad en el tiempo según su uso, condiciones ambientales e interfaz con el envase. Es por esto, por lo que para toda emulsión se debe realizar un análisis de estabilidad a diversos factores que permitan determinar, o aproximar, su tiempo de vida útil a las condiciones estudiadas. En el presente trabajo de grado, se evaluó una emulsión de aceite esencial de limoneno, realizada en Sosteli Group S.A, para determinar su estabilidad teniendo en cuenta tres variables: temperatura, luz y material de envase. Se realizaron análisis de carga eléctrica entre partículas, viscosidad, tamaño de micelas y densidad en el tiempo correspondiente al día cero, quince y cuarenta para obtener su potencial zeta y velocidad de separación de fases mediante la ecuación de Navier Stokes; así, se obtuvieron resultados favorables para las emulsiones envasadas con tapa tipo dosificador, seguidas del tipo gotero. Para las muestras almacenadas a una temperatura baja (no menor a 7 °C) su estabilidad es entre tres y cuatro meses; las almacenadas en un lugar obscuro a temperatura ambiente (22 °C) de aproximadamente dos meses, y para las que estuvieron guardadas en cabina con luz blanca, casi un mes.Publicación Acceso abierto Estabilización de nanobarras de oro obtenidas por síntesis verde mediante el uso de PEG(Universidad EIA, 2024) Rondón Arvelo, Carlos Daniel; Echeverri Cuartas, Claudia Elena; Echeverri Cuartas, Claudia Elena; Agudelo Pérez, Natalia AndreaRESUMEN: las nanobarras de oro (AuNBs) son un tipo de nanoestructuras que se caracterizan por sus propiedades ópticas y, es por esto, que en los últimos años han surgido como una posible alternativa para el desarrollo de tratamientos para el cáncer, lo cual podría ser un alivio para muchos pacientes, dados los múltiples efectos secundarios de tratamientos como quimioterapia y radioterapia. Sin embargo, una de las limitaciones de las AuNBs es su inestabilidad coloidal, lo que dificulta su uso en humanos, por esto se ha propuesto el uso de polietilenglicol (PEG) y evaluar el efecto que tiene sobre la estabilidad de estas. Para esto se llevó a cabo la síntesis verde de las nanobarras usando extracto de mora, las cuales fueron caracterizadas por medio de espectrofotometría de UV-Vis y así se determinó la longitud de onda en que se encontraba el plasmón de resonancia superficial, lo cual también es indicativo de la forma de la nanopartícula. Posteriormente, se purificaron las AuNBs obtenidas para eliminar el CTAB remanente y facilitar el recubrimiento con PEG tiolado (PEG-SH). El PEG-SH es un polímero que se caracteriza por la reactividad del grupo tiol, que facilita su enlazamiento covalente a las nanopartículas y, además, por conferir estabilidad estérica a las nanopartículas. En particular, para este proyecto, se usó un método de recubrimiento de AuNBs reportado previamente en la literatura, y se identificó que no alteró la morfología de la barra, ya que se conservaron las longitudes de onda características de las nanobarras de oro (837 nm y 829 nm), que fueron determinadas por espectrofotometría UV-vis. Finalmente, se evaluó la estabilidad de estas nanopartículas, usando muestras de AuNBs modificadas y no modificadas con PEG-SH en PBS a 37 °C, para simular condiciones fisiológicas. Se encontró que las AuNBs modificadas hubo un menor desplazamiento en el plasmón de resonancia longitudinal en comparación a las no modificadas, en un periodo de 24 horas. Esto comprobó que el uso de PEG para modificar las AuNBs, aumenta su estabilidad coloidal y, por ende, facilitaría su uso en entornos fisiológicos.Publicación Acceso abierto Estudio experimental sobre los posibles efectos citotóxicos y genotóxicos in vitro del hidróxido de calcio(Universidad EIA, 2005) Velásquez Puerta, Diego Alejandro; Echeverri Cuartas, Claudia Elena; López Rojas, Luis ErnestoEl hidróxido de calcio es una material que ha sido empleado en la endodoncia por tener una excelente actividad antimicrobiana y un efecto curativo de la pulpa. Por esta razón existen diferentes presentaciones de este material de acuerdo a la aplicación específica y al efecto deseado. Para la validación de cualquier material se deben desarrollar pruebas in vitro, cuyo resultado demuestre de una forma aproximada los posibles efectos del material. Los ensayos cometa y con MTT son pruebas que permiten determinar de manera precisa y económica la genotoxicidad y la citotoxicidad respectivamente, valiéndose de cultivos celulares expuestos a un agente a evaluar. De manera más específica el ensayo cometa identifica los daños de la cadena sencilla y doble del DNA, mientras que el ensayo con MTT evalúa el metabolismo y la actividad enzimática de la célula viva. En el presente trabajo se evaluó el potencial efecto citotóxico y genotóxico del hidróxido de calcio producido por la compañía New Stetic, comparado con los producidos por las empresas Kerr (Life®) y Dentsply (Dycal®), las cuales son marcas ampliamente reconocidas y estudiadas en el campo endodóntico. Para lo cual se estandarizaron los protocolos de los ensayos con MTT y Cometa. Se realizó una revisión sobre las metodologías utilizadas para la evaluación de la biocompatibilidad de materiales utilizados en odontología, con énfasis en el hidróxido de calcio, adoptando las sugerencias de la literatura internacional, con el fin de cumplir los objetivos propuestos. Se encontró que el hidróxido de calcio producido por New Stetic, presenta un menor efecto citotóxico y un efecto genotóxico mayor que las demás marcas evaluadas, pero no lo suficiente como para considerar que este material es altamente genotóxico.Publicación Acceso abierto Evaluacion de Nanoparticulas Basadas en Complejos de Coordinacion de Quitosano-Fe3+ en Esferiodes Celulares(Universidad EIA, 2022) González Vélez, Sara; Franco Rico, María Isabel; Osorio Osorno, Yuliana Andrea; Echeverri Cuartas, Claudia Elena; Toro, Lenka; Echeverri Cuartas, Claudia ElenaRESUMEN: El cáncer es una enfermedad reconocida como una de las principales causas de muerte en el mundo, y su tratamiento representa uno de los principales desafíos para la medicina contemporánea. En los últimos años se ha incrementado la implementación de la nanotecnología como una posible terapia, ya que aquellas existentes son generalizadas y se reducen, en su mayoría, a cirugías, radioterapia o terapias sistémicas como la quimioterapia e inmunoterapia. En muchos estudios se llevan a cabo ensayos in vitro para evaluar la efectividad de nuevos medicamentos o terapias dirigidas diseñadas para la eliminación de las células cancerígenas, lo cual se realiza, en su mayoría, en cultivos celulares en 2D. Este tipo de cultivos no simulan las condiciones reales, ya que los tumores son tridimensionales, es por esto que, para solventar esta limitación, se han empezado a usar los cultivos en 3D como los esferoides, donde se aprovecha la tendencia natural de agregación de las células entre sí para formar masas, como sucedería in vivo, y se convierten en un mejor modelo de prueba para ensayos terapéuticos. Por lo anterior, en este trabajo, se propuso establecer un modelo in vitro de evaluación del efecto citotóxico generado por nanopartículas basadas en complejos de coordinación de quitosano-Fe3+, a partir de esferoides de una línea celular de fibroblastos NIH3T3 y la medición de la citotoxicidad generada. Para obtener las nanopartículas fue necesario realizar titulaciones de hierro y tripolifosfato de sodio, con el propósito de encontrar la cantidad idónea a agregar a la solución de quitosano para así garantizar la obtención de nanopartículas con tamaños inferiores a 200 nm y con un índice de polidispersidad menor a 0,3. Luego, se estandarizó la formación de los esferoides celulares con el método “hanging drops” o gotas colgantes, donde se determinó que 3.000 células cada 27µL era la concentración ideal por gota para formar esferoides de aproximadamente 200 µm de diámetro. Las nanopartículas se diluyeron en medio de cultivo suplementado con suero fetal bovino (FBS) y sin suplementar, a diferentes concentraciones, y se pusieron en los pozos con los esferoides durante 24 horas. Se encontró que a partir de concentraciones del 50 % de nanopartículas, los esferoides empiezan a perder actividad metabólica y reducir su diámetro. También se probaron las diferentes concentraciones de nanopartículas en cultivos 2D, para comparar los resultados con aquellos obtenidos con los esferoides. De lo anterior se encontró que los ensayos en cultivos 2D tienden a ser muy variables, y se alejan más de lo que sucedería realmente en condiciones biológicas normales, la cual se simula de una mejor manera con los esferoides.Ítem Acceso abierto Evaluación de un extracto de Psidium araca como agente reductor en la síntesis de nanobarras de oro con potencial uso en aplicaciones en salud(Universidad EIA, 2023) Patiño González, María Camila; Agudelo Pérez, Natalia Andrea; Echeverri Cuartas, Claudia ElenaRESUMEN: las nanobarras de oro (AuNR) de caracterizan por ser nanomateriales anisotrópicos con propiedades ópticas que interaccionan en el infrarrojo cercano NIR, lo que las hace muy interesantes para el área de la salud. Estas partículas se sintetizan a partir de materiales como el ácido cloraúrico (HAuCl4), nitrato de plata (AgNO3), bromuro de hexadeciltrimetilamonio (CTAB), ácido ascórbico (AA) y borohidruro de sodio (NaBH4). Existen dos métodos esenciales para sintetizar nanobarras de oro: mediado por semilla y sin semilla. El primero se caracteriza por ser un método donde se preparan dos soluciones para la formación de las AuNR. No obstante, los autores demostraron que este método presenta ciertas desventajas en la reproducibilidad de las nanopartículas, por lo que optimizaron en un solo paso, llevándolo a un método sin semilla, el cual ha demostrado ser más eficiente frente a la síntesis de AuNR. Una de las características de este método, es que se ha utilizado para la biosíntesis de AuNR, reemplazando el AA de la síntesis tradicional por polifenoles con buenas propiedades antioxidantes como ácido gálico y resveratrol, como compuestos puros. Sin embargo, aún no se ha reportado el uso de extractos acuosos a partir de frutas como agentes reductores en la biosíntesis de AuNR, ya que no se ha planteado una metodología que caracterice las propiedades de los extractos. Teniendo en cuenta lo anterior, para esta investigación se desarrolló una metodología de biosíntesis de AuNR con un extracto acuoso de Psidium araca (guayaba agria). Primero, en la etapa 1 se realizó un estudio de la capacidad antioxidante en tiempo de cada parte de la fruta (pulpa y cáscara), utilizando 4 técnicas colorimétricas: cantidad de fenoles totales, ABTS, FRAP y DDP. Posteriormente, en la etapa 2 se utilizó el extracto acuoso seleccionado y se llevaron a cabo dos diseños de superficie de respuesta, para encontrar la ecuación del modelo que indicaran los parámetros óptimos para obtener una AuNR con una banda de plasmón superficial en 808 nm, para una posible aplicación en salud. Por último, en la etapa 3 se evaluó la viabilidad celular de las AuNR por MTT con células NIH3T3. Primero, en la etapa 1, se analizaron los resultados de los experimentos de la capacidad antioxidante en Minitab® por medio de diseño factorial de múltiples niveles, y, se encontró que la cáscara presentó la mayor capacidad antioxidante durante el periodo del ensayo. Posteriormente, se llevó a cabo la etapa 2 utilizando el extracto acuoso de cáscara de guayaba agria, a partir de los diseños experimentales planteados. Para obtener una AuNR con una banda longitudinal en 808 nm, se escogieron los siguientes factores: tiempo = 48 h, HAuCl4 = 40 mM, AgNO3 = 30 mM, extracto = 30 mg/mL y NaBH4 = 10 mM. Por último, en la etapa 3, se determinó que las células no presentaron un efecto citotóxico en una concentración de AuNR 0,002 μL/mL medio. En conclusión, en este trabajo de investigación desarrolló una metodología para la biosíntesis de AuNR utilizando un extracto acuoso de Psidium araca como agente reductor, para una posible aplicación en salud.