Maestría en Ingeniería Biomédica
URI permanente para esta colección
Navegar
Examinando Maestría en Ingeniería Biomédica por Autor "Echeverri Cuartas, Claudia Elena"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Andamios para cultivo de células productoras de insulina.(Universidad EIA, 2021) Sánchez Cardona, Yesenia; Londoño López, Martha Elena; Echeverri Cuartas, Claudia Elena; Rocío Moreno, NataliaLa diabetes se ha convertido en un problema a nivel mundial, no solo por su mortalidad, incidencia y prevalencia. sino por las complicaciones de salud, que recaen sobre las personas que la padecen, afectando su calidad de vida, empeorando su condición y aumentando los riesgos de discapacidad. Actualmente existen 463 millones de diabéticos adultos en el mundo y 1,1 millones de niños y adolescentes menores de 20 años. Se espera que la cifra de adultos diabéticos aumente a 700 millones para 2045 (International Diabetes Federation (FID), 2019). Se han identificado varios tipos de diabetes, siendo las más comunes y prevalentes la diabetes mellitus tipo 1 y tipo 2. En estas se ven afectadas las células β disminuyendo la masa celular en un 70-100 % en la primera y de un 10-64 % en la segunda. En la actualidad se han utilizado varios materiales de origen naturales o sintéticos para elaboración de andamios con el fin de aumentar la replicación de estas células preexistentes o mejorar su función in vivo e in vitro (Saik-kia K. Goh et al., 2013). Sin embargo, la mayoría de estos andamios no imitan la complejidad de la composición y estructura de la MEC pancreática, no favorecen las adhesiones focales y las interacciones célula-célula o célula -material. Por lo cual aún sigue siendo un problema complejo mantener estas células en cultivo debido a sus complejos mecanismos de regulación, su dependencia de oxígeno, la arquitectura de su entorno nativo, el trasporte de nutrientes y la baja tasa de proliferación in vivo e in vitro (Cheng et al., 2011). Se prepararon andamios en diferentes proporciones en peso de quitosano (Q), gelatina (Ge) y alcohol polivinílico (PVA) mediante ciclos de congelación-descongelación y liofilización, para su uso en el cultivo de células β. Una vez obtenida los andamios se implementaron técnicas de caracterización como FTIR, SEM, porosidad, degradación y velocidad de hinchamiento. La resistencia a la compresión de los andamios de mezclas ternarias (Q/Ge/PVA) mejoró en comparación con los andamios de mezcla binaria (Ge / PVA); se observó un aumento en el módulo de Young y en la resistencia a la compresión con el aumento de la proporción en peso de la gelatina. La resistencia a la compresión más alta alcanzó los 101,6 Pa. Todas las muestras tuvieron una buena estructura de red tridimensional. El porcentaje de porosidad de las mezclas ternarias fue superior al 80 %, mientras que en los controles la porosidad varió entre 55,6 ± 9,6 – 90,6 ± 1,5 %. Las microestructuras están interconectadas con micro y macroporos que se distribuyen uniformemente en la superficie y la distribución del tamaño de diámetros de poros en las mezclas ternarias fue (0,6 - 265 μm) y en los controles (0,8 -248 μm). Se presentaron diferencias significativas (p<0,05) en las mezclas ternarias comparadas con los controles en cuanto a la distribución de diámetros de poros. Los andamios de mezclas ternarias presentaron tasas controlables de pérdida de masa en comparación con los andamios de mezclas binarias. La capacidad de hinchamiento de las muestras aumentó con el aumento de la proporción en peso de quitosano. Los andamios de quitosano, gelatina, PVA mostraron una leve citotoxicidad para las células BRIN-BD11. Por lo tanto, estos andamios muestran un potencial prometedor para mejorar la viabilidad de las células β in vitroÍtem Acceso abierto Evaluación de un extracto de Psidium araca como agente reductor en la síntesis de nanobarras de oro con potencial uso en aplicaciones en salud(Universidad EIA, 2023) Patiño González, María Camila; Agudelo Pérez, Natalia Andrea; Echeverri Cuartas, Claudia ElenaRESUMEN: las nanobarras de oro (AuNR) de caracterizan por ser nanomateriales anisotrópicos con propiedades ópticas que interaccionan en el infrarrojo cercano NIR, lo que las hace muy interesantes para el área de la salud. Estas partículas se sintetizan a partir de materiales como el ácido cloraúrico (HAuCl4), nitrato de plata (AgNO3), bromuro de hexadeciltrimetilamonio (CTAB), ácido ascórbico (AA) y borohidruro de sodio (NaBH4). Existen dos métodos esenciales para sintetizar nanobarras de oro: mediado por semilla y sin semilla. El primero se caracteriza por ser un método donde se preparan dos soluciones para la formación de las AuNR. No obstante, los autores demostraron que este método presenta ciertas desventajas en la reproducibilidad de las nanopartículas, por lo que optimizaron en un solo paso, llevándolo a un método sin semilla, el cual ha demostrado ser más eficiente frente a la síntesis de AuNR. Una de las características de este método, es que se ha utilizado para la biosíntesis de AuNR, reemplazando el AA de la síntesis tradicional por polifenoles con buenas propiedades antioxidantes como ácido gálico y resveratrol, como compuestos puros. Sin embargo, aún no se ha reportado el uso de extractos acuosos a partir de frutas como agentes reductores en la biosíntesis de AuNR, ya que no se ha planteado una metodología que caracterice las propiedades de los extractos. Teniendo en cuenta lo anterior, para esta investigación se desarrolló una metodología de biosíntesis de AuNR con un extracto acuoso de Psidium araca (guayaba agria). Primero, en la etapa 1 se realizó un estudio de la capacidad antioxidante en tiempo de cada parte de la fruta (pulpa y cáscara), utilizando 4 técnicas colorimétricas: cantidad de fenoles totales, ABTS, FRAP y DDP. Posteriormente, en la etapa 2 se utilizó el extracto acuoso seleccionado y se llevaron a cabo dos diseños de superficie de respuesta, para encontrar la ecuación del modelo que indicaran los parámetros óptimos para obtener una AuNR con una banda de plasmón superficial en 808 nm, para una posible aplicación en salud. Por último, en la etapa 3 se evaluó la viabilidad celular de las AuNR por MTT con células NIH3T3. Primero, en la etapa 1, se analizaron los resultados de los experimentos de la capacidad antioxidante en Minitab® por medio de diseño factorial de múltiples niveles, y, se encontró que la cáscara presentó la mayor capacidad antioxidante durante el periodo del ensayo. Posteriormente, se llevó a cabo la etapa 2 utilizando el extracto acuoso de cáscara de guayaba agria, a partir de los diseños experimentales planteados. Para obtener una AuNR con una banda longitudinal en 808 nm, se escogieron los siguientes factores: tiempo = 48 h, HAuCl4 = 40 mM, AgNO3 = 30 mM, extracto = 30 mg/mL y NaBH4 = 10 mM. Por último, en la etapa 3, se determinó que las células no presentaron un efecto citotóxico en una concentración de AuNR 0,002 μL/mL medio. En conclusión, en este trabajo de investigación desarrolló una metodología para la biosíntesis de AuNR utilizando un extracto acuoso de Psidium araca como agente reductor, para una posible aplicación en salud.