• Español
  • English
  • Iniciar sesión
    o
    ¿Nuevo Usuario? Registrarse¿Has olvidado tu contraseña?
Logotipo del repositorioREPOSITORIO INSTITUCIONAL
  • Inicio
  • Comunidades
  • Navegar
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Castaño Portilla, Carolina"

Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Diseño e implementación de un sistema de telemedicina intrainstitucional para atención del paciente dermatológico
    (Universidad EIA, 2003) Betancur Vargas, Ana Maria; Castaño Portilla, Carolina; Moreno Moreno, Fernando
    Con la Telemedicina es posible romper barreras geográficas y temporales, llevando información en salud a diferentes lugares. Gracias al advenimiento de las tecnologías en la información, las posibilidades de la telemedicina han ido aumentando de forma exponencial. Sin embargo a pesar de los benéficos que la telemedicina podría tener en nuestro país esta aún no se plica, desaprovechando la infraestructura existente que la haría posible. Por todo esto en este proyecto se utilizan los recursos disponibles, como el Internet, el PHP, software de libre distribución, el SQL, software orientado a la administración de base de datos y una cámara fotográfica Sony, para desarrollar una aplicación y dar las bases para adecuar una red de telemedicina a nivel intrahospitalario e interhospitalario que permita asesoría a distancia en las consultas dermatológicas, como un primer acercamiento a toda la gama de opciones que ofrece la telemedicina. Este a través de pruebas y estudios en diferentes áreas demostró ser fiable, escalable, con bajos requerimientos tecnológicos y en capacitación, y en último termino viable económicamente para ser implantado en el departamento de Antioquia.
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Modelo computacional para la identificación de firmas de expresión génica asociadas con la respuesta a inhibidores de puntos de control en cáncer
    (Universidad EIA, 2024) Castillo Uparela, Daniel Eduardo; Castaño Portilla, Carolina
    RESUMEN: El cáncer es una enfermedad caracterizada por la pérdida de control en la proliferación celular debido a la rápida expansión y transformación de células normales en células cancerosas, lo que constituye un desafío científico crucial para el desarrollo de tratamientos menos invasivos y más efectivos. Según la Agencia Internacional para la Investigación del Cáncer, en el año 2020 la enfermedad fue responsable de casi 10 millones de defunciones a nivel mundial, representando aproximadamente una de cada seis muertes registradas. Ante el desalentador escenario del cáncer, las terapias dirigidas ofrecen una alternativa con menos efectos secundarios en comparación con tratamientos tradicionales como la quimioterapia, posicionando a la inmunoterapia como una de las opciones más prometedoras en los últimos años. A diferencia de los métodos invasivos tradicionales que atacan indiscriminadamente las células tumorales, la inmunoterapia estimula el sistema inmunitario para que sea este el encargado de destruir el tumor, demostrando ser una estrategia innovadora y menos agresiva. Esta metodología terapéutica no solo implica menos efectos secundarios, sino que también representa una oportunidad significativa para combatir la proliferación de la enfermedad a lo largo del organismo. Este trabajo propone un modelo computacional basado en inteligencia artificial y técnicas bioinformáticas para identificar firmas de expresión génica asociadas con la respuesta a la inmunoterapia basada en inhibidores de puntos de control inmunitario anti PD1/PD-L1 en cáncer. Se utilizó un enfoque metodológico robusto, que incluyó la corrección del efecto batch inducido por las máquinas de secuenciación utilizando la librería Inmoose, así como la normalización de los datos de expresión génica mediante TPM. Adicionalmente, se aplicaron técnicas de reducción dimensional como el Análisis de Componentes Principales (PCA) para la visualización bidimensional y tridimensional de los datos. El balanceo de clases se realizó empleando técnicas como SMOTE, NearMiss y SMOTETomek integradas en Scikit-learn, mejorando significativamente el rendimiento del modelo. La optimización de hiperparámetros se llevó a cabo con la biblioteca Optuna, y la identificación de firmas genéticas se realizó utilizando Mlxtend. Estos métodos permitieron la creación de un repositorio digital de datos de expresión génica de pacientes con tumores sólidos y la implementación de un modelo computacional fundamentado en algoritmos de Machine Learning para predecir la respuesta a la inmunoterapia. Los resultados obtenidos demuestran que la firma de 14 genes seleccionada es capaz de clasificar con precisión la respuesta al tratamiento en pacientes con cáncer, mostrando un notable desempeño y potencial para futuras investigaciones. Este modelo tiene el potencial de convertirse en una herramienta valiosa para guiar investigaciones adicionales y apoyar decisiones médicas en el contexto de la inmunoterapia como terapia dirigida.
Universidad EIA Biblioteca CROAI

Sede Las Palmas:

Calle 23 AA Sur Nro. 5-200, Kilómetro 2+200 Variante al Aeropuerto José María Córdova, Envigado-Antioquia.
Código Postal: 055428 Tel: (604) 354 90 90
Tel-2: 3187754729 Fax: (574) 386 11 60

Cómo llegar
Sistema DSPACE 7 - Metabiblioteca | logo