HERRAMIENTA TECNOLÓGICA PARA LA PRÁCTICA DE BOCCIA

MANUELA MUÑOZ ROMERO
Tesina para optar al título de Magíster en ingeniería biomédica

DIRECTORA
MARÍA MANUELA SÁNCHEZ OCAMPO
MSc EN INGENIERÍA BIOMÉDICA

UNIVERSIDAD EIA
MAESTRÍA EN INGENIERÍA BIOMÉDICA
ENVIGADO
2022

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
El presente trabajo de grado está dedicado a mis padres, Martha y Enrique, quienes siempre me han brindado su apoyo y amor incondicional.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
AGRADECIMIENTOS

Los agradecimientos de este trabajo de grado van principalmente para Manuela Sánchez Ocampo y Juliana Velásquez Gómez quienes me acompañaron, guían y compartieron su conocimiento conmigo durante todo el proceso. También, para Diego Alejandro Calderón López, quien me brindó su apoyo en todo momento, especialmente en los difíciles. Finalmente, a todas las personas especiales que me acompañaron en esta etapa, aportando a mi formación tanto profesional y como ser humano.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

<table>
<thead>
<tr>
<th>Sección</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7.4</td>
<td>Integración de las características biomecánicas a la plataforma de realidad virtual</td>
<td>45</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Pruebas de funcionamiento</td>
<td>46</td>
</tr>
<tr>
<td>2.7.6</td>
<td>Pruebas de lanzamientos</td>
<td>46</td>
</tr>
<tr>
<td>2.8</td>
<td>Objetivo 3: correlacionar el gesto deportivo del análisis biomecánico realizado sin la herramienta de realidad virtual y con esta</td>
<td>46</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Procedimiento preliminar para realizar las pruebas de los lanzamientos con la herramienta de realidad virtual y sin esta</td>
<td>46</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Registro de la prueba</td>
<td>47</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Análisis biomecánico</td>
<td>48</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Análisis de las pruebas de usabilidad y retroalimentación de la herramienta</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Resultados objetivo 1</td>
<td>49</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Procedimiento preliminar para realizar el análisis biomecánico del gesto deportivo de Boccia</td>
<td>49</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Validación del procedimiento preliminar</td>
<td>53</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Registro de la prueba</td>
<td>56</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Análisis biomecánico</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>Resultados objetivo 2</td>
<td>74</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Definición de requerimientos</td>
<td>74</td>
</tr>
</tbody>
</table>
3.2.2 Búsqueda y creación de modelos tridimensionales y asignación de características físicas ... 85

3.2.3 Generación de los recursos de la interfaz de usuario 93

3.2.4 Integración de las características biomecánicas a la plataforma de realidad virtual 112

3.2.5 Pruebas de funcionamiento .. 113

3.2.6 Pruebas de lanzamientos .. 119

3.3 Resultados objetivo 3 .. 121

3.3.1 Procedimiento para realizar las pruebas de los lanzamientos con la herramienta de realidad virtual y sin esta ... 121

3.3.2 Registro de la prueba ... 122

3.3.3 Análisis biomecánico ... 124

3.3.4 Análisis de la prueba de usabilidad .. 139

4. CONCLUSIONES Y CONSIDERACIONES FINALES 142

REFERENCIAS ... 144

ANEXOS .. 149

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
LISTA DE TABLAS

Tabla 1. Categorías de Boccia ... 29
Tabla 2. Divisiones de Boccia ... 30
Tabla 3. Limites articulares ... 41
Tabla 4. Convencion de ángulos de Vicon (Vicon Motion Systems Ltd, Reino Unido). 41
Tabla 5. Distancias de lanzamiento y tipos de bola 50
Tabla 6. Medidas participante 01 .. 57
Tabla 7. Medidas participante 02 .. 58
Tabla 8. Medidas participante 03 .. 59
Tabla 9. Medidas participante 04 .. 59
Tabla 10. Correlación de ángulos de hombro a 2 metros del deportista 01 68
Tabla 11. Correlación de ángulos de hombro a 5 metros del deportista 01 68
Tabla 12. Correlación de ángulos sagitales de codo a 2 metros del deportista 01 69
Tabla 13. Correlación de ángulos sagitales de codo a 5 metros del deportista 01 69
Tabla 14. Correlación de ángulos de muñeca a 2 metros del deportista 01 70
Tabla 15. Correlación de ángulos de muñeca a 5 metros del deportista 01 70
Tabla 16. Correlaciones de los ángulos del hombro para el deportista 02 71

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Tabla 35. Prueba de Wilcoxon para codo a 2 metros del deportista 03	31
Tabla 36. Prueba de Wilcoxon para muñeca a 2 metros del deportista 03	31
Tabla 37. Análisis prueba de Wilcoxon para el deportista 03 a 2 metros	31
Tabla 38. Prueba de Wilcoxon para hombro a 5 metros del deportista 03	32
Tabla 39. Prueba de Wilcoxon para codo a 5 metros del deportista 03	33
Tabla 40. Prueba de Wilcoxon para muñeca a 5 metros del deportista 03	33
Tabla 41. Análisis prueba de Wilcoxon para el deportista 03 a 5 metros	33
Tabla 42. Prueba de Wilcoxon para hombro a 2 metros del deportista 04	34
Tabla 43. Prueba de Wilcoxon para codo a 2 metros del deportista 04	35
Tabla 44. Prueba de Wilcoxon para muñeca a 2 metros del deportista 04	35
Tabla 45. Análisis prueba de Wilcoxon para el deportista 04 a 2 metros	35
Tabla 46. Prueba de Wilcoxon para hombro a 5 metros del deportista 04	36
Tabla 47. Prueba de Wilcoxon para codo a 5 metros del deportista 04	37
Tabla 48. Prueba de Wilcoxon para muñeca a 5 metros del deportista 04	37
Tabla 49. Análisis prueba de Wilcoxon para el deportista 04 a 5 metros	37
Tabla 50. Prueba de usabilidad	39
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
RESUMEN

Boccia es un deporte paralímpico practicado por personas con parálisis cerebral o distrofias musculares severas, es practicado a nivel internacional y requiere un alto grado de precisión y estrategia contando con la necesidad de un entrenamiento constante. Debido a diversos problemas demográficos y económicos, es común que los deportistas no puedan asistir a las prácticas de *Boccia* con la frecuencia necesaria. De esta manera, se desarrolló una herramienta en realidad virtual que permita la práctica del deporte de *Boccia*, desde casa sin la necesidad de un gran escenario deportivo basada en el análisis biomecánico de 4 deportistas de *Boccia*. Para esto, se realizó un análisis biomecánico del gesto deportivo de *Boccia*, y se definieron los requerimientos esenciales para la implementación de la herramienta. Posteriormente, se realizó el diseño del espacio tridimensional, la implementación de las características del deporte, teniendo en cuenta los requerimientos definidos y se realizó la integración de la interfaz de realidad virtual Meta Quest 2, con la cual se puede interactuar con la herramienta. Por último, se realizaron los análisis biomecánicos utilizando la herramienta y sin esta para verificar la similitud entre el ambiente real y la herramienta de realidad virtual.

La herramienta desarrollada permite que los deportistas de *Boccia*, puedan practicar el deporte desde sus hogares, fortaleciendo sus habilidades de estrategia, precisión, fuerza y coordinación de manera similar a la realidad. Por lo tanto, se eliminan las limitaciones para la práctica del deporte en casos como, impedimentos para el desplazamiento al sitio de práctica, mal clima o si no cuentan con un espacio adecuado para la práctica de éste en sus casas, todo esto, bajo una experiencia inmersiva interactiva que además, los va a motivar a continuar con la práctica constante del deporte.

Palabras clave: Boccia, realidad virtual, análisis biomecánicos, deportes, inclusión.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
ABSTRACT

Boccia es un deporte paralímpico practicado por personas con parálisis cerebral o disfunciones musculares severas, es internacional y requiere un alto grado de precisión y estrategia con la necesidad de entrenamiento constante. Debido a varios problemas demográficos y económicos, es común que los atletas no puedan asistir a las prácticas de Boccia con la frecuencia necesaria. Por lo tanto, se desarrolló un herramienta virtual de realidad virtual para permitir la práctica del deporte de Boccia, en el hogar sin la necesidad de un escenario deportivo grande basado en el análisis biomecánico de 4 atletas de Boccia. Para esta obra, se realizó un análisis biomecánico de la gesto del deporte de Boccia y se definieron los requisitos esenciales para la implementación de la herramienta. Subsecuentemente, se realizó el diseño de un espacio tridimensional, la implementación de las características del deporte, tomando en cuenta los requisitos definidos y la integración de la interfaz de realidad virtual Meta Quest 2, con la cual se puede interactuar con la herramienta. Finalmente, se realizaron análisis biomecánicos utilizando la herramienta y sin ella para verificar la similitud entre el ambiente real y la herramienta de realidad virtual.

El desarrollo de la herramienta permite a los atletas de Boccia practicar el deporte desde sus hogares, fortaleciendo sus habilidades de estrategia, precisión, fuerza y coordinación de una manera similar a la realidad. Por lo tanto, elimina la limitación para la práctica del deporte en casos como la dificultad para viajar al lugar de práctica, el mal tiempo o si no tienen un espacio adecuado para la práctica de este en sus hogares, todo esto, bajo una experiencia inmersiva interactiva que también motivará a ellos a continuar con la práctica constante del deporte.

Keywords: Boccia, virtual reality, biomechanical analysis, sports, inclusion.
INTRODUCCIÓN

La discapacidad es un término que puede definirse como las interrelaciones existentes entre las condiciones de salud de las personas y las dificultades que estas experimentan en el día a día, estas pueden ser tanto físicas como sociales, lo cual conlleva a impedimentos en la participación de la persona en la sociedad. Para facilitar la inclusión de las personas con discapacidad en la sociedad, se ha utilizado el deporte ya que, gracias a los beneficios que este trae consigo, las personas pueden equilibrar sus necesidades personales y sociales mientras participan activamente con otras personas.

Uno de los deportes adaptados para población con discapacidad es Boccia, el cual es un deporte paralímpico practicado a nivel mundial. Este exige a sus deportistas un alto grado de concentración y estrategia y debido a diversos problemas demográficos y económicos, es común que los deportistas no puedan asistir a las prácticas de Boccia con la frecuencia necesaria. Es por esto que se plantea el desarrollo de una herramienta tecnológica utilizando realidad virtual que permita la práctica del deporte de Boccia desde casa. La realidad virtual, es una tecnología que permite transportar a las personas a un ambiente inmersivo sin la necesidad de un gran espacio y sin tener que salir de casa. Adicionalmente, se complementa con el análisis biomecánico del gesto deportivo, el cual permite integrar características esenciales del deporte al desarrollo. Por último, se realiza la evaluación final de la herramienta.

En la presente tesina se describe el desarrollo de la metodología aplicada y los resultados obtenidos durante el desarrollo de la herramienta tecnológica en realidad virtual, la cual se divide en tres partes principales:

- Análisis biomecánico del gesto deportivo de Boccia; en la cual se realiza el procedimiento para analizar biomecánicamente los lanzamientos de Boccia de cuatro deportistas, y se extraen las características más relevantes.
- Diseño del entorno virtual de la herramienta tecnológica; en esta sección se encuentra el desarrollo del documento de diseño de videojuegos, el cual reúne toda la información y requerimientos indispensables para el desarrollo de la herramienta.
- Correlación del gesto deportivo con y sin la herramienta de realidad virtual; en este objetivo, se realiza nuevamente un análisis biomecánico del gesto deportivo de Boccia para realizar la evaluación final de la herramienta comparando ambos lanzamientos. También, se diseñó una prueba de usabilidad para aplicarla a los deportistas. Finalmente, con estos dos resultados, se mejoró el desarrollo de la herramienta tecnológica en realidad virtual.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
1. PRELIMINARES

1.1 PLANTEAMIENTO DEL PROBLEMA

La discapacidad puede ser entendida como un suceso en el cual las personas tienen limitaciones y restricciones en la capacidad para desarrollar actividades y participar de manera activa en la sociedad, además, relaciona la interacción de los individuos con los factores del ambiente y los personales (Organización Mundial de la Salud, 2011). Para mejorar la inclusión social de personas en situación de discapacidad, se ha utilizado el deporte como herramienta efectiva, ya que mediante su práctica las personas pueden encontrar un equilibrio entre las necesidades personales y sociales, además de promover los valores de la sana competencia, el respeto, la disciplina, la perseverancia, y también, aporta al desarrollo de habilidades deportivas como la coordinación (Mejia & Monsalve, 2012).

Dentro de los juegos adaptados para población en situación de discapacidad se destaca Boccia, el cual es un deporte paralímpico que actualmente se practica en más de 50 países, incluyendo Colombia. Sus deportistas tienen parálisis cerebral, lesión cerebral o discapacidad física severa, además, de acuerdo con el nivel de discapacidad que posean los deportistas, se han establecido cuatro categorías: BC1, BC2, BC3 y BC4 (Moreno, 2015). En las categorías BC1, BC2 y BC4, que son las categorías analizadas, los jugadores tienen la capacidad de lanzar con la mano sin ayuda externa (Comité Paralímpico Español, 2019). Boccia, es un deporte de alta estrategia, que requiere mucha precisión y exige a los jugadores un alto grado de concentración y compromiso. A lo anterior se suma la necesidad de un entrenamiento riguroso y constante, y es común que los deportistas no puedan desplazarse a su lugar de entrenamiento con la frecuencia necesaria debido a sus condiciones diarias (Pita, 2015).

Por otra parte, la realidad virtual aplicada en el deporte se está usando cada vez con mayor frecuencia por deportistas y entrenadores, permitiendo mejorar características como el rendimiento deportivo y el estado psicológico de los deportistas (Neumann et al., 2017). Y, aunque sí se han desarrollado herramientas inmersivas mediante las cuales se han mejorado las habilidades necesarias para la práctica de otros deportes (Navas et al., 2020; Panchuk et al., 2018), no se encuentran muchas herramientas tecnológicas que permitan la práctica de deportes paralímpicos desde casa, de manera real y en un ambiente inmersivo como lo promete la realidad virtual, especialmente, no existe en el momento ningún simulador para la práctica de Boccia que esté basado en el análisis biomecánico del gesto deportivo, y que permita recrear totalmente sus características reales.

Complementando lo anterior, el análisis biomecánico o el estudio de la cinemática humana ha permitido un gran número de investigaciones relacionadas con la ciencia deportiva, y

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
dentro de sus aplicaciones se encuentran los estudios realizados para mejorar el rendimiento deportivo (Gómez et al., 2018). También, en un estudio realizado por (Muñoz et al., 2013) se concluyó que el uso de videojuegos con el componente adicional del análisis biomecánico en rehabilitación resultó de gran utilidad para incluir aspectos motivacionales y de entretenimiento, asimismo, permite facilitar y optimizar la toma de datos para el análisis de movimiento por parte de los especialistas. Teniendo en cuenta lo anterior, la pregunta de investigación que se planteó para el trabajo presentado es: ¿cuáles son las características que se obtienen mediante el análisis biomecánico que facilitan el desarrollo de una herramienta de realidad virtual que permita el entrenamiento de Boccia?
1.2 OBJETIVOS DEL PROYECTO

1.2.1 Objetivo General

Desarrollar una herramienta en realidad virtual basada en el análisis biomecánico del gesto deportivo que permita el entrenamiento de Boccia.

1.2.2 Objetivos Específicos

- Analizar la biomecánica del gesto deportivo de Boccia para la implementación de sus características en una herramienta de realidad virtual.
- Diseñar el entorno virtual de la herramienta a partir de la integración de las reglas del juego de Boccia para la simulación de las características únicas del deporte.
- Correlacionar el gesto deportivo del análisis biomecánico realizado sin la herramienta de realidad virtual y con esta para la comprobación de su similitud.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
1.3 ANTECEDENTES

1.3.1 Revisión bibliográfica

Se realizó una revisión bibliográfica con los términos de búsqueda de: Boccia, biomecánica, realidad virtual y deportes, de los cuales se obtuvo toda la información necesaria para el desarrollo del proyecto en curso y se mantendrá actualizada constantemente. Los diagramas de la revisión bibliográfica se encuentran en la Figura 1, Figura 2 y Figura 3.

1.3.1.1 Boccia y realidad virtual

Figura 1. Revisión bibliográfica Boccia y realidad virtual

A continuación, se describirán los resultados más importantes encontrados en la revisión bibliográfica, donde presentan los avances tecnológicos más relevantes relacionados con la práctica de Boccia, para dar una idea sobre la implementación de las tecnologías actuales en el campo del deporte.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
- **Boccia virtual**: es un videojuego simulador de Boccia que busca facilitar y promover la práctica de este deporte utilizando ordenadores convencionales y el mando de la consola Wii, que se conecta vía Bluetooth con el ordenador. El juego implementa las reglas del deporte, permitiendo escoger entre los tres diferentes tipos de bolas (lentas, medianas y rápidas) e incluso contiene la modalidad de canaleta, propia de la categoría BC3. Boccia virtual ha sido una iniciativa para utilizar las tecnologías y aplicarlas a deportes adaptados, aunque si la persona que desea jugar no tiene el mando de Wii no podrá utilizarlo (CRE Discapacidad y Dependencia, 2010).

- La compañía **Preloaded** en colaboración con **Channel 4**, desarrolló un videojuego de Boccia para computador con el objetivo de generar una nueva percepción del deporte paralímpico y crear reconocimiento de los aspirantes a los Juegos Paralímpicos de 2012. El videojuego contaba con tres modos de juego: Quick Play (se puede jugar contra otro jugador o la computadora), Torneo (se puede jugar contra la máquina, a la cual se asignaba el nombre de los representantes más importantes del deporte) y Arcade (permite realizar diversas actividades para mejorar habilidades). Sin embargo, no se menciona el uso de controles o mandos bluetooth para el juego y por lo tanto la usabilidad para los deportistas no es muy precisa (Preloaded, 2012).

- Simulador del juego de **Boccia**: desarrollo de un videojuego para computador, enfocado en la categoría BC3; este integra características físicas y sociales para aumentar el interés de las personas que no conocen el deporte. Se incluyeron las reglas de Boccia en el simulador y la usabilidad del juego; además, su aproximación a la realidad fue probada por medio de encuestas en personas sin discapacidad que utilizaron el simulador y obtuvieron resultados positivos. Finalmente, concluyeron que deben realizar unas mejoras en las teclas utilizadas en el teclado del computador y realizar pruebas en personas con discapacidad (Faria et al., 2018).

- **VR4Inclusion**: 5 empresas europeas se unieron para el desarrollo de un proyecto de inclusión social en el cual se desarrolló un videojuego de Boccia en realidad virtual, con el objetivo de generar la inclusión social de jóvenes con discapacidad utilizando la realidad virtual. El proyecto cuenta con el apoyo de la Unión Europea e incluye otros dos deportes: el ciclismo adaptado y el hockey sobre trineo. Debido a que su enfoque está dedicado a la inclusión social, su desarrollo se basó en entornos totalmente recreativos y no es muy claro en cuanto a la inclusión de todas las reglas de Boccia (Vr4Inclusion, 2019).

- **Boccia Battle**: un videojuego para móviles desarrollado por Wasabi Applications en el que se puede jugar contra una máquina, contra un compañero o en línea. Se ha utilizado para campeonatos virtuales, pero los deportistas de Boccia a menudo no pueden jugar por sí mismos debido a su falta de motricidad fina en los dedos en espacios tan pequeños como la pantalla de un celular, y es por eso que deben contar con alguien que juegue por ellos o les ayude a lanzar (Wasabi Applications, 2020).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
• Otra aplicación tecnológica de Boccia es el desarrollo de un entrenador en realidad virtual para incentivar la práctica del deporte en las personas con discapacidad, hasta el momento se desarrolló un videojuego en el cual es posible generar imágenes del juego artificialmente, y permitir al usuario controlar un avatar que funciona con seguimiento corporal y reconocimiento de gestos, los gráficos del avatar son básicos y no se encuentra en silla de ruedas como los jugadores reales pero permite realizar los lanzamientos y detectar cuando realiza alguno de los lanzamientos más comunes en Boccia, que luego se utilizarán para entrenar el sistema (Calado et al., 2020).

1.3.1.2 Boccia y biomecánica, realidad virtual y deportes.

Figura 2. Revisión bibliográfica realidad virtual y deporte

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 3. Revisión bibliográfica Boccia y biomecánica

En la revisión bibliográfica sobre Boccia, biomecánica, deportes y realidad virtual se encontraron las siguientes investigaciones.

- En el estudio presentado por Akbas, se pretendía estudiar el estado del arte de la aplicación de la realidad virtual en deportistas competitivos con diferentes disciplinas. Las tres áreas de la aplicación de la realidad virtual son: el análisis del rendimiento deportivo, la mejora de las simulaciones y el entrenamiento de forma virtual. Se encontró que la realidad virtual aporta mejoras significativas en la investigación clínica y en el análisis del rendimiento en deportistas competitivos, pero aún es necesario reforzar más la parte interactiva de los proyectos, especialmente, la implementación de jugar contra un compañero en el mismo ambiente virtual (Akbas et al., 2019).

- En el trabajo presentado por Villada, se desarrolló un software para el análisis biomecánico utilizando el Kinect de Microsoft, que puede ser utilizado para rehabilitación asistida en videojuegos y especialmente en escenarios inmersivos, como ayuda en los procesos de rehabilitación presenta la motivación y la adherencia que se puede tener al plan de terapias al ser más interactivo (Villada et al., 2014).

- En otra investigación, se trabajó en la simulación de un humanoide mediante el análisis biomecánico de la marcha humana, allí, trabajaron con 3 tipos de individuos creados digitalmente y probaron diferentes tipos de actuadores para que realizaran
ellos mismos la marcha, efectuando la mayor cantidad de pasos posibles cuyo valor máximo fue 30 pasos y únicamente en 2D, esperan poder implementar una caminata en 3D en próximos trabajos (Altamiranda et al., 2016).

- También, se encontró un estudio en el cual utilizaban el análisis biomecánico y la realidad virtual para realizar una evaluación del giro en una cinta de correr lineal, la evaluación tradicional no permitía analizar adecuadamente las transiciones de la marcha ni cambios de dirección, y por este motivo implementaron la realidad virtual y encontraron que si habían diferencias significativas en las variables estudiadas cuando los sujetos giraban en la realidad virtual, y, concluyeron que la interfaz desarrollada en realidad virtual puede proporcionar un entorno seguro para la evaluación de controles de giro durante la marcha, y tener futuro para evaluar y tratar pacientes con enfermedades neurológicas (Oh et al., 2018).

- Se encontró un estudio aplicado en deportistas paralímpicos que practican tenis de mesa, el objetivo de ese estudio era apoyar a los entrenadores en sus procesos de enseñanza y práctica a los deportistas mediante el análisis biomecánico del gesto deportivo de una técnica llamada Top Spin, finalmente se verificaron los métodos de enseñanza adecuados (Oliva, 2020).

- En otra investigación, se determinaron las características biomecánicas de la carrera en jugadores de futbol profesionales, esto permitió caracterizar el gesto deportivo para mejorar el rendimiento de este, mejorar las estrategias utilizadas en los entrenamientos y prevenir posibles lesiones (Echavarria & Galvis, 2020).

- Se encontró una investigación de tiro con arco con deportistas paralímpicos en el cual se comparó el análisis biomecánico del gesto deportivo de un deportista profesional olímpico y un deportista profesional paralímpico, con el objetivo de observar los diferentes cambios en la técnica, además, también se podría verificar si algunas características del gesto deportivo del jugador olímpico podrían mejorar el gesto deportivo del jugador paralímpico, finalmente en los resultados se presenta que el jugador paralímpico tuvo más precisión en sus lanzamientos (Olaya et al., 2019).

- Finalmente, dentro de los análisis biomecánicos recientes se encuentra uno que analiza el gesto deportivo de Boccia, el cual es el deporte de interés en el trabajo desarrollado en la presente tesina. El objetivo de esa investigación era verificar si la variación de la distancia de lanzamiento afectaba la cinemática y precisión de los disparos, para este estudio contaron con cinco participantes y como resultado del análisis biomecánico obtuvieron que, el grado de control de la espasticidad y el tronco son muy relevantes para el rendimiento del deporte (R. Reina et al., 2018).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
1.4 MARCO DE REFERENCIA

Figura 4. Marco de referencia

1.4.1 Discapacidad

La discapacidad, es un término que surge de las interrelaciones de las condiciones de salud que puede tener una persona, esto incluye sus deficiencias funcionales, estructurales, corporales y cognitivas, también, las barreras que pueden existir en el día a día tanto físicas como de la sociedad, resultando en dificultades para que su participación en la sociedad sea igual a la de cualquier persona (Collazos et al., 2018).

El ambiente, también es una parte muy importante para las personas en situación de discapacidad, ya que los ambientes pueden generar obstáculos e impedimentos y de esta forma generan más discapacidad y exclusión. Algunos ejemplos son los andenes en las calles sin rampas accesibles para sillas de ruedas, ascensores de tamaños inadecuados, falta de tecnologías como softwares especializados para personas con discapacidad visual, transporte público sin rampa para sillas de ruedas, etc. Además, actualmente se pueden encontrar más de mil millones de personas con discapacidad en el mundo, aproximadamente 200 millones de estas tienen discapacidades graves, y, su incidencia continúa incrementando año tras año debido al aumento de los años de vida y de las enfermedades crónicas (Organización Mundial de la Salud & Banco Mundial, 2011).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Espasticidad

De acuerdo con la Clasificación internacional del Funcionamiento, La Discapacidad y La Salud (CIF) la espasticidad hace referencia a la tensión que se encuentra en los músculos cuando estos están en reposo y la resistencia que se genera cuando se intenta realizar movimientos pasivamente (Organización Mundial de la Salud, 2011).

Discapacidad en Colombia

En el censo del 2018 en Colombia, se encontró que había 3.134.036 personas con discapacidad, cifra que aumentó desde el último censo registrado en el 2005 en el cual se encontraron 2.624.898 personas con discapacidad (DANE, 2019).

En Antioquia, se presenta una prevalencia de 7,4% de personas con algún tipo de discapacidad, la cual supera la prevalencia nacional que es de 7,1%. Es decir, que en Antioquia hay 474.125 personas que tienen algún tipo de discapacidad. A pesar de las cifras anteriores, en el Registro de Localización y Caracterización de Personas con Discapacidad (RLCPD) únicamente se encontraban registradas 201.385 personas en septiembre de 2019, cubriendo únicamente el 45.4% del total de personas con discapacidad en el departamento (Gobernación de Antioquia, 2020).

Importancia del deporte en la discapacidad

Según la Organización Mundial de la Salud (OMS), la inactividad física es la causa principal de muerte prematura debido a enfermedades que no sean transmisibles. Por otro lado, la práctica de algún tipo de actividad física con regularidad se relaciona con menos riesgos para la salud en cuanto a sufrir de enfermedades como cardiopatías, diabetes, cáncer de mama, entre otros, y mejora la calidad de vida concediendo una salud mental estable. Aproximadamente el 81% de los adolescentes y el 23% de los adultos no llevan una vida activa físicamente, ya sea debido al uso excesivo de tecnologías, o a las desigualdades que existen para la práctica de deporte, como por ejemplo en personas con discapacidad, grupos desfavorecidos, personas con enfermedades crónicas o que pertenecen a poblaciones rurales que no poseen los espacios adecuados para realizar deporte (Organización Mundial de la Salud, 2018).

Para hablar sobre la importancia del deporte en la discapacidad, se debe partir del término de deporte adaptado, dentro del cual se incluyen todos los tipos de deporte en los cuales se involucren personas que poseen capacidades diferentes, para lo cual se pueden realizar adaptaciones que faciliten la práctica de los deportes, o cuando no es necesario hacer ajustes significativos para la práctica de estos (Raúl Reina, 2014).
Especificamente en Colombia, se han visto grandes avances en el campo de la inclusión social de personas con discapacidad. Por ejemplo, existe la Federación Colombiana de Deportes para personas con Parálisis Cerebral (FECDE PC) y el Comité Paralímpico Colombiano, además de las diferentes ligas departamentales que apoyan los deportistas en situación de discapacidad.

1.4.2 Deporte de Boccia

Boccia es un deporte netamente paralímpico, su origen es en la Grecia Clásica, donde era apto para todas las personas, después, en los años 70s fue adaptado por los países nórdicos para personas con problemas de diversidad funcional. En 1988 se declaró oficialmente como deporte paralímpico y en la actualidad se practica en más de 50 países en todo el mundo, incluyendo a Colombia. Es un deporte que, debido a su alto nivel de complejidad, requiere de mucha precisión y exige a los jugadores un alto grado de concentración (Pita, 2015). Además, tiene sus reglas establecidas de manera internacional por la *Boccia International Sports Federation* (BISFed) (Boccia International Sports Federation, 2018ª).

Categorías

Boccia cuenta con cuatro categorías o clasificaciones según la BISFed, las cuales serán descritas a continuación:

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC1</td>
<td>Los jugadores lanzan utilizando sus extremidades inferiores o superiores y pueden requerir ayuda externa (no se pueden ayudar en el lanzamiento).</td>
</tr>
<tr>
<td>BC2</td>
<td>Los jugadores lanzan con la mano sin ayuda externa.</td>
</tr>
<tr>
<td>BC3</td>
<td>Los jugadores tienen limitaciones de movimiento muy severas y utilizan una rampa con ayuda de un asistente.</td>
</tr>
<tr>
<td>BC4</td>
<td>Los jugadores tienen limitaciones de movimiento muy severas, pero no necesitan ayuda externa</td>
</tr>
</tbody>
</table>

Divisiones

Boccia tiene siete divisiones de juego de acuerdo con la BISFed, las divisiones son:

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Tabla 2. Divisiones de Boccia

<table>
<thead>
<tr>
<th>Divisiones</th>
<th>Categorías que aplican</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual</td>
<td>BC1, BC2, BC3 y BC4</td>
</tr>
<tr>
<td>Parejas</td>
<td>BC3 y BC4</td>
</tr>
<tr>
<td>Equipos</td>
<td>BC1 y BC2 (mínimo un jugador de categoría BC1 en el campo todo el tiempo)</td>
</tr>
</tbody>
</table>

Atributos y dinámica del juego

El primer atributo que se describirá es el terreno de juego, su dimensión es de 12,5 m × 6 m, el área donde se ubican los jugadores se divide en seis boxes o casillas de lanzamiento de 1 m de ancho y 2.5 m de largo. La superficie del terreno debe ser de un material totalmente liso para no interferir con la dinámica de juego, y la zona restringida para la bola blanca es la que se encuentra entre la línea delantera de la zona de lanzamiento y la V (Boccia International Sports Federation, 2018). En la Figura 5 se puede observar la representación del terreno de juego.

Figura 5. Terreno de juego de Boccia

El segundo atributo son las bolas, un equipo completo de bolas de Boccia está conformado por trece bolas (6 rojas, 6 azules y 1 blanca), cada deportista puede utilizar su propio equipo de bolas en cada competencia. En la división individual, pueden utilizar su propia bola

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
blanca, pero en parejas y equipos solo una bola blanca por grupo. Además, las bolas de la organización solo pueden utilizarse cuando los deportistas no tengan su propio equipo de bolas o si este no cumple con los requisitos necesarios. Los requisitos o criterios que deben cumplir las bolas son: tener los colores rojo, azul y blanco definidos claramente, deben pesar 275 g con una diferencia máxima permitida de 12 g, y de circunferencia deben tener 270 mm con una diferencia máxima permitida de 8 mm, no es necesario que tengan una marca en particular, únicamente cumplir el requisito de estar en perfectas condiciones (Boccia International Sports Federation, 2018ª).

Otros atributos son los dispositivos auxiliares que pueden necesitar los deportistas durante el transcurso del juego, estos pueden ser canaletas o punteros, utilizados en la categoría BC3 y deben ser aprobados por los clasificadores. Por último, se encuentran: el marcador, que debe ser visible para todos los jugadores, el equipo de medición del tiempo, el cual debería ser electrónico, el indicador de color, que es una paleta que el árbitro utiliza para definir que jugador o equipo (rojo o azul) continúa lanzando y los aparatos de medición como plantillas, cintrás métricas y linternas.

La dinámica del juego es la siguiente: para las divisiones individuales, que son las de interés en este caso, un partido de Boccia cuenta con cuatro parciales, en los cuales cada jugador inicia dos veces con la bola blanca, realizando cambio en cada parcial. Los jugadores cuentan con seis bolas (rojas o azules) y la bola blanca, el jugador que tenga las bolas rojas (previamente se escoge al azar quien escoge el color rojo o azul) ocupa el box número 3, y el que tiene las azules, ocupa el box número 4, además el jugador con las bolas rojas siempre inicia el primer parcial. El objetivo del juego es posicionar las bolas de color lo más cercano posible a la bola blanca, para esto, los jugadores pueden intentar alejar las bolas de sus oponentes, al final del partido, gana el jugador con más puntos, es decir, quien pudo posicionar sus bolas más cerca de la bola blanca.

1.4.3 Realidad virtual

La realidad virtual puede entenderse como la “representación de escenas o imágenes de objetos producidas por un sistema informático, que dan la sensación de su experiencia real” (Real Academia Española, 2018). Especialmente, la realidad virtual trata la simulación de ambientes tridimensionales y se le han atribuido desarrollos que van desde los videojuegos hasta las películas en 3D. Otro aspecto muy importante de la realidad virtual es que es interactiva permitiendo un mayor grado de inmersión en las personas que la usan. Utiliza sentidos como la vista, la audición y el olfato para hacer la experiencia lo más real posible (Escartín, 2000).

También, podemos encontrar la realidad aumentada, en la cual por medio de dispositivos tecnológicos se puede observar el mundo real mezclándose con elementos virtuales, y la realidad mixta, que junta las dos anteriores, en esta, los usuarios pueden interactuar con
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

La realidad virtual tiene tres elementos básicos que deben estar presentes: primero, la simulación interactiva, la cual permite que el usuario pueda moverse con libertad por la escena y que sus movimientos afecten los objetos que encuentre, para que esto sea posible el tiempo de respuesta del sistema debe ser imperceptible. Segundo, la interacción implícita, que otorga al usuario la capacidad de actuar naturalmente en el ambiente virtual, por ejemplo, si este desea mirar hacia atrás, únicamente debe hacer lo que haría normalmente, que es girar la cabeza hacia atrás, y allí encontrará el espacio tridimensional diseñado. Por último, la inmersión sensorial, en ésta, se deben desconectar los sentidos de la realidad y conectarlos con el mundo de realidad virtual, dejando de interactuar con el mundo exterior para hacerlo en tiempo real con el mundo tridimensional recreado (Avilés & Reinoso, 2015).

Para realizar la conexión con un ambiente de realidad virtual, es indispensable el uso de elementos externos como visores o cascos y se puede complementar con el uso de audífonos. Dentro de los cascos que existen actualmente para realidad virtual se encuentran las Meta Quest 2 (Figura 6), una consola de realidad virtual autónoma que no necesita de computador para su uso, tiene un buen rendimiento y un precio asequible en el mercado.

Por otro lado, la realidad virtual se ha modificado para que no sea necesario el uso de equipos como el mencionado anteriormente, sino que ahora simplemente con el uso de un celular smartphone y unas gafas con lentes especiales, se puede tener un ambiente de realidad virtual en cualquier lugar, un ejemplo de estas gafas son las que se pueden

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

observar en la Figura 7. Sin embargo, se debe tener en cuenta que la experiencia de realidad virtual con el celular puede ser limitada.

Figura 7. VR Box, gafas de realidad virtual para celular.
Tomada de: http://www.vr-box.es/

- **Realidad virtual aplicada en el deporte**

La realidad virtual aplicada en el deporte puede entenderse como la práctica de un deporte que se encuentra representado en un entorno virtual en el cual se busca invocar al usuario la sensación de presencia mental y física y permite la interacción con el ambiente, está se está usando cada vez con mayor frecuencia por deportistas y entrenadores y ha permitido beneficios como la mejora del rendimiento deportivo, el físico y el estado psicológico de los deportistas. La mayoría de las aplicaciones se han hecho en deportes de resistencia como el atletismo, el ciclismo y el remo y se requiere más investigación para la aplicación de realidad virtual en deportes de habilidad (los cuales son deportes cuyo resultado depende de las habilidades y estrategias que utilice el deportista) y realizar estudios para evaluar la efectividad de los deportes tanto en la realidad virtual como en el mundo real (Neumann et al., 2017).

1.4.4 **Unity**

Unity (Unity Technologies, Dinamarca) es una plataforma en tiempo real de desarrollo de videojuegos o motor de videojuegos multiplataforma que permite la creación de aplicaciones y juegos 2D y 3D para diferentes dispositivos como computadores, celulares, cascos de realidad virtual entre otros (Unity-Technologies, 2005). Permite desarrollar desde sistemas operativos de Mac OS, Windows y Linux y sus lenguajes de programación son C# y Java. Además de ser un software de desarrollo, cuenta con múltiples complementos que

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
permítan realizar una fácil integración a otros softwares y cuenta con una tienda propia donde se puede conseguir una gran cantidad de elementos gratuitos a disposición de los desarrolladores, también cuenta con su propia página de tutoriales y solución de dudas, cuenta con motor para simular las físicas y permite integrar animaciones, sonidos e inteligencia artificial.

1.4.5 Juego serio

Los juegos son utilizados para mejorar las técnicas y actitudes indispensables para el desempeño de una o varias actividades, también para la recreación cultural. Actualmente, los videojuegos hacen parte importante de este proceso, ya que, gracias a estos los jugadores pueden incrementar sus habilidades y capacidades, facilitando la forma de aprender técnicas que pueden ser complicadas normalmente. Debido a los grandes beneficios que traen los juegos, especialmente en procesos de educación, de entrenamiento y de difusión de información, se ha creado el término de juegos serios, en los cuales se aprovechan las capacidades que implica llevar a cabo el desarrollo de una actividad en un juego y destinarlo a usos como capacitaciones, entrenamientos, desarrollos científicos, entre otros, con el fin de mejorar las habilidades de sus jugadores en campos específicos y según su necesidad (Chipia, 2011).

Una de las herramientas utilizadas para la creación de juegos serios es el documento de diseño de videojuegos o GDD (Game Design Document, por sus siglas en inglés).

○ Documento de diseño de videojuegos

El documento de diseño de videojuegos es un escrito donde se describe como debe ser el videojuego en su producción final. Existen diferentes plantillas para el GDD, sin embargo, todas deben tener unas características claras para ordenar el trabajo a desarrollar. Se pueden incluir imágenes, diagramas y todas las ayudas posibles para definir de manera completa la teoría y estética del juego. Algunos de los elementos principales que debe tener el GDD son: descripción general del juego, resumen de la dinámica de juego, jugabilidad y mecánica, incluyendo objetivos, progreso y flujo del juego, mecánica, dentro de la cual se describen las reglas del juego y la ejecución de este, diseño de los niveles de juego e interfaz (Fernández, 2016).

1.4.6 Biomecánica

La biomecánica es el área encargada del estudio de modelos, leyes y fenómenos que tengan importancia en el análisis del movimiento, su objeto de estudio son las estructuras mecánicas existentes en los seres vivos, especialmente en los humanos, y se apoya de las diferentes ciencias biomédicas ya que se basa en las especialidades de la mecánica, la

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
fisiología, la biología y la anatomía, entre otras. Su finalidad es estudiar y mejorar los problemas encontrados (Estrada, 2018).

De acuerdo con Estrada (2018) la biomecánica trabaja las siguientes áreas:

- Área médica: análisis de patologías para ofrecer una solución a estas.
- Área deportiva: estudio de la práctica deportiva para mejorar el rendimiento y desarrollar nuevas técnicas de entrenamiento.
- Área ocupacional: análisis de mecánica humana en los ámbitos laborales, de estudio, domésticos y de descanso con el fin de corregir posturas que puedan generar futuras lesiones.
- Área de rehabilitación: estudio de ejercicios de rehabilitación para verificar su efectividad.

1.4.7 Aplicación del análisis biomecánico en el deporte

El estudio de la biomecánica deportiva ha aumentado en los últimos años, sobre todo para los deportes que tienen una técnica deportiva se vuelve muy útil el análisis biomecánico del gesto deportivo con el objetivo de mejorarlo y corregirlo en sus practicantes.

1.4.8 Aplicaciones del análisis biomecánico y la realidad virtual

Los análisis biomecánicos se usan frecuentemente con la realidad virtual con diferentes finalidades, dentro de las cuales se encuentra la simulación de características reales obtenidas por medio de los análisis biomecánicos, la rehabilitación de lesiones o enfermedades, la creación de videojuegos serios, entre otros.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
2. METODOLOGÍA

2.1 DESCRIPCIÓN GENERAL

La presente investigación hace parte de un desarrollo tecnológico, es de tipo cuantitativo y es un estudio de concordancia, pues a partir de la herramienta tecnológica desarrollada se realizaron evaluaciones de su desempeño, y se estudió la correlación de los datos obtenidos en las pruebas de lanzamiento del análisis biomecánico: las pruebas sin la herramienta de realidad virtual y las pruebas con la herramienta de realidad virtual. El esquema general puede encontrarse en la Figura 8.

![Diagrama de proceso de metodología](image)

Figura 8. Descripción general de la metodología

Para el desarrollo de la herramienta de realidad virtual se contó con la participación de 4 deportistas de *Boccia* los cuales debían cumplir con los criterios de inclusión y de exclusión descritos en los apartados 2.2 y 2.3, y cuyo tamaño de muestra se calculó en el apartado 2.4.

2.2 CRITERIOS DE INCLUSIÓN PARA LA MUESTRA

- Jugador de *Boccia*, teniendo en cuenta el manual de clasificación de la BISFed encontrado en (Boccia International Sports Federation, 2018b).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
• Que pertenezca a las categorías BC1 (cuando estos últimos puedan lanzar sin ayuda de un auxiliar y estén perfilados a pertenecer a la categoría BC2 en un futuro), BC2, y BC4.
• Rango de edad: de 17 a 60 años.

2.3 CRITERIOS DE EXCLUSIÓN PARA LA MUESTRA

• Mujeres en embarazo
• Personas que no acepten participar en el proyecto.
• Personas diagnosticadas con epilepsia, vértigo, problemas cardiacos o mareos.
• Personas que no acepten firmar el consentimiento o asentimiento informado.

2.4 CÁLCULO DEL TAMAÑO DE LA MUESTRA

Para realizar el cálculo del tamaño de la muestra, se tendrá en cuenta que esta será a conveniencia debido a la cantidad de deportistas disponibles en Liga Antioqueña de deportes para personas con parálisis cerebral y los deportistas del Club Ares. Después de hacer una reunión inicial con todos los deportistas que podrían participar en el proyecto, y teniendo en cuenta la disponibilidad de estos y sus tutores para realizar los desplazamientos necesarios para el estudio, la muestra final es de cuatro personas.

2.5 REVISIÓN BIBLIOGRÁFICA

Se realizó un análisis del estado del arte de los campos relacionados con Boccia, realidad virtual, deporte y análisis biomecánicos durante la ejecución del proyecto para reunir los antecedentes existentes y poder mejorar y proponer nuevas soluciones a las investigaciones encontradas, específicamente, no se encontró ninguna aplicación tecnológica sobre Boccia que además se complementara con el uso de análisis biomecánicos.

2.6 OBJETIVO 1: ANALIZAR LA BIOMECÁNICA DEL GESTO DEPORTIVO DE BOCCHIA PARA LA IMPLEMENTACIÓN DE SUS CARACTERÍSTICAS EN UNA HERRAMIENTA DE REALIDAD VIRTUAL.

2.6.1 Procedimiento preliminar para realizar el análisis biomecánico del
gesto deportivo de Boccia

Se realizó un análisis del espacio disponible en el Laboratorio de Ciencias Aplicadas al Movimiento (CAME) de la Universidad EIA, lugar donde se realizan las grabaciones del gesto deportivo para su posterior análisis biomecánico, y del espacio real de una cancha de Boccia para definir las distancias de lanzamiento más apropiadas para reproducir en las grabaciones, después, se eligió la cantidad de lanzamientos mínima para obtener la información deseada y los tipos de bola a utilizar.

- Ubicación de los marcadores: para escoger el modelo de miembro superior adecuado para la grabación de los lanzamientos, se tuvieron en cuenta varios criterios de selección descritos a continuación.

 o Primero, que permitiera al deportista lanzar con naturalidad sin impedir en su técnica de lanzamiento.
 o Segundo, que fuera un modelo que permitiera ubicarse en la porción superior del torso para evitar pérdidas de los marcadores debido a que los deportistas se encuentran ubicados en sillas de ruedas y se tapa la mitad inferior posterior del torso.
 o Tercero, que el modelo se reconstruya de manera correcta permitiendo obtener los ángulos de las articulaciones de miembro superior.

Finalmente, se escogieron las variables biomecánicas a analizar en las grabaciones del gesto deportivo de Boccia.

2.6.2 Validación del procedimiento preliminar

Para validar el procedimiento definido, primero se debe verificar que el modelo de miembro superior escogido cumpla con el primer y segundo criterio de selección definidos en el apartado anterior. Después se debe verificar que cumpla con el tercer criterio, es decir, que permita reconstruirse de manera adecuada en el sistema. Esto se verifica mediante la realización de calibraciones estáticas, en las cuales el sujeto de prueba se encuentra inmóvil. Además de calibraciones dinámicas, en las cuales el sujeto puede realizar movimientos articulares o lanzamientos de Boccia, todo esto se realiza utilizando el sistema de Vicon (Vicon Motion Systems Ltd, Reino Unido).

Por último, después de validar que el modelo de miembro superior escogido permite la reconstrucción adecuada, se deben realizar lanzamientos de prueba para verificar que se obtenga la información de las variables biomecánicas a analizar. Para esto, se debe verificar que el modelo permita obtener la trayectoria completa de los marcadores durante todo el lanzamiento, o que los vacíos presentados en la trayectoria puedan ser reconstruidos fácilmente en el sistema de Vicon (Vicon Motion Systems Ltd, Reino Unido).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
2.6.3 Registro de la prueba

Después de validar el procedimiento preliminar, se procedió a iniciar con la citación de los deportistas para realizar el primer análisis biomecánico de los dos planteados en el proyecto. Antes de cada prueba, se envió a los deportistas y sus tutores los consentimientos y asentimientos informados aprobados por el comité de ética de la Universidad EIA en el acta N. AR20211028, de la propuesta identificada con el código P202103-01 (Anexo 2, Anexo 3, Anexo 4 y Anexo 5), y, una vez leyeron, firmaron y enviaron nuevamente los consentimientos se procedió a fijar la fecha para realizar el análisis. Cada deportista se citó en días diferentes de acuerdo con su disponibilidad y el laboratorio se encontraba preparado a la hora de llegada del deportista.

Para la realización de las pruebas, se siguieron los siguientes pasos:

1. Cuando los jugadores llegaron al laboratorio, se realizó una introducción del sistema de Vicon (Vicon Motion Systems Ltd, Reino Unido) a ellos y sus acompañantes para que se familiarizaran con este.
2. Como se menciona en los consentimientos y asentimientos informados, los deportistas debían realizar un calentamiento previo al inicio de las grabaciones para evitar lesiones y obtener lanzamientos con mayor precisión.
3. Una vez finalizado el calentamiento, se procedió a la toma de las medidas anatómicas necesarias para la reproducción de los modelos de miembros superior, las cuales son:
 a. Desplazamiento del hombro: distancia vertical que se mide desde el centro de la articulación gleno-humeral hasta el marcador ubicado en el hombro.
 b. Ancho del codo: distancia entre los epicóndilos medial y lateral del húmero.
 c. Ancho de la muñeca: distancia entre los estiloides cubital y radial.
 d. Grosor de la muñeca: distancia entre las superficies dorsal y palmar de la mano.
4. Se ubicaron en los deportistas los marcadores necesarios para el modelo escogido y se les recordó a los deportistas las dinámicas de los lanzamientos a realizar.
5. Cuando el deportista estaba listo, se procedía a realizar la grabación de los lanzamientos.
6. A cada lanzamiento se le realizaba un procesamiento inicial para validar la información obtenida y finalmente, después de obtener todas las grabaciones propuestas se retiraron todos los marcadores de los deportistas.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
2.6.4 Análisis biomecánico

Después de tener las grabaciones de los lanzamientos realizados por los deportistas, se realizó el análisis biomecánico de las pruebas registradas. Para realizar el análisis biomecánico se deben tener en cuenta los límites articulares normales, los cuales se presentan en la Tabla 3 (Kapandji, 2006). Adicionalmente, en la Tabla 4, se presenta la convención de los ángulos de acuerdo con Vicon (Vicon Motion Systems Ltd, Reino Unido), con esta convención se puede determinar cómo se toman los ángulos en el sistema y cuales son considerados positivos o negativos.

<table>
<thead>
<tr>
<th>Tabla 3. Limites articulares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articulación</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Hombro</td>
</tr>
<tr>
<td>Codo</td>
</tr>
<tr>
<td>Muñeca</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Articulación</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Hombro</td>
</tr>
<tr>
<td>Codo</td>
</tr>
<tr>
<td>Muñeca</td>
</tr>
</tbody>
</table>

- Inicialmente, se realizó un análisis de la información obtenida en las pruebas. Primero se revisaron las grabaciones que habían cumplido con el objetivo propuesto, las cuales ya contaban con un procesamiento inicial de los datos,

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
después, se realizó un procesamiento más completo de cada grabación con el fin de mejorar la calidad de los datos obtenidos.

- A continuación, en cada grabación, se revisó la trayectoria de todos los marcadores del modelo y cuadro a cuadro se realizó la corrección de la trayectoria ya que es común que se pueda confundir la trayectoria de un marcador con la de otro que está cerca.
- Posteriormente, después de corregir la trayectoria de los marcadores, se realizó el procesamiento para completar los vacíos de información que quedan en las gráficas de los ángulos, para esto, se debe escoger la mejor forma de corrección:

 - Spline fill: se debe usar cuando hay un espacio en una trayectoria que no tiene huecos antes ni después de éste.
 - Pattern Fill: se usa cuando un marcador que está cerca tenga un comportamiento similar al marcador que tiene vacíos, teniendo en cuenta que el marcador utilizado para completar el otro no debe tener vacíos en su trayectoria.
 - Rigid Body Fill: se usa cuando el marcador hace parte de un cuerpo rígido en el modelo.
 - Kinematic Fill: usa la información del modelo utilizado para deducir la posición de los marcadores cuando tengan vacíos en su trayectoria.
 - Cyclic Fill: se usa cuando se capturan movimientos cíclicos.

- Después, se aplican filtros para suavizar las gráficas y obtener unos datos más homogéneos y se exporta la información a un archivo de Excel en el cual se tiene toda la información de los lanzamientos en el espacio tridimensional cuadro a cuadro.
- Finalmente, se realiza un análisis de los datos de Excel en Minitab (Minitab Inc, Estados Unidos) en el cual se estudian las correlaciones de los ángulos de los lanzamientos.

2.7 OBJETIVO 2: DISEÑAR EL ENTORNO VIRTUAL DE LA HERRAMIENTA A PARTIR DE LA INTEGRACIÓN DE LAS REGLAS DEL JUEGO DE BOCCAIA PARA LA SIMULACIÓN DE LAS CARACTERÍSTICAS ÚNICAS DEL DEPORTE.

2.7.1 Definición de requerimientos

Para definir los requerimientos del videogame, se realizó la construcción del documento de diseño de videogames o GDD (diagrama general en la Figura 9) debido a que, en este, se reúne toda la información necesaria para el diseño del videogame. El GDD está basado en el Framework MDA que trata las mecánicas, dinámicas y estéticas (por sus siglas en inglés: MDA).
Mechanics, Dynamics, Aesthetics) y es una metodología diseñada para comprender los videojuegos utilizando un enfoque formal, su objetivo es cerrar la brecha existente entre el diseño y el desarrollo de videojuegos y facilitar a los investigadores y académicos el estudio de estos (Hunicke et al., 2004). Como se mencionaba anteriormente, las 3 premisas más importantes del Framework MDA son:

- **Mecánicas**: se describen todos los módulos del videojuego de manera teórica, esto incluye los componentes que se requieren para las diversas acciones que pueden llevar a cabo los usuarios, es decir, son todos los recursos indispensables que debe tener el videojuego para afianzar la dinámica de este. Por ejemplo, las reglas, los objetos de interacción y la descripción de las escenas de juego.
- **Dinámicas**: se describen las acciones que se pueden ejecutar de acuerdo con las mecánicas planteadas, y deben ir enfocadas a crear las experiencias estéticas.
- **Estéticas**: se describen las respuestas emocionales que se desean obtener por parte de los usuarios cuando interactúan con el juego, esto incluye las sensaciones, desafíos, descubrimientos y expresiones que se quieren evocar.

Además de la metodología del Framework MDA, el Game Design Document incluye otras partes importantes en la descripción general del juego como:

- **Nombre del juego**: el nombre del juego debe ser llamativo y debe tener relación con el concepto del juego, a veces puede ir acompañado de un subtítulo para dar mayor contexto.
- **Concepto del juego**: describe con una breve sinopsis de que trata el juego, cuál es su tema de desarrollo principal.
- **Tipo/clasificación**: de describe el género o categoría del juego, por ejemplo: acción, aventura, estrategia, deportes, supervivencia, arcade, entre otros.
- **Público objetivo**: puede incluir la edad mínima requerida para el uso del videojuego y población específica si aplica.
- **Flujo de juego**: descripción general del uso del juego y consola objetivo para el uso de este.
- **Aspecto del juego**: incluye el estilo visual escogido para el desarrollo del videojuego.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
2.7.2 Búsqueda de modelos tridimensionales y asignación de características físicas

Se realizó la búsqueda y descarga de los objetos y componentes en la tienda de Unity (Unity Technologies, Dinamarca) y otras páginas web como https://free3d.com/es/ y https://open3dmodel.com/es/3d-models/ para el diseño del espacio físico basado en los requerimientos descritos en el Game Design Document. Adicionalmente, se establecieron las características físicas o componentes de cada objeto como los siguientes:

- **Rigid Body**: permite a los GameObjects actuar bajo el control de la física.
- **Mesh Renderer**: permite agregar materiales como el color de los objetos.
- **Collider**: crea una malla colisionadora alrededor del objeto, se utiliza para objetos que necesitan rodar y dar vueltas y se pueden agregar Physic Materials.
- **Physic Material**: materiales para ajustar la fricción (escala de 0 a 1) y efectos de rebote (escala de 0 a 1) de los objetos.
- **Scripts**: códigos que pueden agregar a los objetos, pueden ser propios de cada objeto o pueden ser códigos utilizados en varios objetos.
- **Transform:** todos los componentes tienen un *Transform*, el cual es utilizado para manipular y almacenar la información de la posición, rotación y escala del objeto. Creación de los modos de juego

Basado en las características recolectadas en el *Game Design Document* se determina la creación de varios modos de juego en los cuales se implementen todos los requerimientos, objetos y recursos de interacción definidos. Además, para cada modo de juego se deben realizar códigos propios que garanticen el funcionamiento de estos.

- **Extracción del avatar**

Teniendo en cuenta la grabación de los lanzamientos y el modelo de miembro superior utilizado, se busca un avatar que represente la posición de los deportistas, es decir, sentado en silla de ruedas y al cual se le puedan controlar las posiciones de miembro superior para realizar la simulación de los lanzamientos de *Boccia* en Unity (Unity Technologies, Dinamarca).

2.7.3 **Generación de los recursos de la interfaz de usuario**

Basado en los diseños de los menús del *Game Design Document*, se crearon los menús de interacción en el motor de videojuegos libre Unity (Unity Technologies, Dinamarca) para cada escena, verificando que permitan al usuario realizar todas las interacciones definidas en las mecánicas y dinámicas del juego.

- **Creación de los modos de juego**

En el *Game Design Document* se definió la creación de varios modos de juego, para los cuales debe definirse un flujo de la dinámica a funcionar y la implementación de los objetos y recursos necesarios para este flujo definido.

- **Integración del videojuego a la plataforma de destino**

Para integrar el juego desarrollado a la plataforma destino, que en este caso son las Meta Quest 2, se debe realizar la búsqueda y descarga de los códigos y librerías compatibles con Unity (Unity Technologies, Dinamarca) que permitan el manejo del juego de manera adecuada, posteriormente, se deben realizar las modificaciones necesarias tanto para el ambiente general de desarrollo como los requerimientos de cada objeto al integrar la plataforma.

2.7.4 **Integración de las características biomecánicas a la plataforma de**

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
realidad virtual

Después de extraer las características biomecánicas de los primeros análisis de los lanzamientos del objetivo 1, se realiza la integración de estas características a la plataforma de realidad virtual, teniendo como base un modelo del lanzamiento de Boccia desarrollado.

2.7.5 Pruebas de funcionamiento

Durante el desarrollo de la herramienta en el motor de videojuegos libre Unity (Unity Technologies, Dinamarca), se realizaron pruebas de funcionamiento constantes para verificar que todo funcionara de acuerdo con lo descrito en el GDD. Estas pruebas de funcionamiento generaron cambios o modificaciones de los algoritmos implementados, asegurando la correcta ejecución de la herramienta implementada. Los algoritmos fueron desarrollados en el lenguaje de programación C#, mediante el entorno de desarrollo integrado (IDE) Visual Studio (Microsoft Visual Studio, Microsoft), el cual es compatible con Unity.

2.7.6 Pruebas de lanzamientos

Con las primeras versiones de las escenas del videojuego listas, se inician las pruebas en el computador y desde el editor de Unity (Unity Technologies, Dinamarca) para probar que los algoritmos desarrollados estén arrojando los resultados esperados en cada una de las variables declaradas.

Cuando ya se aprobaban las pruebas en el computador, y después de la integración del juego a la plataforma destino, se iniciaba con las pruebas en esta para realizar las modificaciones necesarias teniendo en cuenta el escenario virtual.

2.8 OBJETIVO 3: CORRELACIONAR EL GESTO DEPORTIVO DEL ANÁLISIS BIOMECÁNICO REALIZADO SIN LA HERRAMIENTA DE REALIDAD VIRTUAL Y CON ESTA

2.8.1 Procedimiento preliminar para realizar las pruebas de los lanzamientos con la herramienta de realidad virtual y sin esta

Para realizar las pruebas de los lanzamientos con la herramienta de realidad virtual y sin esta, se ejecutaron los siguientes pasos:

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
1. Definir las distancias y bolas a utilizar: para este análisis se deben realizar nuevamente los lanzamientos con las bochas en el Laboratorio de Ciencias Aplicadas al Movimiento (CAME) y los lanzamientos utilizando la herramienta de realidad virtual a la misma distancia.
2. Definir el modelo de miembro superior: para el modelo de miembro superior, se utilizó el modelo validado de miembro superior, escogido para las pruebas del objetivo 1.
3. Se realizó un diseño de la prueba de usabilidad para aplicarla al momento del registro de la prueba.
4. Teniendo en cuenta que se deben realizar análisis estadísticos con la herramienta de realidad virtual y sin esta, se definieron las variables biomecánicas a analizar.

2.8.2 Registro de la prueba

Para el registro de la prueba, se citó nuevamente a los deportistas en el Laboratorio de Ciencias Aplicadas al Movimiento (CAME) de la Universidad EIA, el análisis de estas pruebas también se encuentra incluido en los asentimientos y consentimientos firmados por los deportistas para las primeras pruebas. Para la realización de las pruebas, se siguieron los siguientes pasos:

1. Cuando los deportistas llegaron al laboratorio, se realizó una introducción a los deportistas y acompañantes, sobre el uso de las gafas de realidad virtual Meta Quest 2, puesto que estas hacen parte de la interfaz de la herramienta desarrollada.
2. Como se menciona en los consentimientos y asentimientos informados, los deportistas debían realizar un calentamiento previo con duración igual al calentamiento que realicen normalmente, al inicio de las grabaciones para evitar lesiones y obtener lanzamientos con mayor precisión.
3. Una vez finalizado el calentamiento, se procedió a ubicar los marcadores necesarios para el modelo escogido (en este caso, ya se encontraban registradas las medidas anatómicas de los primeros análisis) y se les recordó a los deportistas las dinámicas de los lanzamientos a realizar con la herramienta de realidad virtual y sin esta.
4. Cuando el deportista estaba listo, se procedía a realizar la grabación de los lanzamientos con las bochas y a cada lanzamiento se le realizaba un procesamiento inicial para validar la información obtenida.
5. Después de los lanzamientos con las bochas, se le posicionan las gafas de realidad virtual al deportista. Se configuró el sistema para que transmitiera la imagen proyectada al deportista en el computador para verificar los lanzamientos. Adicionalmente, el deportista tuvo un tiempo inicial antes de comenzar la prueba, para explorar la aplicación y aprendiera a manipular los controles. Posteriormente, se realizó el registro de la prueba de usabilidad.
6. Cuando el deportista ya se encontraba familiarizado con la herramienta, se procedía a realizar la grabación de los lanzamientos, los cuales se verificaban en la transmisión en el computador.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
7. Finalmente, después de obtener todas las grabaciones propuestas se retiraron todos los marcadores de los deportistas y se permitió que siguieran utilizando la aplicación si lo deseaban.

2.8.3 Análisis biomecánico

Después de tener las grabaciones de los lanzamientos realizados por los deportistas, se realizó el análisis biomecánico de las pruebas registradas siguiendo el mismo procedimiento del apartado 2.6.4, la diferencia en este caso es que para cada deportista se analizaron dos tipos de datos, los obtenidos sin el uso de la herramienta de realidad virtual y los datos de las pruebas con esta herramienta.

2.8.4 Análisis de las pruebas de usabilidad y retroalimentación de la herramienta

Después de tener las pruebas de usabilidad de los deportistas, se realizó un análisis cualitativo de la información obtenida y basado en este análisis se implementaron los cambios necesarios para mejorar el desempeño de la herramienta de realidad virtual y enviar la documentación necesaria para realizar el registro de Software.
3. PRESENTACIÓN Y DISCUSIÓN DE RESULTADOS

A continuación, se presentan los resultados obtenidos para cada objetivo, que permiten dar cumplimiento del objetivo principal de este trabajo que es el desarrollo de una herramienta en realidad virtual para la práctica de Boccia.

3.1 RESULTADOS OBJETIVO 1

Para el desarrollo de la herramienta que permita la práctica de Boccia, era de gran importancia, identificar y cuantificar las características biomecánicas del gesto deportivo, para que, al momento de llevarlo a la virtualidad, los movimientos se reprodujeran de una manera parecida con la realidad.

De acuerdo con lo anterior, se presentan los resultados del primer objetivo.

3.1.1 Procedimiento preliminar para realizar el análisis biomecánico del gesto deportivo de Boccia

Se realizó el análisis del espacio disponible en Laboratorio de Ciencias Aplicadas al Movimiento (Figura 10) y teniendo en cuenta que la distancia mínima a la que deben lanzar los deportistas de Boccia es de 1.5 metros y la distancia máxima permitida en el laboratorio es de 6 metros se definieron las distancias de 2 metros y 5 metros como las distancias adecuadas para realizar las grabaciones del gesto deportivo de Boccia.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

La cantidad de lanzamientos definida fue de cinco lanzamientos con cada tipo de bola y a cada distancia (Tabla 5), con el objetivo de tener por lo menos tres lanzamientos con la información necesaria. Por lo tanto, la cantidad de lanzamientos por cada deportista era de 30 lanzamientos correctos y para validar cada lanzamiento se ubicó la bola Diana en la distancia adecuada y se verificaba que la bocha cayera en un radio de 30 cm de esta. Sin embargo, al realizar las pruebas de los análisis biomecánicos, se descubrió que no todos los deportistas de Boccia utilizaban los 3 tipos de bolas, sino que esto dependía de su nivel de espasticidad en la mano, su preferencia y su experiencia con el deporte, así que la cantidad de lanzamientos finalmente dependía de los tipos de bola que utilizara el deportista.

<table>
<thead>
<tr>
<th>Distancias</th>
<th>Tipos de bola</th>
<th>Repeticiones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 metros</td>
<td>Blanda</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mediana</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Dura</td>
<td>5</td>
</tr>
<tr>
<td>5 metros</td>
<td>Blanda</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mediana</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Dura</td>
<td>5</td>
</tr>
</tbody>
</table>

Teniendo en cuenta los criterios de selección del modelo de miembro superior necesario para la grabación de los lanzamientos, se optó por modificar el modelo de Full Body (Figura 11) de Vicon (Vicon Motion Systems Ltd, Reino Unido) para utilizar únicamente la parte superior de este. El modelo modificado finalmente está conformado por 23 marcadores ubicados en cabeza, pecho, espalda superior, brazo, antebrazo y muñeca como se muestra en las Figura 12 y Figura 13.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 11. Modelo Full Body de Vicon Motion Systems (Vicon Motion Systems, n.d.).
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Adicionalmente, se realizaron dos modelos independientes de miembro superior derecho e izquierdo los cuales cuentan únicamente con 16 marcadores (se eliminaron respectivamente los marcadores de las casillas de miembro superior derecho e izquierdo de la Figura 12 y Figura 13) ya que los deportistas lanzan únicamente con un brazo y con los marcadores ubicados en éste se reúne la información necesaria de las variables biomecánicas.

Por último, se definió que las variables biomecánicas a analizar serían los ángulos de lanzamiento (°) de las articulaciones involucradas y las distancias alcanzadas en el lanzamiento (m).

3.1.2 Validación del procedimiento preliminar

Para iniciar la validación del procedimiento preliminar, se tuvo en cuenta que mediante la información recolectada en el *Game Design Document* (Anexo 1), fue posible conocer que los deportistas de Boccia que participan en el proyecto, pueden practicar más de 2 horas seguidas y por consiguiente la cantidad de 30 lanzamientos (que pueden realizar en 30 minutos o menos), no representan ningún riesgo para no poder realizar los lanzamientos requeridos.

Después, para verificar la reconstrucción del modelo de miembro superior, se ubicó el modelo de la Figura 12 y Figura 13 modificado para miembro superior derecho en un asistente de prueba (Figura 14), y se realizaron los siguientes pasos en el sistema de Vicon (Vicon Motion Systems Ltd, Reino Unido):

1. Se realizó una calibración estática en la cual el sujeto debía sostener el brazo aproximadamente a 90° durante algunos segundos, luego se reconstruían los marcadores y se corría la operación de calibración estática para verificar que en el modelo estático cada marcador se encontrara ubicado correctamente (Figura 15).
2. Se realizó una calibración dinámica en la cual el sujeto realizaba movimiento articulares durante varios segundos, luego se reconstruía el modelo completo de miembro superior y se corría la operación de calibración dinámica para verificar que se obtuvieran todos los ángulos de lanzamiento (Figura 16).
3. Se le pidió al asistente realizar lanzamientos con una bola de prueba mientras se encontraba sentado en una silla de ruedas, con el objetivo de tener en cuenta todas las variables al momento de realizar las pruebas en los deportistas (Figura 17). Al momento de realizar las primeras pruebas, se encontró que la silla de ruedas generaba reflejos que podían confundir al sistema en el momento de la reconstrucción de los marcadores y por esto se ubicó una tela negra alrededor de la silla para cubrir los brillos indeseados.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Figura 14. Prueba de ubicación de marcadores

Figura 15. Calibración estática

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
2. CALibrACIÓN DINÁMICA

4. Después de obtener las grabaciones de las pruebas, se validó que el modelo de miembro superior no tuviera pérdidas en la trayectoria de los marcadores al momento de realizar las pruebas de los lanzamientos y se aplicaron las operaciones adecuadas para completar las trayectorias de los marcadores que tuvieron perdidas en su recorrido. En la Figura 18 se pueden observar los ángulos de las tres articulaciones principales involucradas en los lanzamientos de Boccia. El plano X

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

representa el plano sagital, donde se ven flexiones y extensiones, el plano Y representa el plano frontal, donde se ven abducciones y aducciones y el plano Z representa el plano transversal, en el cual se observan rotaciones.

Figura 18. Ángulos de lanzamientos de prueba

Finalmente, después de obtener una correcta reproducción del modelo de miembro superior modificado para las grabaciones del gesto deportivo de Boccia y observar que los ángulos de las articulaciones se obtienen adecuadamente, se aprueba la validación del procedimiento preliminar.

3.1.3 Registro de la prueba

Una vez el deportista se encontraba en el Laboratorio de Ciencias Aplicadas al Movimiento, éste procedía a realizar el calentamiento que habitualmente realiza. Después de haber finalizado los lanzamientos, se tomaban las medidas anatómicas correspondientes como se muestra en la Figura 19, después se registraron las medidas a cada deportista como se observa en la Tabla 6, Tabla 7, Tabla 8 y Tabla 9 teniendo en cuenta que el peso y altura de los deportista era información brindada por sus tutores, y que se llenaban los datos únicamente de su brazo dominante, derecho o izquierdo (R para derecho por sus siglas en inglés Right, y L para izquierdo, Left).
Figura 19. (a) Desviación del hombro, (b) Ancho del codo, (c) Ancho de la muñeca, (d) Grosor de la mano
Tomadas de: https://www.youtube.com/watch?v=VExDRYYrz_Y

Tabla 6. Medidas participante 01

<table>
<thead>
<tr>
<th>Datos del participante</th>
<th>Proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificación de Boccia</td>
<td>BC1</td>
</tr>
<tr>
<td>Código</td>
<td>01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medidas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso (kg)</td>
</tr>
<tr>
<td>Altura (mm)</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
<table>
<thead>
<tr>
<th>Medida</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desviación del hombro (mm)</td>
<td>60</td>
</tr>
<tr>
<td>Ancho del codo (mm)</td>
<td>100</td>
</tr>
<tr>
<td>Ancho de la muñeca (mm)</td>
<td>40</td>
</tr>
<tr>
<td>Grosor de la mano (mm)</td>
<td>30</td>
</tr>
<tr>
<td>Desviación del hombro (mm)</td>
<td>/</td>
</tr>
<tr>
<td>Ancho del codo (mm)</td>
<td>/</td>
</tr>
<tr>
<td>Ancho de la muñeca (mm)</td>
<td>/</td>
</tr>
<tr>
<td>Grosor de la mano (mm)</td>
<td>/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 7. Medidas participante 02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proyecto</td>
</tr>
<tr>
<td>Datos del participante</td>
</tr>
<tr>
<td>Clasificación de Boccia</td>
</tr>
<tr>
<td>Código</td>
</tr>
<tr>
<td>Medidas</td>
</tr>
<tr>
<td>Peso (kg)</td>
</tr>
<tr>
<td>Altura (mm)</td>
</tr>
<tr>
<td>Desviación del hombro (mm)</td>
</tr>
<tr>
<td>Ancho del codo (mm)</td>
</tr>
<tr>
<td>Ancho de la muñeca (mm)</td>
</tr>
<tr>
<td>Grosor de la mano (mm)</td>
</tr>
<tr>
<td>Desviación del hombro (mm)</td>
</tr>
<tr>
<td>Ancho del codo (mm)</td>
</tr>
<tr>
<td>Ancho de la muñeca (mm)</td>
</tr>
<tr>
<td>Grosor de la mano (mm)</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Tabla 8. Medidas participante 03

<table>
<thead>
<tr>
<th>Datos del participante</th>
<th>Proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proyecto</td>
<td>Herramienta tecnológica para la práctica de Boccia</td>
</tr>
<tr>
<td>Medidas</td>
<td></td>
</tr>
<tr>
<td>Table 8</td>
<td></td>
</tr>
<tr>
<td>Tabla 8. Medidas participante 03</td>
<td></td>
</tr>
<tr>
<td>Proyecto</td>
<td>Herramienta tecnológica para la práctica de Boccia</td>
</tr>
<tr>
<td>Datos del participante</td>
<td></td>
</tr>
<tr>
<td>Clasificación de Boccia</td>
<td>BC2</td>
</tr>
<tr>
<td>Código</td>
<td>03</td>
</tr>
<tr>
<td>Medidas</td>
<td></td>
</tr>
<tr>
<td>Peso (kg)</td>
<td>55</td>
</tr>
<tr>
<td>Altura (mm)</td>
<td>1680</td>
</tr>
<tr>
<td>R Desviación del hombro (mm)</td>
<td>/</td>
</tr>
<tr>
<td>R Ancho del codo (mm)</td>
<td>/</td>
</tr>
<tr>
<td>R Ancho de la muñeca (mm)</td>
<td>/</td>
</tr>
<tr>
<td>R Grosor de la mano (mm)</td>
<td>/</td>
</tr>
<tr>
<td>L Desviación del hombro (mm)</td>
<td>27</td>
</tr>
<tr>
<td>L Ancho del codo (mm)</td>
<td>90</td>
</tr>
<tr>
<td>L Ancho de la muñeca (mm)</td>
<td>41</td>
</tr>
<tr>
<td>L Grosor de la mano (mm)</td>
<td>30</td>
</tr>
</tbody>
</table>

Tabla 9. Medidas participante 04

<table>
<thead>
<tr>
<th>Datos del participante</th>
<th>Proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proyecto</td>
<td>Herramienta tecnológica para la práctica de Boccia</td>
</tr>
<tr>
<td>Datos del participante</td>
<td></td>
</tr>
<tr>
<td>Clasificación de Boccia</td>
<td>BC4</td>
</tr>
<tr>
<td>Código</td>
<td>04</td>
</tr>
<tr>
<td>Medidas</td>
<td></td>
</tr>
<tr>
<td>Peso (kg)</td>
<td>31</td>
</tr>
<tr>
<td>Altura (mm)</td>
<td>147</td>
</tr>
</tbody>
</table>
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

<table>
<thead>
<tr>
<th>R Desviación del hombro (mm)</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Ancho del codo (mm)</td>
<td>56</td>
</tr>
<tr>
<td>R Ancho de la muñeca (mm)</td>
<td>28</td>
</tr>
<tr>
<td>R Grosor de la mano (mm)</td>
<td>22</td>
</tr>
<tr>
<td>L Desviación del hombro (mm)</td>
<td>/</td>
</tr>
<tr>
<td>L Ancho del codo (mm)</td>
<td>/</td>
</tr>
<tr>
<td>L Ancho de la muñeca (mm)</td>
<td>/</td>
</tr>
<tr>
<td>L Grosor de la mano (mm)</td>
<td>/</td>
</tr>
</tbody>
</table>

Después de completar las medidas de cada usuario, se ubicaron los marcadores de los modelos independientes de miembro superior derecho e izquierdo validados anteriormente, utilizando una banda previamente desinfectada para los 4 marcadores de la cabeza y cinta doble faz desechable para adherirlos. Con los marcadores ubicados, se realizaron las calibraciones estáticas y dinámicas (Figura 15 y Figura 16) para que el sistema de Vicon (Vicon Motion Systems Ltd, Reino Unido) hiciera correctamente la reconstrucción del modelo.

Con las calibraciones completas, se procedió a realizar la grabación de los lanzamientos como se puede observar en la Figura 20, para esto, se ubicó la bola Diana de los deportistas en los objetivos seleccionados de 2 metros y 5 metros y se les pidió realizar los lanzamientos a ésta.
Finalmente, a las grabaciones en las cuales la bola alcanzaba el objetivo, se les realizaba un procesamiento inicial de los datos para comprobar que no se encontraran pérdidas de la información obtenida durante el lanzamiento. Para esto, se ejecutaban los siguientes pasos:

1. Reconstrucción de marcadores.
2. Reconstrucción del modelo y etiquetado de los marcadores.
3. Verificación de la reconstrucción adecuada del modelo.
4. Ejecución de las operaciones para obtener la información de las pruebas dinámicas.
5. Verificación de las gráficas de los ángulos.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 24. Pasos 4 y 5 procesamiento inicial

Si después de este procesamiento inicial las grabaciones se encontraban con datos correctos y sin perdidas de información, quedaban como grabaciones elegidas y se continuaba con los demás lanzamientos hasta obtener por lo menos 3 grabaciones con la información necesaria de las variables biomecánicas.

3.1.4 Análisis biomecánico

Las grabaciones en las cuales los deportistas habían cumplido con el objetivo eran escogidas y se les realizó el análisis biomecánico efectuando la segunda parte del procesamiento de la información, de esta manera, se escogieron tres grabaciones a cada distancia y se realizaron las siguientes actividades:

1. Recortar la grabación y etiquetar correctamente los marcadores equivocados.
2. Completar vacíos en la trayectoria de los marcadores.
3. Procesamiento final de la prueba.
4. Realizar el análisis de la información.

En el primer paso, se recortaron las grabaciones en el momento exacto del lanzamiento para evitar tener datos que no son necesarios en el análisis, después, se verificó que los marcadores se encontraran etiquetados correctamente y de no ser así, se realizaba un etiquetado manual de los marcadores para ubicarlos en su posición real, un ejemplo de este caso se puede observar en la Figura 25.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Figura 25. Paso 1 del análisis biomecánico

En el segundo paso, para completar la trayectoria de los marcadores generalmente se puede reconstruir utilizando el Pattern Fill como se puede observar en la Figura 26, en este caso, se encontraban vacíos en la trayectoria de un marcador de la muñeca y se completaron con otro marcador ubicado también en la muñeca.
En el tercer paso (Figura 27) se realizó el procesamiento final de la grabación en cual se corrieron las operaciones necesarias para obtener las variables biomecánicas, para esto, es necesario filtrar las trayectorias de los marcadores utilizando un Woltring Filter, el cual se encarga de suavizar las gráficas para obtener datos más homogéneos. Después se ejecuta la operación que se encarga de la reconstrucción de los ejes coordenados en cada articulación y permite obtener los ángulos, finalmente se modifican los parámetros para obtener los datos requeridos y se exportan en un archivo de Excel en formato .csv.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Figura 27. Paso 3 análisis biomecánico

En el cuarto paso, se realizó un análisis de la información obtenida en las grabaciones de los lanzamientos en Minitab (Minitab Inc, Estados Unidos), para esto, es necesario tener en cuenta que el sistema de Vicon (Vicon Motion Systems Ltd, Reino Unido) graba a una velocidad de 100 FPS (Frames per second) es decir que 100 Frames representan 1 segundo de grabación. Para realizar el análisis, se verificó el momento exacto del lanzamiento de la bocha y se escogía ese Frame como el punto final del lanzamiento. A partir de este punto, se escogían los datos de los 10 Frames anteriores ya estos representan la información más importante para el análisis, teniendo en cuenta además, que debido a las diversas patologías de los deportistas de Boccia, no es posible realizar una única caracterización del gesto deportivo ya que todos lanzan de diferente manera e incluso un mismo deportista puede lanzar de diferente manera durante su entrenamiento.

 Después de extraer la información de 2 o 3 grabaciones a cada distancia para cada deportista, se realizó un promedio de los datos obtenidos y estos últimos datos eran los analizados estadísticamente (Anexo 6). Para interpretar las correlaciones, se utilizó la correlación de Pearson en la cual las correlaciones son bajas cuando es obtenido un valor menor a 0.3, moderadas cuando se obtiene un valor de 0.3 a 0.7 y altas cuando el valor es mayor a 0.7.

Adicionalmente, en la Tabla 10 se encuentra el rango articular obtenido en los lanzamientos de los deportistas, el cual se encuentra diferenciado por el tipo de bola y la distancia, por ejemplo, B (2 m) es el rango articular obtenido por los deportistas con la bola blanda a una
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

De acuerdo con los resultados obtenidos, los movimientos de los deportistas se encuentran dentro de los rangos articulares normales.

Tabla 10. Promedio de ángulos de los lanzamientos

<table>
<thead>
<tr>
<th>Articulación</th>
<th>Flexión</th>
<th>Extensión</th>
<th>Abducción</th>
<th>Aducción</th>
<th>Rotación interna</th>
<th>Rotación externa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codo</td>
<td>B (2 m): 30.3° M (2 m): 37.09°-47.41° D (2 m): 24.66°-112.04° B (5 m): 41.9° M (5 m): 28.6°-61.4° D (5 m): 9.47°-100.19°</td>
<td>Relativa a la flexión</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

En los siguientes resultados se analizan los ángulos sagitales (eje X), frontales (eje Y) y transversales (eje Z), con los cuales está identificada cada articulación, acompañado de la distancia de lanzamiento y el tipo de bola (L para bola lenta, M para bola media y D para bola dura). Por ejemplo, °X Hombro 2 m (L), representa los ángulos sagitales del hombro a una distancia de 2 metros con la bola lenta.

Para el deportista 01, que es un deportista profesional, se realizó un análisis más extenso debido a que contaba con un equipo de bochas con tres diferentes tipos: lenta, media y dura, debido a esto, se realizó un análisis de cada articulación para correlacionar los ángulos de los lanzamientos a la misma distancia con los distintos tipos de bola.

Como se puede observar en la siguiente tabla, que representa datos de la articulación del hombro a una distancia de dos metros, se obtienen correlaciones altas en los ángulos sagitales con los 3 tipos de bochas. En los ángulos frontales, se obtiene una correlación alta entre la bocha media y la lenta, alta pero negativa entre las bochas dura y media, y una correlación moderada y negativa entre la bocha dura y la lenta. Finalmente, para los ángulos transversales, se obtienen relaciones bajas entre la bocha media y la lenta y entre la dura y la media, y una correlación alta pero negativa entre la bocha dura y la lenta. Por lo tanto, para la distancia de dos metros, el deportista 01 no realiza variaciones en su gesto en los ángulos de flexión y extensión del hombro, pero en los ángulos frontales y transversales se observan diferencias significativas con los diferentes tipos de bochas.
transversales en los cuales se obtienen correlaciones negativas, se representa una ejecución contraria del gesto cuando cambia de bocha.

Tabla 11. Correlación de ángulos de hombro a 2 metros del deportista 01

<table>
<thead>
<tr>
<th>Correlaciones</th>
<th>° X Hombro 2 m (L)</th>
<th>° X Hombro 2 m (M)</th>
<th>° Y Hombro 2 m (L)</th>
<th>° Y Hombro 2 m (M)</th>
<th>° Z Hombro 2 m (L)</th>
<th>° Z Hombro 2 m (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>° X Hombro 2 m (M)</td>
<td>0,988</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>° X Hombro 2 m (D)</td>
<td>0,999</td>
<td>0,979</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>° Y Hombro 2 m (M)</td>
<td>0,978</td>
<td>0,982</td>
<td>0,949</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>° Y Hombro 2 m (D)</td>
<td>-0,854</td>
<td>-0,767</td>
<td>-0,518</td>
<td>-0,761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>° Z Hombro 2 m (M)</td>
<td>-0,093</td>
<td>-0,244</td>
<td>-0,491</td>
<td>-0,212</td>
<td>0,235</td>
<td></td>
</tr>
<tr>
<td>° Z Hombro 2 m (D)</td>
<td>0,990</td>
<td>0,997</td>
<td>0,934</td>
<td>0,993</td>
<td>-0,999</td>
<td>-0,223</td>
</tr>
</tbody>
</table>

Para la distancia de 5 metros, el deportista 01 presenta correlaciones altas y positivas en los ángulos sagitales y frontales del hombro. Y en los ángulos transversales, se presenta una correlación moderada entre la bocha dura y la media, una correlación moderada negativa entre la bocha media y lenta, por último, presenta una correlación alta negativa entre las bochas dura y lenta. Por lo tanto, para la distancia de 5 metros, el deportista realiza menos variaciones en su gesto, dándose este caso únicamente en el eje transversal en el cual presenta además correlaciones negativas, es decir, movimientos contrarios en el gesto deportivo cuando cambia de bocha.

Tabla 12. Correlación de ángulos de hombro a 5 metros del deportista 01

<table>
<thead>
<tr>
<th>Correlaciones</th>
<th>° X Hombro 5 m (L)</th>
<th>° X Hombro 5 m (M)</th>
<th>° Y Hombro 5 m (L)</th>
<th>° Y Hombro 5 m (M)</th>
<th>° Z Hombro 5 m (L)</th>
<th>° Z Hombro 5 m (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>° X Hombro 5 m (M)</td>
<td>0,988</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>° X Hombro 5 m (D)</td>
<td>0,992</td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>° Y Hombro 5 m (M)</td>
<td>-0,874</td>
<td>-0,788</td>
<td>0,763</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>° Y Hombro 5 m (D)</td>
<td>-0,993</td>
<td>-0,999</td>
<td>0,996</td>
<td>0,811</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

La Tabla 13 y Tabla 14 representa los datos de la articulación del codo, éste solo tiene movimientos de flexión y extensión y por lo tanto se analiza únicamente su plano sagital, como se puede observar, presenta correlaciones altas a ambas distancias entre la bola dura y la lenta. También presenta correlaciones altas y moderadas negativas, y por lo tanto sus datos representan variaciones en el gesto deportivo realizado utilizando distintos tipos de bochas.

Tabla 13. Correlación de ángulos sagitales de codo a 2 metros del deportista 01

<table>
<thead>
<tr>
<th>Correlaciones</th>
<th>° X Codo 2 m (L)</th>
<th>° X Codo 2 m (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>° X Codo 2 m (M)</td>
<td>-0,924</td>
<td></td>
</tr>
<tr>
<td>° X Codo 2 m (D)</td>
<td></td>
<td>0,904</td>
</tr>
</tbody>
</table>

Tabla 14. Correlación de ángulos sagitales de codo a 5 metros del deportista 01

<table>
<thead>
<tr>
<th>Correlaciones</th>
<th>° X Codo 5 m (L)</th>
<th>° X Codo 5 m (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>° X Codo 5 m (M)</td>
<td>-0,966</td>
<td></td>
</tr>
<tr>
<td>° X Codo 5 m (D)</td>
<td>0,788</td>
<td>-0,667</td>
</tr>
</tbody>
</table>

A continuación, se presentan los datos de la articulación de la muñeca, en los grados sagitales a 2 metros se presenta una correlación alta negativa entre la bocha dura y la bocha lenta, y correlaciones moderadas entre las bocas media y lenta y entre las bochas dura y media. En los ángulos frontales, se presentan correlaciones altas positivas entre todas las bochas, y en los ángulos transversales, se presenta una correlación alta entre la bocha dura y la lenta y correlaciones bajas negativas entre las otras bochas. Representando variaciones en el gesto deportivo en los ángulos de la muñeca en dos de los tres planos analizados.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Para la distancia de 5 metros, el deportista 01 realiza menos variaciones en su gesto deportivo cuando utiliza diferentes bochas, ya que únicamente en el plano frontal se presentan correlaciones bajas o negativas.

Tabla 15. Correlación de ángulos de muñeca a 2 metros del deportista 01

<table>
<thead>
<tr>
<th>Correlaciones</th>
<th>° X Muñeca 2 m (L)</th>
<th>° X Muñeca 2 m (M)</th>
<th>° Y Muñeca 2 m (L)</th>
<th>° Y Muñeca 2 m (M)</th>
<th>° Z Muñeca 2 m (L)</th>
<th>° Z Muñeca 2 m (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>° X Muñeca 2 m (M)</td>
<td>0,557</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>° X Muñeca 2 m (D)</td>
<td>-0,984</td>
<td>-0,411</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>° Y Muñeca 2 m (M)</td>
<td>-0,940</td>
<td>-0,753</td>
<td>0,910</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>° Y Muñeca 2 m (D)</td>
<td>-0,999</td>
<td>-0,527</td>
<td>0,991</td>
<td>0,933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>° Z Muñeca 2 m (M)</td>
<td>0,447</td>
<td>0,980</td>
<td>-0,339</td>
<td>-0,696</td>
<td>-0,408</td>
<td></td>
</tr>
<tr>
<td>° Z Muñeca 2 m (D)</td>
<td>-0,973</td>
<td>-0,369</td>
<td>0,997</td>
<td>0,876</td>
<td>0,984</td>
<td>-0,267</td>
</tr>
</tbody>
</table>

Tabla 16. Correlación de ángulos de muñeca a 5 metros del deportista 01

<table>
<thead>
<tr>
<th>Correlaciones</th>
<th>° X Muñeca 5 m (L)</th>
<th>° X Muñeca 5 m (M)</th>
<th>° Y Muñeca 5 m (L)</th>
<th>° Y Muñeca 5 m (M)</th>
<th>° Z Muñeca 5 m (L)</th>
<th>° Z Muñeca 5 m (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>° X Muñeca 5 m (M)</td>
<td>0,987</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>° X Muñeca 5 m (D)</td>
<td>0,948</td>
<td>0,885</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>° Y Muñeca 5 m (M)</td>
<td>0,437</td>
<td>0,296</td>
<td>0,175</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>° Y Muñeca 5 m (D)</td>
<td>-0,139</td>
<td>0,019</td>
<td>0,135</td>
<td>-0,938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>° Z Muñeca 5 m (M)</td>
<td>0,999</td>
<td>0,982</td>
<td>0,952</td>
<td>0,468</td>
<td>0,987</td>
<td></td>
</tr>
<tr>
<td>° Z Muñeca 5 m (D)</td>
<td>0,973</td>
<td>0,924</td>
<td>0,877</td>
<td>0,618</td>
<td>0,938</td>
<td>0,979</td>
</tr>
</tbody>
</table>
Para los deportistas 02, 03 y 04 se realizaron análisis únicamente con un tipo de bocha ya que dentro de su equipo únicamente manejaban el tipo de bocha de su preferencia, en esos casos, se analizaron las correlaciones entre los ángulos de lanzamiento de hombro, codo y muñeca a 2 metros y a 5 metros con el mismo tipo de bola. Cada una de las variables está nombrada con el plano analizado: sagital (eje X), frontal (eje Y) y transversal (eje Z) seguido de la distancia de lanzamiento. Por ejemplo, °Y Muñeca 2 m, representa los ángulos frontales de la muñeca a 2 metros.

A continuación, en la Tabla 17, se presenta la correlación de los ángulos del hombro del deportista 02, en los ángulos sagitales y frontales se presentan correlaciones negativas y en los ángulos transversales se presenta una correlación positiva, lo cual significa que el deportista realiza una rotación de hombro similar en los lanzamientos independientemente de la distancia, pero realiza movimientos contrarios en los ejes sagital y transversal.

<table>
<thead>
<tr>
<th>Correlaciones</th>
<th>° X Hombro 2 m</th>
<th>° Y Hombro 2 m</th>
<th>° Z Hombro 2 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>° X Hombro 5 m</td>
<td>-0,996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>° Y Hombro 5 m</td>
<td>0,999</td>
<td>-0,914</td>
<td></td>
</tr>
<tr>
<td>° Z Hombro 5 m</td>
<td>-0,999</td>
<td>0,910</td>
<td>0,980</td>
</tr>
</tbody>
</table>

En la Tabla 18 se presenta la correlación de la articulación del codo a las distancias de 2 metros y 5 metros, en esta articulación el deportista no tiene variaciones en su gesto a las dos distancias.

<table>
<thead>
<tr>
<th>Correlaciones</th>
<th>° X Codo 2 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>° X Codo 5 m</td>
<td>0,983</td>
</tr>
</tbody>
</table>

Finalmente, para este deportista, se realizó el análisis de los ángulos de la muñeca, en el plano sagital se obtuvo una correlación alta positiva y en los planos frontales y transversales se obtuvieron correlaciones altas negativas, lo cual implica un gesto contrario de lanzamiento a ambas distancias.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
A continuación, se presenta el análisis para el deportista 03 iniciando con la articulación del hombro, en la cual se presentan correlaciones altas positivas en los ángulos sagitales y transversales, y una correlación baja negativa en los ángulos frontales. Lo cual implica un gesto deportivo similar en dos de los tres ejes analizados.

En los ángulos del codo, el deportista 03 también presenta un gesto similar de lanzamiento a ambas distancias.

Finalmente, en la Tabla 22 se presentan las correlaciones de la articulación de la muñeca, en este caso, en todos los ejes se encuentran correlaciones altas positivas, y se puede concluir que el deportista 03, no presenta variación del gesto de lanzamiento a ambas distancias.
El deportista 03, presentó menos variación en su gesto a las dos distancias que los deportistas 01 y 02, obteniendo en casi todos los casos correlaciones altas positivas.

Ahora, se presentan los análisis del deportista 04 para la articulación del hombro (Tabla 23) en los ejes sagital y frontal se presentan correlaciones altas positivas, y en el plano transversal se presenta una correlación alta negativa, lo cual representa que el gesto únicamente varía en el plano transversal del hombro.

Para la articulación del codo (Tabla 24) se tiene una correlación alta positiva, como en los deportistas 02 y 03, lo cual implica que no hay variación en el gesto deportivo a las dos distancias.

Por último, en la Tabla 25 se presentan las correlaciones de los ángulos de muñeca, la cual da como resultado una correlación alta en los planos sagital y transversal, y una correlación

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
baja en el eje frontal, lo cual implica un cambio en el gesto deportivo en la muñeca a las dos distancias.

<table>
<thead>
<tr>
<th>Tabla 25. Correlación de ángulos de la muñeca del deportista 04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlaciones</td>
</tr>
<tr>
<td>° X Muñeca 5 m</td>
</tr>
<tr>
<td>° Y Muñeca 5 m</td>
</tr>
<tr>
<td>° Z Muñeca 5 m</td>
</tr>
</tbody>
</table>

El deportista 04, al igual que el deportista 03 presenta pocas variaciones en su gesto deportivo a ambas distancias.

Teniendo en cuenta los datos analizados de las articulaciones del hombro, codo y muñeca, aunque se presentan correlaciones en algunos ángulos del mismo plano en ambas distancias, el deportista 01 realiza variaciones en el gesto del lanzamiento cuando utiliza diferentes tipos de bocha, por lo tanto, en la herramienta tecnológica se deben implementar los tres tipos de bochas para que los deportistas que utilizan diferentes bochas puedan escoger la que deseen. Y, en relación con los análisis de los deportistas 02, 03 y 04, aunque los últimos dos no presentan variaciones significativas en su gesto deportivo a ambas distancias, el deportista 02 sí las presentó y por eso es necesario continuar con el análisis a ambas distancias de lanzamiento.

3.2 RESULTADOS OBJETIVO 2

Teniendo en cuenta, los resultados obtenidos en el objetivo anterior, se prosiguió con la implementación de la herramienta, de acuerdo con las características del gesto deportivo y las reglas de juego. A continuación, se presentan los requerimientos fundamentales identificados para la simulación de la experiencia del juego de Boccia y la implementación de dichos requerimientos en la herramienta.

3.2.1 Definición de requerimientos

Para la construcción completa del Game Design Document (GDD), se identificaron tanto las necesidades del usuario como técnicas, estos requerimientos se puede encontrar en el

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Anexo 1 (diagrama general en la Figura 28). A continuación, se explicarán los requerimientos más relevantes para la construcción de la herramienta tecnológica, iniciando por la descripción general del juego:

- **Nombre del juego:** el nombre escogido es TechBo, debido a la unión de la palabra en inglés *Technology* (tecnología) y la palabra *Boccia*, que es el deporte y tema principal del videojuego. También, se diseñó un logo (Figura 29) en el cual se utilizó un avatar sentado en silla de ruedas lanzando la bocha Diana para dar más alusión al deporte de *Boccia*.

- **Concepto del juego:** TechBo es un videojuego desarrollado en realidad virtual cuyo objetivo principal es permitir el entrenamiento a deportistas de *Boccia* de categorías BC1, BC2 y BC4 (que puedan lanzar con la mano) desde casa y sin la necesidad de un gran escenario deportivo, también puede ser utilizado para dar a conocer el deporte de *Boccia* a cualquier persona que pueda tener interés en este.

- **Tipo/clasificación del videojuego:** TechBo es un videojuego que se clasifica en el área deportiva y de simulación, ya que su temática principal es sobre la simulación del deporte de *Boccia*.

- **Público objetivo:** TechBo está dirigido a personas de 12 años en adelante que no sufran de epilepsia, problemas cardíacos, mareos o vértigo debido al componente de realidad virtual. Especialmente, TechBo será útil para deportistas de *Boccia* de categorías BC1, BC2 y BC4 que deseen practicar.

- **Descripción general del flujo de juego:** TechBo será configurada para su uso en las Meta Quest 2 (Figura 6) y se controlará con los mandos bluetooth de estas para todas las interacciones permitidas.

- **Aspecto básico del juego:** TechBo se desarrolla en un coliseo en el cual se encuentra la cancha de *Boccia* con sus dimensiones reales simuladas en el ambiente virtual, esto con la idea de hacer el juego lo más cercano posible a la realidad para sus usuarios.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Después, a partir del Framework MDA, se describen a detalle las mecánicas, dinámicas y estéticas del juego, en las cuales se reunió información de expertos en el tema como entrenadores y deportistas de Boccia.

A continuación, se describen los requerimientos más relevantes de las mecánicas:

- Reglas del deporte de Boccia: en este ítem se encuentran descritas las reglas del deporte de Boccia de acuerdo con los lineamientos de la BISFed (Boccia international Sports Federation), por ejemplo, se describen las categorías del deporte (BC1, BC2, BC3 y BC4), el tamaño y peso adecuado de las bochas, la distribución de la cancha de Boccia (Figura 30), la dinámica de los lanzamientos, entre otros.
- Recolección de información de expertos: se reunió información que se obtuvo de entrenadores y deportistas de Boccia sobre los posibles entrenamientos para implementar en la herramienta teniendo en cuenta que permitieran desarrollar destrezas como la precisión y la fuerza y se realizó una tabla para la interpretación de la información recolectada y las soluciones planteadas a partir de estas (…

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
<table>
<thead>
<tr>
<th>Tabla 26. Requerimientos y soluciones del GDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrevistas con entrenadores, requerimientos del juego y de los deportistas</td>
</tr>
<tr>
<td>¿Qué es lo que más les gusta de jugar Boccia?</td>
</tr>
<tr>
<td>Les gusta poder hacer ejercicio, entrenar, como rueda la bocha en la cancha, la integración y cambiar de ambiente.</td>
</tr>
<tr>
<td>¿Cuántas veces pueden entrenar a la semana?</td>
</tr>
<tr>
<td>Algunos pueden entrenar 5 días, otros 1 día y otros todos los días.</td>
</tr>
<tr>
<td>¿Cuánto tiempo entrena normalmente?</td>
</tr>
<tr>
<td>El tiempo de entrenamiento es de 2 a 4 horas aproximadamente.</td>
</tr>
<tr>
<td>¿Les gustaría poder entrenar más tiempo?</td>
</tr>
<tr>
<td>Les gustaría poder entrenar más días a la semana, a algunos les gustaría tener entrenador, y otros dicen que están bien con la cantidad de días que entrenan.</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
<table>
<thead>
<tr>
<th>¿Qué técnicas de entrenamiento utilizan en el coliseo?</th>
<th>El juego va a tener simulación de los parciales de Boccia, y algunos ejercicios técnicos para practicar dentro de la aplicación.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrenan habilidades técnicas (precisión y fuerza), jugadas de Boccia, simulación de partido y entrenamiento guiado por el entrenador.</td>
<td></td>
</tr>
<tr>
<td>¿Entrenan Boccia en su casa? ¿Cómo lo hacen o que técnicas utilizan?</td>
<td>Con el simulador van a poder jugar Boccia sin adecuar un espacio muy grande en su casa y van a poder seguir realizando los ejercicios de fuerza normalmente.</td>
</tr>
<tr>
<td>En la casa entrena ejercicios de fuerza, adecuan el entrenamiento al espacio de sus casas y les gustaría poder jugar un partido de Boccia.</td>
<td></td>
</tr>
<tr>
<td>¿Han jugado en el celular o computador? ¿Qué te gusta jugar?</td>
<td>Están familiarizados con tecnologías, lo cual les va a permitir utilizar la aplicación de realidad virtual con mayor facilidad.</td>
</tr>
<tr>
<td>Han utilizado juegos de Boccia, juegos de sopas de letras y juegos de pensar.</td>
<td></td>
</tr>
<tr>
<td>¿Han utilizado juegos de Boccia? De ser así, ¿Qué les gustó y que no les gusto?</td>
<td>Con el simulador van a poder jugar Boccia de manera real y realizando una simulación del lanzamiento de la bola mediante la cual se va a obtener la información de la fuerza y dirección de forma automática.</td>
</tr>
<tr>
<td>Algunos han utilizado juegos de Boccia que no se adaptaban a la realidad (en el Play) y en el celular en el cual solo juegan con los dedos y mediante un menú escogen fuerza y dirección de la bola, además muchas veces deben ser sus familiares quienes jueguen por ellos.</td>
<td></td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
¿Conoces sobre realidad virtual? ¿Te interesaría tener un videojuego de Boccia en realidad virtual?

Algunos conocen sobre realidad virtual y a todos les interesó tener la herramienta.

Análisis biomecánicos

Se deben realizar análisis biomecánicos del lanzamiento de Boccia de los participantes del proyecto para extraer de ahí las características biomecánicas de ángulos, tiempos y distancias de lanzamiento.

En el sistema de análisis de movimiento Vicon (Vicon Motion Systems Ltd, Reino Unido) ubicado en el CAME (Laboratorio de Ciencias Aplicadas al Movimiento) en la Universidad EIA se realizarán las grabaciones de los análisis biomecánicos que permitirán extraer la información necesaria.

<table>
<thead>
<tr>
<th>Tabla 27. Lista de objetos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objetos</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Jugador</td>
</tr>
<tr>
<td>Contrincante</td>
</tr>
<tr>
<td>Bolas o bochas</td>
</tr>
<tr>
<td>Público</td>
</tr>
<tr>
<td>Cancha de juego</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
<table>
<thead>
<tr>
<th>Mini mapa</th>
<th>Es un mini mapa con el cual el jugador puede observar el juego de manera más cercana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tablero para puntaje y tiempo</td>
<td>Tablero donde se van publicando los resultados de cada parcial y el tiempo restante de juego para cada jugador.</td>
</tr>
<tr>
<td>Silla de ruedas</td>
<td>Silla de ruedas donde se ubica el jugador</td>
</tr>
<tr>
<td>Pantalla para puntos</td>
<td>Muestra los puntos de cada jugador y se anuncia cual jugador debe lanzar</td>
</tr>
<tr>
<td>Pantalla para la rifa</td>
<td>Rifa al azar que define que jugador empieza el parcial</td>
</tr>
<tr>
<td>Arco</td>
<td>Arcos que aparecen aleatoriamente para el entrenamiento en el modo de precisión</td>
</tr>
<tr>
<td>Canasta para ubicas las bochas</td>
<td>Canasta para sostener las bolas del jugador y que las tenga cerca</td>
</tr>
<tr>
<td>Coliseo</td>
<td>Espacio físico donde se ubicarán todos los objetos</td>
</tr>
</tbody>
</table>

En la segunda parte del Framework MDA, se describen las dinámicas:

- Se realizó la descripción de las acciones que puede ejecutar el deportista y el contrincante basado en las mecánicas detalladas anteriormente (Tabla 28).
- Las habilidades que debe tener el usuario para utilizar TechBo son: coordinación física para manejar el control y botones en cada lanzamiento, y estrategia para ganar el modo de competencia contra la máquina.
- Se describieron los objetivos que se deben cumplir en cada modo de juego:
 - En el modo de competencia el objetivo del juego es tirar las bochas o bolas lo más cercano posible a la bola blanca o diana, y superar al oponente intentando alejar las bolas de este de la diana, para esto, el jugador

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
dispondrá únicamente de 5 minutos los cuales se muestran en una pantalla en cuenta regresiva para incentivar el desafío del jugador.

- En el modo de fuerza el objetivo es lanzar la bola a la sección de la cancha que se le indique en la pantalla y cumplir los puntos propuestos por cada sección, que es de 10 puntos.
- En el modo de precisión el objetivo es pasar la bocha por la mitad del arco que les aparezca en la cancha, se tendrán 3 arcos de diferente tamaño para manejar diferentes niveles de dificultad y se debe cumplir un total de 30 puntos para completar el entrenamiento.
- En el modo de pruebas, el objetivo es realizar 5 lanzamientos a cada distancia indicada en la pantalla.

- Por último, se realizó una descripción de las interacciones del flujo de juego que puede realizar el usuario:
 - Seleccionar personaje: seleccionar el avatar de su preferencia
 - Modo de juego competencia: sirve para iniciar el parcial.
 - Modo de juego de entrenamiento: para seleccionar cual entrenamiento desea realizar (fuerza o precisión).
 - Modo de pruebas: para entrar al modo de pruebas.
 - Seleccionar opciones del menú: incluye pausar, salir, reiniciar o continuar el juego
 - Tutorial: para ver las reglas de cada modo de juego.
 - Lanzar nuevamente: para ubicar la bola nuevamente en la canasta, aplica en los modos de entrenamiento únicamente.

<table>
<thead>
<tr>
<th>Sujeto</th>
<th>Acciones operativas</th>
<th>Acciones resultantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juego</td>
<td>Lanzar la bola</td>
<td>La bola puede empujar la bola del oponente, caer cerca de la bola Diana, caer lejos de la Diana, caer fuera de la zona de juego.</td>
</tr>
<tr>
<td></td>
<td>Navegar por los menús</td>
<td>Escoger el avatar de su preferencia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Escoger entre el modo de competencia, pruebas o entrenamiento, y si escoge entrenamiento puede escoger entre fuerza o precisión.</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
<table>
<thead>
<tr>
<th>Menú</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pausa</td>
<td>Pausar, reiniciar y reanudar el juego.</td>
</tr>
<tr>
<td></td>
<td>Salirse del juego.</td>
</tr>
<tr>
<td></td>
<td>Ver los tutoriales de cada modo de juego</td>
</tr>
<tr>
<td></td>
<td>Ver el minimapa</td>
</tr>
<tr>
<td></td>
<td>Observar desde una vista superior la cancha de Boccia</td>
</tr>
<tr>
<td>Maquina</td>
<td>Lanzar la bola aleatoriamente</td>
</tr>
<tr>
<td>(oponente)</td>
<td>La bola puede empujar la bola del jugador, caer cerca de la bola Diana, caer lejos de la Diana, caer fuera de la zona de juego</td>
</tr>
</tbody>
</table>

Finalmente, en las estéticas, las cuales especifican las respuestas emocionales que se quieren evocar en el jugador, se encuentra:

- **Historia y narrativa:** TechBo representa una simulación del deporte paralímpico de Boccia, y está especialmente diseñado para que los jugadores de categorías BC1, BC2 y BC4 (cuando no necesiten auxiliar) puedan utilizarlo como herramienta de práctica, se desarrolla en un coliseo como normalmente ocurre en la realidad y se incluyen todas las reglas del deporte.

- **Los personajes que se encuentran son:**
 - **Jugador principal:** es el jugador real que va a realizar la práctica del deporte de Boccia. Dentro del juego va a ser un avatar en silla de ruedas que puede ser hombre o mujer de acuerdo con la elección del jugador.
 - **Jugador de la máquina (competidor contrario):** es la máquina contra la cual va a jugar el participante de la vida real. Dentro del juego va a ser un avatar en silla de ruedas que va a tener animaciones de lanzamiento para jugar por sí mismo.
 - **Público:** personajes generados aleatoriamente, que van a alentar al jugador.

- **Sonidos de ambientación:** el juego incorpora diferentes sonidos que puedan resultar estimulantes para los jugadores y que puedan hacer la experiencia más real, por ejemplo, el sonido cuando la bocha toca la cancha, sonidos de aplausos del público, sonidos de interacción con los menús, y música de fondo diferente en cada escenario.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
3.2.2 Búsqueda y creación de modelos tridimensionales y asignación de características físicas

Teniendo en cuenta la lista de objetos (Tabla 27) creada en el Game Design Document, se realizó la búsqueda en bases de datos libres y creación de los objetos tridimensionales necesarios para la construcción del escenario deportivo y se les asignaron las características correspondientes.

<table>
<thead>
<tr>
<th>Objeto</th>
<th>Descripción y asignación de características físicas</th>
<th>Foto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jugador</td>
<td>Avatar que representa al jugador, se le asignaron animaciones (descargadas de Mixamo) para estar sentado en la silla de ruedas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Como el jugador va a tener una vista en primera persona, en realidad este no va a poder ver el rostro o cuerpo completo del avatar.</td>
<td></td>
</tr>
<tr>
<td>Contrincante o máquina</td>
<td>Avatar que representa al contrincante, se le agregaron animaciones (descargadas de Mixamo) para estar sentado en la silla de ruedas y para realizar los lanzamientos de las bochas.</td>
<td>Figura 31. Avatar jugador y contrincante</td>
</tr>
<tr>
<td></td>
<td>Se utilizó la ubicación de sus manos con el fin de tener un punto de referencia para la ubicación donde debería iniciar el lanzamiento de la</td>
<td></td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

<table>
<thead>
<tr>
<th>Bolas o bochas</th>
<th>Son GameObjects creados en Unity, los cuales son objetos indispensables que pueden representar personajes y escenarios y se les pueden asignar componentes, a las bochas se les asignaron los siguientes componentes:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Rigid Body: se le agregó un peso de 275 g (peso real de las bochas), una resistencia al aire de 0.4, y se activó que se afecte por la gravedad.</td>
</tr>
<tr>
<td></td>
<td>- Mesh Renderer: se crearon 3 colores, rojo, azul y blanco.</td>
</tr>
<tr>
<td></td>
<td>- Sphere Collider: se utiliza para objetos que necesitan rodar y dar vueltas y se pueden agregar Physic Materials.</td>
</tr>
<tr>
<td></td>
<td>- Physic Material: para las bochas se crearon 3 materiales y después de realizar pruebas de ajustes quedaron de la siguiente manera:</td>
</tr>
<tr>
<td></td>
<td>1. Blanda: con fricción estática y dinámica de 0.9 y efecto rebote de</td>
</tr>
</tbody>
</table>

Figura 32. Bochas
0 ya que es la bocha que menos rueda.

2. Media: con fricción estática y dinámica de 0.7 y efecto rebote de 0.2, ya que rueda y rebota más que la blanda.

3. Dura: con fricción estática de 0.6 y efecto rebote de 0.2 ya que es la que más rueda y rebota parecido a la media.

-Scripts: se les agregaron códigos de interacción dependiendo de la escena.

Figura 33. Componentes de las bochas
| Canasta para Bochas | Se realizó la búsqueda y descarga del objeto y se le asignaron los siguientes componentes:

- *Box Collider*: se utiliza para cualquier objeto con forma cúbica, como una caja o un cofre, se ubicaron 6 box collider en las superficies de la canasta para evitar que las bochas se cayeran al suelo.

| Sillas de ruedas | Se buscaron y descargaron sillas de ruedas para ubicar el avatar del jugador y el del contrincante ya que los deportistas de *Boccia* juegan en silla de ruedas. |

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
| Mini Mapa | Se creó un objeto de interfaz gráfica, en este caso una pantalla y se le agregó como material lo proyectado en una cámara que está ubicada encima de la cancha de *Boccia* otorgando una vista superior del escenario de juego.

Permite que los usuarios puedan ver en todo momento lo que ocurre en el campo de juego. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Pantalla para puntaje | Se creó un objeto de interfaz gráfica ubicado en el campo de vista del jugador, dependiendo de la escena, se puede mostrar el desarrollo de los parciales o los puntos obtenidos en los entrenamientos.

Lo que se muestra en esta pantalla va directamente relacionado con el componente del código que se desarrolla en cada escena. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
<table>
<thead>
<tr>
<th>Tablero para tiempo</th>
<th>Se creó un objeto de interfaz gráfica ubicado en el campo de vista del jugador para contabilizar en cuenta regresiva el tiempo del deportista y del oponente. Se utiliza únicamente en la escena de competencia y va directamente relacionado con el componente del código que maneja el tiempo en esta escena.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 39. Tablero para tiempo</td>
<td></td>
</tr>
</tbody>
</table>

| Graderías y avatar del público | Se buscaron y descargaron las graderías para complementar el espacio del coliseo y también se descargaron de Mixamo un avatar para el público.
A las graderías se les agregó componentes de Box Collider para que los avatar del público se pudieran ubicar exactamente sobre la banca. Y a los avatar del público se le agregaron diferentes animaciones para alentar a los deportistas. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 40. Graderías y público</td>
<td></td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
<table>
<thead>
<tr>
<th>Arcos</th>
<th>Se buscó y descargó un arco para el escenario de precisión, se le asignaron componentes de:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Box Collider: en este caso el colisionador se puede traspasar por las bochas y es utilizado para detectar cuando estas pasan a través del arco.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Script: código para manipular el componente de Transform.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Transform: se modifica la escala por medio del código para aumentar la dificultad de los lanzamientos.</td>
</tr>
</tbody>
</table>

| **Coliseo** | Se buscó y descargó un coliseo para ubicar en este todos los objetos anteriores, en este caso, fue necesario modificar la escala del componente de **Transform** y se reemplazaron unas imágenes con el logo de la Universidad EIA. |

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
3.2.3 Generación de los recursos de la interfaz de usuario

A continuación, se presentan los recursos de interacción creados en Unity (Unity Technologies, Dinamarca) a partir de los diseños realizados en el Game Design Document, para la primera escena del videojuego la cual es la escena de los menús principales, en la cual usuario debe realizar una serie de decisiones dependiendo de lo que desee realizar. El diagrama de interacción se puede observar en la siguiente figura:

Figura 43. Diagrama escena de Menús

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
- Menú de inicio: es el menú que aparece cuando el usuario ingresa a la aplicación, allí se presenta una animación del logo y una flecha con la que el usuario debe interactuar para seguir con la próxima pantalla (Figura 44).

![Figura 44. Menú de inicio](image)

- Menú para escoger el avatar: después de interactuar con el menú de inicio, se lleva al usuario a la pantalla de la Figura 45 para que escoja el avatar de su preferencia, este avatar será utilizado en la escena de competencia para realizar la rifa inicial.

![Figura 45. Menú avatar](image)

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Menú de modo de juego: después de escoger el avatar, el usuario llega a la pantalla de la Figura 46 en la cual debe escoger la actividad que desea realizar entre el modo de competencia y el modo de pruebas, lo cual lo llevaría a cada una de las escenas, o el modo de entrenamiento, lo cual lo guiará a otra pantalla (Figura 47) donde podrá escoger si desea realizar el entrenamiento de fuerza o de precisión y después se enviará a la escena correspondiente.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Cuando el usuario se encuentre en las escenas de juego encontrará varias interfaces con las que podrá interactuar. En todas las escenas se encontrará la interfaz de la Figura 48, con la cual se podrán realizar diferentes acciones como se muestra en los esquemas de interacción de la Figura 50 y la Figura 51 y la interfaz gráfica se muestra en la Figura 52 y Figura 53. Adicionalmente, en las escenas de precisión, fuerza y pruebas se encontrará con la interfaz de la Figura 49 para que la bola regrese a la posición inicial y pueda lanzar nuevamente.

![Figura 48. Pausa y opciones del menú](image)

![Figura 49. Botón para lanzar nuevamente](image)

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Tanto en el menú de pausa como en el menú de opciones de las escenas de precisión, fuerza y pruebas se incluyeron los botones para reiniciar y salir del juego, con el objetivo de hacer la interfaz más sencilla para el usuario, y en el escenario de competencia se adiciona la opción de tutorial en la cual el usuario puede ver las reglas del juego de manera gráfica como se muestra a continuación:
Figura 54. Tutorial del modo de competencia

3.2.3.1 Creación de los modos de juego

Como se estableció en el Game Design Document, para el juego se definieron dos modos de juego: entrenamiento y competencia, y a su vez, el entrenamiento se dividió en otros dos modos: precisión y fuerza, adicionalmente, se realizó un escenario de pruebas para para que los usuarios ejecutan los lanzamientos de los análisis biomecánicos necesarios para el desarrollo del 3 objetivo, en este escenario la intención principal es recrear las mismas condiciones que tienen los usuarios al realizar los lanzamientos en el Laboratorio de Ciencias Aplicadas al Movimiento(CAME) y así, tener datos estadísticamente comparables.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Primero, se realizó la creación de un escenario de juego y a partir de este, se crearon los escenarios adicionales, de esta manera, se ubicó el coliseo en el escenario junto con la cancha de Boccia para verificar las medidas adecuadas de ambos objetos como puede observarse en la siguiente Figura:

![Coliseo y cancha de Boccia](image)

Figura 55. Coliseo y cancha de Boccia

Después, se ubicaron los siguientes objetos en el escenario: sillas de ruedas, avatar, canasta para bochas, graderías, pantallas y menús de interacción, estos último se debían modificar para ser ubicados en el espacio tridimensional y no únicamente en dos dimensiones al frente de la cámara, ya que en un ambiente de realidad virtual el usuario puede observar el escenario alrededor para interactuar con los objetos e interfaces. Por último, se organizó la vista de la cámara de modo que se tuviera una vista de primera persona desde la ubicación de la cabeza del jugador como se observa en la Figura 56.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 57. Flujo de la escena de precisión
2. **Escena de fuerza**: para la escena de fuerza, primero se realizó una textura con la división de la cancha de *Boccia* en 9 secciones y se aplicó esta al *GameObject* de la cancha, después se adicionó la interfaz de la Figura 49 y se diseñó el diagrama de flujo de las acciones posibles de la escena (Figura 57). La experiencia de la escena se basa en indicar al usuario la zona de la cancha a la que debe lanzar, la cancha se divide en tres secciones generales (Figura 60) y el nivel de dificultad se maneja, aumentando la zona a la que debe lanzar Cuando el usuario cumple con el objetivo, se van sumando y mostrando los puntos en una pantalla ubicada al lado.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
izquierdo del escenario. De esta manera, cuando el usuario completa 10 lanzamientos en cada nivel de dificultad, la sección de la cancha indicada aumenta y cuando complete 30 lanzamientos habrá finalizado su entrenamiento. En la Figura 61 se puede observar una representación de dos momentos del escenario de fuerza, el primero donde se indica al usuario lanzar a la zona cercana, y el segundo donde ya completó 10 puntos y se le indica lanzar a la zona media.

Figura 59. Flujo de la escena de Fuerza

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
3. **Escena de pruebas:** la escena de pruebas es diseñada con la finalidad de realizar el tercer objetivo del proyecto, para esto, se crearon dos `GameObject` con forma de cuadrado y se ubicaron a nivel del suelo, uno a dos metros y el otro a cinco metros ya que de esta manera se realizan las pruebas biomecánicas del gesto de Boccia en el Laboratorio de Ciencias Aplicadas al Movimiento (CAME). También, se agregó la interfaz de la Figura 49 y se diseñó el diagrama de flujo de las acciones posibles de la escena (Figura 62). La experiencia de la escena se basa en indicar al usuario que debe lanzar a un objetivo (el objetivo 1 o el objetivo 2) y cumplir 5 lanzamientos a cada objetivo sumando un total de 10 puntos, cuando el usuario cumple el objetivo, los puntos se suman y se muestran una pantalla ubicada al lado izquierdo del escenario. De esta manera, cuando el usuario completa 5 puntos, se le indica que debe lanzar al segundo objetivo y cuando realice los otros 5 lanzamientos habrá...
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

4. **Escena de competencia**: es la escena en la que se desarrolla la experiencia de un partido real de **Boccia**, para esta escena se agregaron varios objetos adicionales como: 12 bochas, 4 canastas para ubicar las bochas, 2 sillas de ruedas, pantalla para mostrar el tiempo, avatar del contrincante o robot y público para alentar al usuario. El diagrama general de flujo de la escena se puede encontrar en la Figura 64, y está basado en las reglas de **Boccia** descritas con detalle en el *Game Design Document* (Anexo 1). La experiencia de la escena se basa en que el usuario pueda jugar un partido de **Boccia** como se hace en la realidad teniendo en cuenta elementos como el tiempo de juego, la rifa inicial, los turnos del juego, el puntaje y los tipos de bochas que puede utilizar. Como se concluyó en el análisis biomecánico del objetivo 1, los deportistas que utilizan diferentes tipos de bochas realizan gestos de lanzamiento diferentes, y por eso, en esta escena se incluyeron 3 tipos de bochas (blanda, media y dura) las cuales se integraron en la escena con la creación de una interfaz adicional, en la cual el usuario pudiera escoger la bocha de su preferencia para el lanzamiento (Figura 65). El objetivo de este escenario es vencer a la máquina.
en la simulación de un partido de Boccia aplicando todas las estrategias de juego.
En la Figura 66 se puede observar una representación del escenario de competencia.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Figura 65. Interfaz para escoger tipo de bocha

Figura 66. Escena de competencia

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
3.2.3.2 Integración del videojuego a la plataforma de destino

Para iniciar con la configuración adicional del ambiente en Unity (Unity Technologies, Dinamarca) para realizar de forma correcta la integración con las Meta Quest 2, se debe tener en cuenta que la experiencia en este caso será una experiencia de realidad virtual estática, es decir, el usuario podrá interactuar con el ambiente sin la necesidad de desplazarse por el ambiente virtual, esto permite la ventaja de hacer que el usuario perciba menos sensaciones negativas que se generan ocasionalmente con la realidad virtual como lo son los mareos y las náuseas y asegura así evocar una mejor sensación en el usuario.

Se descargó e instaló el Oculus XR Plugin y el XR Plugin Management los cuales son los dos paquetes que incluyen los códigos y librerías necesarias para la integración de la plataforma destino, después, se agregaron los objetos necesarios a las escenas para permitir la interacción con el ambiente. En este caso, se agregaron las dos representaciones de los controles de las Meta Quest 2, uno representado por un rayo para interactuar con las interfaces gráficas y el otro con forma de mano para que el usuario pudiera tener una mejor experiencia al ver que en el ambiente virtual tiene una mano para interactuar con las bochas como se muestra en la siguiente Figura:

![Figura 67. Integración de controles](image)

También, se asignaron códigos a todas las interfaces gráficas para permitir la interacción con los controladores y a los objetos de las bochas se les agregó un código que permitiera que estas pudieran ser manipuladas como una bocha real. Adicionalmente, mediante un objeto de los paquetes integrados, se permite hacer una simulación del funcionamiento del juego en el editor de Unity (Unity Technologies, Dinamarca) como si se tuviera el juego en la plataforma de las Meta Quest 2 con el objetivo de verificar la funcionalidad y modificar parámetros como la altura de la cámara.
3.2.4 Integración de las características biomecánicas a la plataforma de realidad virtual

En la herramienta de realidad virtual, se realizó la implementación de las fórmulas calculadas en el modelo, donde la distancia está representada por la siguiente fórmula:

$$X = \ln \left(\frac{k \rho \ m}{vo \cos \beta \ t + 1} \right)$$

Donde:
- $k =$ coeficiente de fricción del aire,
- $\rho =$ densidad del aire,
- $vo =$ velocidad inicial de lanzamiento,
- $\beta =$ ángulo de lanzamiento,
- $t =$ tiempo de lanzamiento,
- $m =$ masa de la bocha

De esta manera, con la información obtenida en las grabaciones de Vicon (Vicon Motion Systems Ltd, Reino Unido) se pudo reunir información de los ángulos de lanzamiento, el tiempo de lanzamiento aproximado y la velocidad de lanzamiento para tener unos valores iniciales de las variables de la fórmula. Finalmente, para obtener la posición inicial de lanzamiento de la bocha, se utilizó la posición de la mano del avatar.

Adicionalmente, con la fórmula del modelo y los datos obtenidos en el análisis biomecánico del primer objetivo fue posible realizar un cálculo de la fricción del piso, y así, crear un material con esta fricción para utilizarlo en la cancha de Boccia en la herramienta de realidad virtual.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
3.2.5 Pruebas de funcionamiento

Después de tener las escenas y sus objetos físicos ubicados en espacio virtual, se procedió al desarrollo de los códigos necesarios para cumplir el diagrama de flujo diseñado para cada escena (Figura 50, Figura 51, Figura 57, Figura 59, Figura 62 y Figura 64) para esto, se desarrollaron los códigos necesarios en el lenguaje de programación C#, mediante el entorno de desarrollo integrado (IDE) Visual Studio (Microsoft Visual Studio, Microsoft), y posteriormente, se utilizó el Lenguaje Unificado de Modelado (UML) para mostrar visualmente la estructura de los códigos creados y encontrar posibles errores, específicamente, se utilizó el diagrama de clases para evaluar cada código implementado y su relación con otros. A continuación, se presentan los diagramas de clases para cada escena:

- Código para manejar escenas: permite el cambio entre escenas cuando se presiona un botón diseñado con este fin, se utiliza en todas las escenas.

![Diagrama de código para manejar escenas](image)

Figura 69. Diagrama de código para manejar escenas

- Códigos para escena de precisión: se realizaron tres códigos para esta escena; uno para la bola, uno para el arco y otro para el manejo general de la dinámica del juego, en este último, se recibe información de los otros dos para su funcionamiento.
Figura 70. Diagrama de códigos para la escena de Precisión

- Códigos de la escena de fuerza: se realizaron dos códigos para el manejo de la escena, uno para la bola y otro para el manejo general de la dinámica del juego.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 71. Diagrama de códigos para la escena de Fuerza

- Códigos para la escena de pruebas: se realizaron dos códigos para el manejo de la escena, uno para la bola y otro para el manejo general de la dinámica de las pruebas.
Figura 72. Diagrama de códigos para la escena de Pruebas

- Códigos escena de competencia: se realizaron cuatro códigos para llevar a cabo la dinámica en la escena de competencia ya que es la que más desarrollo conlleva. En este caso, se tenía un código para el manejo de las animaciones del robot, uno para la bola, uno para recibir los datos de la escena de menú y obtener de allí la información del avatar escogido por el jugador y uno para implementar todos los anteriores y manejar la dinámica general del partido.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Figura 75. Diagrama 3 de códigos para la escena de competencia

3.2.6 Pruebas de lanzamientos

Las primeras pruebas de los lanzamientos se realizaron antes de hacer la integración del juego a la plataforma de las Meta Quest 2, después de que estas pruebas fueran validadas, se procedió a realizar la integración a la plataforma y se realizaron pruebas en esta.

Para las pruebas antes de la integración de la plataforma, primero, se realizaban pruebas en el editor de Unity (Unity Technologies, Dinamarca), allí, se pueden controlar los componentes y variables de las escenas para realizar las pruebas necesarias, de esta manera, por ejemplo, se modificaban los puntos obtenidos para verificar que las imágenes de los trofeos estuvieran saliendo correctamente en todas las escenas, y se modificaban los componentes de las bolas para cumplir con los objetivos propuestos y verificar que se estuvieran contando los puntos de manera adecuada (Figura 76).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Figura 76. Pruebas en el editor de Unity

Después de realizar todas las pruebas en el editor de Unity (Unity Technologies, Dinamarca) y tener el juego integrado en la plataforma de destino (Meta Quest 2), se realizaban pruebas adicionales para verificar que los objetos del juego estuvieran ubicados correctamente en el escenario, que la altura de la cámara estuviera a una altura correcta, teniendo en cuenta que debe estar ubicada en la cabeza del usuario, y por último, para realizar pruebas de los lanzamientos con los controles y rectificar los componentes asignados a estas. Las pruebas se realizaron en todos los escenarios y se cumplieron todos los objetivos propuestos en cada escena Figura 77.

Figura 77. Pruebas en Meta Quest 2

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
3.3 RESULTADOS OBJETIVO 3

Este objetivo tenía como propósito comparar los movimientos generados en la realidad, con respecto a los realizados utilizando la herramienta de realidad virtual. A continuación, se presentan los resultados obtenidos.

3.3.1 Procedimiento para realizar las pruebas de los lanzamientos con la herramienta de realidad virtual y sin esta

Con las pruebas y análisis realizados en el objetivo 1, se definieron las distancias de lanzamiento de dos metros y cinco metros tanto para los lanzamientos con las bochas como para los lanzamientos en realidad virtual.

La cantidad de lanzamientos definida fue de cinco lanzamientos con cada tipo de bola (cuando se tuvieran diferentes tipos de bola), a cada distancia sin la herramienta y con la herramienta de realidad virtual (Tabla 30) con el objetivo de tener por lo menos tres lanzamientos con la información necesaria, dando como resultado un total de mínimo 60 lanzamientos. Para validar cada lanzamiento se ubicaba la bola Diana en la distancia adecuada y se verificaba que la bocha cayera a menos de 30 cm de esta, y en la herramienta de realidad virtual, se hacía esta verificación por medio de los códigos de la escena de pruebas.

Al realizar las pruebas de los análisis biomecánicos del objetivo 1, se descubrió que no todos los deportistas de Boccia utilizaban los 3 tipos de bolas, sino que esto dependía de su nivel de espasticidad en la mano, su preferencia y su experiencia con el deporte, así, la cantidad de lanzamientos finalmente dependía de los tipos de bola que utilizará el deportista.

<table>
<thead>
<tr>
<th>Distancias</th>
<th>Tipos de bola</th>
<th>Tipo de lanzamiento</th>
<th>Repeticiones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 metros</td>
<td>Blanda</td>
<td>Sin herramienta</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Con herramienta</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mediana</td>
<td>Sin herramienta</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Con herramienta</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Dura</td>
<td>Sin herramienta</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Con herramienta</td>
<td>5</td>
</tr>
<tr>
<td>5 metros</td>
<td>Blanda</td>
<td>Sin herramienta</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Con herramienta</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mediana</td>
<td>Sin herramienta</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Con herramienta</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Dura</td>
<td>Sin herramienta</td>
<td>5</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Para las pruebas de utilizó el mismo modelo de miembro superior validado para las pruebas biomecánicas del objetivo 1.

Adicionalmente, se diseñó una prueba de usabilidad (Anexo 7) para evaluar la experiencia del usuario utilizando la herramienta de realidad virtual, por ejemplo, evaluar la facilidad del usuario para lograr un objetivo y navegar por la aplicación con la finalidad de reunir las recomendaciones a implementar para mejorar el desarrollo de la herramienta.

Para este análisis, se definieron los ángulos de lanzamiento de hombro, codo y muñeca como las variables biomecánicas de importancia en el gesto deportivo de Boccia.

3.3.2 Registro de la prueba

Una vez el deportista se encontraba en el Laboratorio de Ciencias Aplicadas al Movimiento, se realizaba una introducción sobre las Meta Quest 2 y la herramienta tecnológica desarrollada: TechBo, posteriormente, el deportista procedía a realizar el calentamiento que habitualmente realiza, en este caso, ya se encontraban registradas las medidas anatómicas de los deportistas de las primeras grabaciones (Tabla 6, Tabla 7, Tabla 8 y Tabla 9).

Después de finalizar el calentamiento, ubicaron los marcadores de los modelos independientes de miembro superior derecho e izquierdo validados en el objetivo 1, utilizando una banda previamente desinfectada para los 4 marcadores de la cabeza y cinta doble faz desechable para adherirlos. Con los marcadores ubicados, se realizaron las calibraciones estáticas y dinámicas (Figura 15 y Figura 16) para que el sistema de Vicon (Vicon Motion Systems Ltd, Reino Unido) hiciera correctamente la reconstrucción del modelo.

Con las calibraciones completas, se procedió a realizar la grabación de los lanzamientos con las bochas como se puede observar en la Figura 78, para esto, se ubicó la bola Diana de los deportistas en los objetivos seleccionados de 2 metros y 5 metros y se les pidió realizar los lanzamientos a ésta.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
A las grabaciones en las cuales la bola alcanzaba el objetivo, se les realizaba un procesamiento inicial de los datos (procedimiento de la Figura 21, Figura 22, Figura 23 y Figura 24) y una vez finalizaba las grabaciones con las bochas, se procedía a realizar las grabaciones de los lanzamientos con la herramienta de realidad virtual TechBo.

Antes de realizar los lanzamientos, se permitía que el deportista explorara la aplicación, para esto, se transmitía la pantalla de las Meta Quest 2 al computador para observar lo que el deportista estaba realizando, y se registraban los datos de la prueba de usabilidad que se analizará en el apartado 3.3.4.

Después, se le pedía al deportista que ingresas al escenario de Pruebas, en el cual se encontraban representados los objetos a las distancias de dos metros y cinco metros (Figura 79) para garantizar que los datos obtenidos fueran comparables con los datos de los lanzamientos con las bochas. El deportista realizaba unos lanzamientos de prueba y cuando se encontraba listo, se iniciaban las grabaciones en el sistema de Vicon (Vicon Motion Systems Ltd, Reino Unido) de igual manera que se hicieron las grabaciones con las bochas.
Finalmente, a las grabaciones en las cuales la bola alcanzaba el objetivo en la herramienta de realidad virtual TechBo, se les realizaba un procesamiento inicial, igual al realizado en los lanzamientos con las bochas, con la finalidad de comprobar que no se encontraran pérdidas de la información obtenida durante los lanzamientos.

3.3.3 Análisis biomecánico

Las grabaciones en las cuales los deportistas habían cumplido con el objetivo, se les realizó el análisis biomecánico efectuando la segunda parte del procesamiento de la información de igual manera que el procesamiento realizado en el objetivo 1 (Figura 25, Figura 26 y Figura 27), de esta manera, se escogieron tres grabaciones a cada distancia y se realizaron las siguientes actividades:

1. Recortar la grabación y etiquetar correctamente los marcadores equivocados.
2. Completar vacíos en la trayectoria de los marcadores.
3. Procesamiento final de la prueba.
4. Realizar el análisis de la información.

En la Tabla 31 se encuentra el promedio de los ángulos obtenidos en las grabaciones sin la herramienta de realidad virtual y con la herramienta de realidad virtual, por cada deportista a cada distancia, adicionalmente, se encuentra la desviación estándar de los datos, en las cuales se resaltaron las que obtuvieron un resultado mayor a 10° ya que son en las cuales hay mayor diferencia del gesto deportivo realizado.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
<table>
<thead>
<tr>
<th>Deportista</th>
<th>Articulación</th>
<th>Distancia (m)</th>
<th>Promedio X°</th>
<th>Std X°</th>
<th>Promedio Y°</th>
<th>Std Y°</th>
<th>Promedio Z°</th>
<th>Std Z°</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Hombro</td>
<td>2</td>
<td>52,89</td>
<td>±5,93</td>
<td>29</td>
<td>±111,1</td>
<td>48,81</td>
<td>±5,74</td>
</tr>
<tr>
<td></td>
<td>Codo</td>
<td>2</td>
<td>41,45</td>
<td>±27,96</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Muñeca</td>
<td>2</td>
<td>13,68</td>
<td>±6,46</td>
<td>0,47</td>
<td>±0,56</td>
<td>-1,08</td>
<td>±42,76</td>
</tr>
<tr>
<td>3</td>
<td>Hombro</td>
<td>2</td>
<td>62,59</td>
<td>±3,07</td>
<td>9,05</td>
<td>±4,39</td>
<td>-6,33</td>
<td>±10,55</td>
</tr>
<tr>
<td></td>
<td>Codo</td>
<td>2</td>
<td>95,55</td>
<td>±39,92</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Muñeca</td>
<td>2</td>
<td>-22,5</td>
<td>±4,29</td>
<td>-8,24</td>
<td>±4,68</td>
<td>-38,68</td>
<td>±10,96</td>
</tr>
<tr>
<td></td>
<td>Hombro</td>
<td>5</td>
<td>58,55</td>
<td>±10,75</td>
<td>-7,12</td>
<td>±13,13</td>
<td>-4,61</td>
<td>±4,11</td>
</tr>
<tr>
<td></td>
<td>Codo</td>
<td>5</td>
<td>91,85</td>
<td>±32,88</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Muñeca</td>
<td>5</td>
<td>-28,63</td>
<td>±8,46</td>
<td>-5,58</td>
<td>±1,20</td>
<td>-35,47</td>
<td>±7,15</td>
</tr>
<tr>
<td>4</td>
<td>Hombro</td>
<td>2</td>
<td>44,93</td>
<td>±4,38</td>
<td>35,16</td>
<td>±1,74</td>
<td>-4,67</td>
<td>±19,75</td>
</tr>
<tr>
<td></td>
<td>Codo</td>
<td>2</td>
<td>52,6</td>
<td>±6,49</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Muñeca</td>
<td>2</td>
<td>-7,83</td>
<td>±28,07</td>
<td>20,67</td>
<td>±15,61</td>
<td>143,81</td>
<td>±7,77</td>
</tr>
<tr>
<td></td>
<td>Hombro</td>
<td>5</td>
<td>65,83</td>
<td>±1,87</td>
<td>38,5</td>
<td>±4,45</td>
<td>-4,39</td>
<td>±5,64</td>
</tr>
<tr>
<td></td>
<td>Codo</td>
<td>5</td>
<td>52,6</td>
<td>±5,65</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Muñeca</td>
<td>5</td>
<td>-8,45</td>
<td>±2,65</td>
<td>22,82</td>
<td>±3,87</td>
<td>105,6</td>
<td>±6,20</td>
</tr>
</tbody>
</table>

Adicionalmente, se realizaron diagramas de polígono en los cuales los datos estándar están representados por los límites articulares normales definidos por (Kapandji, 2006).

Figura 80. Diagrama de polígono para hombro

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

En los diagramas de la Figura 80, Figura 81 y Figura 82 se encuentran representados los promedios de los rangos articulares máximos obtenidos por los deportistas en los lanzamientos sin la herramienta de realidad virtual y con la herramienta de realidad virtual.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
se puede observar que únicamente un deportista obtuvo un dato por fuera del rango normal en la rotación interna del hombro, esto puede deberse a su patología y la falta de práctica recurrente del deporte.

A continuación, se realizó un análisis estadístico de la información obtenida en las grabaciones de los lanzamientos en Minitab (Minitab Inc, Estados Unidos), para esto, es necesario tener en cuenta que el sistema de Vicon (Vicon Motion Systems Ltd, Reino Unido) graba a una velocidad de 100 FPS (Frames per second) es decir que 100 Frames representan 1 segundo de grabación. Para realizar el análisis, se verificó el momento exacto del lanzamiento de cada deportista teniendo en cuenta las gráficas de los ángulos de las articulaciones (hombro, codo o muñeca) obtenidas, ya que se observaban los momentos en los cuales se alcanzaban ángulos de extensión o flexión máxima y se escogía ese Frame como el punto final del lanzamiento. A partir de este punto, se escogían los datos de 10 Frames anteriores ya que los gestos de lanzamiento tienen una duración aproximada de 40 a 60 Frames y estos 10 últimos representan la información más importante para el análisis.

Después de extraer la información de 3 grabaciones a cada distancia para cada deportista, se realizó un promedio de los datos obtenidos y después se realizó una diferencia entre los ángulos obtenidos de cada Frame, con el Frame anterior para obtener la variación de los grados durante el lanzamiento. Estos últimos datos eran los analizados estadísticamente (Anexo 8).

Para este análisis, se contaba con un deportista menos ya que el deportista 01 se encontraba incapacitado debido a una cirugía de cadera.

Para el análisis de las pruebas, se aplicó la prueba estadística de Wilcoxon, la cual es una prueba no paramétrica que sirve para verificar si existen diferencias significativas entre dos muestras. En este caso, como las muestras son de un mismo deportista en dos momentos diferentes, se realiza una prueba pareada con un nivel de confianza del 95 % en el cual la hipótesis nula (Ho) planteada es que las diferencias entre las medianas de las muestras sean igual a 0 y la hipótesis alternativa (H1) es que las diferencias entre las medianas de las muestras sean diferentes de 0.

En los resultados se analizan los ángulos sagitales (eje X), frontales (eje Y) y transversales (eje Z) con los cuales está identificada cada articulación, acompañado de la distancia de lanzamiento. Por ejemplo, "°X Hombro 2 m" representa los ángulos sagitales del hombro a una distancia de 2 metros.

A continuación, se presentan los datos obtenidos de los análisis biomecánicos para el deportista 02, el cual es un deportista que no ha vuelto a la práctica regular del deporte de Boccia. Primero, se aplicó una prueba estadística de Wilcoxon para las articulaciones de

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
hombro, codo y muñeca (Tabla 32, Tabla 33 y Tabla 34) y el análisis correspondiente se registró en la Tabla 35.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Número de prueba</th>
<th>Estadística de Wilcoxon</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Hombro 2 m</td>
<td>9</td>
<td>45,00</td>
<td>0,009</td>
</tr>
<tr>
<td>Y Hombro 2 m</td>
<td>9</td>
<td>12,00</td>
<td>0,236</td>
</tr>
<tr>
<td>Z Hombro 2 m</td>
<td>9</td>
<td>26,00</td>
<td>0,722</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Número Estadística de Wilcoxon</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Codo 2 m</td>
<td>42,00</td>
<td>0,024</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Número de prueba</th>
<th>Estadística de Wilcoxon</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Muñeca 2 m</td>
<td>9</td>
<td>45,00</td>
<td>0,009</td>
</tr>
<tr>
<td>Y Muñeca 2 m</td>
<td>9</td>
<td>1,00</td>
<td>0,013</td>
</tr>
<tr>
<td>Z Muñeca 2 m</td>
<td>9</td>
<td>6,00</td>
<td>0,058</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Articulación</th>
<th>Resultado de la prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Hombro 2 m</td>
<td>Se rechaza la hipótesis nula (Ho) con un valor de $p = 0.009$ lo que significa que las muestras son significativamente diferentes.</td>
</tr>
<tr>
<td>Y Hombro 2 m</td>
<td>Se acepta la hipótesis nula (Ho) con un valor de $p = 0.236$ lo que significa que las muestras no son significativamente diferentes</td>
</tr>
<tr>
<td>Z Hombro 2 m</td>
<td>Se acepta la hipótesis nula (Ho) con un valor de $p = 0.722$ lo que significa que las muestras no son significativamente diferentes</td>
</tr>
<tr>
<td>X Codo 2 m</td>
<td>Se rechaza la hipótesis nula (Ho) con un valor de $p = 0.024$ lo que significa que las muestras son significativamente diferentes</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

° X Muñeca 2 m	Se rechaza la hipótesis nula (Ho) con un valor de p = 0.009 lo que significa que las muestras son significativamente diferentes
° Y Muñeca 2 m	Se rechaza la hipótesis nula (Ho) con un valor de p = 0.013 lo que significa que las muestras son significativamente diferentes
° Z Muñeca 2 m	Se acepta la hipótesis nula (Ho) con un valor de p = 0.058 lo que significa que las muestras no son significativamente diferentes

De acuerdo con el análisis de la tabla anterior, en la articulación del hombro, únicamente se encontraron diferencias significativas en el plano sagital, es decir, que el deportista realiza un movimiento similar en abducciones, aducciones y rotaciones del hombro tanto en la realidad como utilizando la herramienta de realidad virtual. En la articulación del codo en el plano sagital, y en los planos sagitales y frontales de la muñeca, se encuentran diferencias significativas del gesto de lanzamiento, lo cual representa diferencias en el gesto de lanzamiento en los dos ambientes, por último, en el eje transversal de la muñeca no se encuentran diferencias significativas.

Adicionalmente, se evaluaron las gráficas de los ángulos para verificar la similitud de los lanzamientos en la realidad y con la herramienta de realidad virtual (Figura 83), en las cuales se pudo observar que el deportista 02 realiza gestos muy similares en las articulaciones de hombro y codo, y en la articulación de muñeca se tienen algunas diferencias en los gestos, aunque en el eje transversal no se hayan obtenido diferencias significativas.

Para el deportista 02, no fue posible realizar grabaciones a la distancia de 5 metros ya que, debido a su estado avanzado de parálisis cerebral, y su espasticidad en el brazo derecho, no era capaz de manejar el control con la suficiente habilidad para soltar la bocha a la altura necesaria para que la bola llegara a los 5 metros en el escenario virtual.

A continuación, se presentan los análisis para el deportista 03 de la prueba de Wilcoxon para las articulaciones de hombro, codo y muñeca a las distancias de 2 metros y 5 metros. Inicialmente, se realizó el análisis a 2 metros y se registró en la Tabla 39.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Número de prueba</th>
<th>Estadística de Wilcoxon</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>°XHombro 2 m</td>
<td>9</td>
<td>45,00</td>
<td>0,009</td>
</tr>
<tr>
<td>°YHombro 2 m</td>
<td>9</td>
<td>8,00</td>
<td>0,097</td>
</tr>
<tr>
<td>°ZHombro 2 m</td>
<td>9</td>
<td>1,00</td>
<td>0,013</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Tablas 37, 38 y 39 muestran los resultados de las pruebas de Wilcoxon para diferentes articulaciones y distancias del deportista. Las pruebas indican si las muestras son significativamente diferentes o no.

De acuerdo con el análisis de la tabla anterior, para la articulación del hombro en los planos sagital y transversal se encuentran diferencias significativas, pero en el eje frontal, el deportista realiza un gesto similar en ambos lanzamientos. En la articulación del codo, y en el eje frontal de la muñeca no se presentan diferencias significativas, por último, en los ejes sagital y transversal de la muñeca sí se encuentran diferencias entre los lanzamientos. Por lo tanto, en la mayoría de los ejes, estadísticamente el deportista realiza gestos de lanzamiento diferentes en ambos ambientes.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Adicionalmente, se evaluaron las gráficas de los ángulos para verificar la similitud de los lanzamientos en la realidad y con la herramienta de realidad virtual (Figura 84), en las cuales se pudo observar que el deportista realiza un gesto de lanzamiento similar en ambos lanzamientos, aunque se hayan obtenido diferencias estadísticas en los análisis.

![Gráficas del deportista 03 a 2 metros](image)

Ahora, se presentan los resultados de los análisis para el deportista 03 a la distancia de 5 metros, los cuales se registraron en la Tabla 43.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Número de prueba</th>
<th>Estadística de Wilcoxon</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>°X Hombro 5 m</td>
<td>9</td>
<td>44,00</td>
<td>0,013</td>
</tr>
<tr>
<td>°Y Hombro 5 m</td>
<td>9</td>
<td>0,00</td>
<td>0,009</td>
</tr>
<tr>
<td>°Z Hombro 5 m</td>
<td>9</td>
<td>14,00</td>
<td>0,343</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Tabla 41. Prueba de Wilcoxon para codo a 5 metros del deportista 03

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Número de prueba</th>
<th>Estadística de Wilcoxon</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>°XCodo5m</td>
<td>9</td>
<td>0,00</td>
<td>0,009</td>
</tr>
</tbody>
</table>

Tabla 42. Prueba de Wilcoxon para muñeca a 5 metros del deportista 03

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Número de prueba</th>
<th>Estadística de Wilcoxon</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>° X Muñeca 5 m</td>
<td>9</td>
<td>45,00</td>
<td>0,009</td>
</tr>
<tr>
<td>° Y Muñeca 5 m</td>
<td>9</td>
<td>26,00</td>
<td>0,722</td>
</tr>
<tr>
<td>° Z Muñeca 5 m</td>
<td>9</td>
<td>45,00</td>
<td>0,009</td>
</tr>
</tbody>
</table>

Tabla 43. Análisis prueba de Wilcoxon para el deportista 03 a 5 metros

<table>
<thead>
<tr>
<th>Articulación</th>
<th>Resultado de la prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td>°X Hombro 5 m</td>
<td>Se rechaza la hipótesis nula (Ho) con un valor de p = 0.013 lo que significa que las muestras son significativamente diferentes.</td>
</tr>
<tr>
<td>°Y Hombro 5 m</td>
<td>Se rechaza la hipótesis nula (Ho) con un valor de p = 0.009 lo que significa que las muestras son significativamente diferentes</td>
</tr>
<tr>
<td>°Z Hombro 5 m</td>
<td>Se acepta la hipótesis nula (Ho) con un valor de p = 0.343 lo que significa que las muestras no son significativamente diferentes</td>
</tr>
<tr>
<td>°X Codo 5 m</td>
<td>Se rechaza la hipótesis nula (Ho) con un valor de p = 0.009 lo que significa que las muestras son significativamente diferentes</td>
</tr>
<tr>
<td>° X Muñeca 5 m</td>
<td>Se rechaza la hipótesis nula (Ho) con un valor de p = 0.009 lo que significa que las muestras son significativamente diferentes</td>
</tr>
<tr>
<td>° Y Muñeca 5 m</td>
<td>Se acepta la hipótesis nula (Ho) con un valor de p = 0.722 lo que significa que las muestras no son significativamente diferentes</td>
</tr>
<tr>
<td>° Z Muñeca 5 m</td>
<td>Se rechaza la hipótesis nula (Ho) con un valor de p = 0.009 lo que significa que las muestras son significativamente diferentes</td>
</tr>
</tbody>
</table>

Como puede observarse en la tabla anterior, para la articulación del hombro, se presentan diferencias significativas en los planos sagital y frontal y no se presentan diferencias en el plano transversal. Para la articulación del codo, y los planos sagital y frontal de la muñeca, también se presentan diferencias significativas y en el plano transversal no se presentan diferencias entre los lanzamientos. Por lo tanto, en la mayoría de los ejes, estadísticamente el deportista realiza gestos de lanzamiento diferentes en ambos ambientes.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Adicionalmente, se evaluaron las gráficas de los ángulos para verificar la similitud de los lanzamientos en la realidad y con la herramienta de realidad virtual (Figura 85), en las cuales se pudo observar que realiza un gesto similar en ambos lanzamientos e incluso mejor que a la distancia de 2 metros.

Figura 85. Gráficas del deportista 03 a 5 metros

Finalmente, se presentan los análisis para el deportista 04 de la prueba de Wilcoxon para las articulaciones de hombro, codo y muñeca a las distancias de 2 metros y 5 metros. Inicialmente, se realizó el análisis a 2 metros y se registró en la Tabla 47.

Tabla 44. Prueba de Wilcoxon para hombro a 2 metros del deportista 04

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Número de prueba</th>
<th>Estadística de Wilcoxon</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>°XHombro 2 m</td>
<td>9</td>
<td>37,00</td>
<td>0,097</td>
</tr>
<tr>
<td>°YHombro 2 m</td>
<td>9</td>
<td>45,00</td>
<td>0,009</td>
</tr>
<tr>
<td>°ZHombro 2 m</td>
<td>9</td>
<td>41,00</td>
<td>0,033</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Tabla 45. Prueba de Wilcoxon para codo a 2 metros del deportista 04

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Número de prueba</th>
<th>Estadística de Wilcoxon</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>°X Codo 2 m</td>
<td>9</td>
<td>45,00</td>
<td>0,009</td>
</tr>
</tbody>
</table>

Tabla 46. Prueba de Wilcoxon para muñeca a 2 metros del deportista 04

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Número de prueba</th>
<th>Estadística de Wilcoxon</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>° X Muñeca 2 m</td>
<td>9</td>
<td>0,00</td>
<td>0,009</td>
</tr>
<tr>
<td>° Y Muñeca 2 m</td>
<td>9</td>
<td>45,00</td>
<td>0,009</td>
</tr>
<tr>
<td>° Z Muñeca 2 m</td>
<td>9</td>
<td>20,00</td>
<td>0,813</td>
</tr>
</tbody>
</table>

Tabla 47. Análisis prueba de Wilcoxon para el deportista 04 a 2 metros

<table>
<thead>
<tr>
<th>Articulación</th>
<th>Resultado de la prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td>°X Hombro 2 m</td>
<td>Se acepta la hipótesis nula (H0) con un valor de p = 0.097 lo que significa que las muestras no son significativamente diferentes.</td>
</tr>
<tr>
<td>°Y Hombro 2 m</td>
<td>Se rechaza la hipótesis nula (H0) con un valor de p = 0.009 lo que significa que las muestras son significativamente diferentes.</td>
</tr>
<tr>
<td>°Z Hombro 2 m</td>
<td>Se rechaza la hipótesis nula (H0) con un valor de p = 0.033 lo que significa que las muestras son significativamente diferentes.</td>
</tr>
<tr>
<td>°X Codo 2 m</td>
<td>Se rechaza la hipótesis nula (H0) con un valor de p = 0.009 lo que significa que las muestras son significativamente diferentes.</td>
</tr>
<tr>
<td>° X Muñeca 2 m</td>
<td>Se rechaza la hipótesis nula (H0) con un valor de p = 0.009 lo que significa que las muestras son significativamente diferentes.</td>
</tr>
<tr>
<td>° Y Muñeca 2 m</td>
<td>Se rechaza la hipótesis nula (H0) con un valor de p = 0.009 lo que significa que las muestras son significativamente diferentes.</td>
</tr>
<tr>
<td>° Z Muñeca 2 m</td>
<td>Se acepta la hipótesis nula (H0) con un valor de p = 0.813 lo que significa que las muestras no son significativamente diferentes.</td>
</tr>
</tbody>
</table>

De acuerdo los resultados de la tabla anterior, en la articulación del hombro, no se presentan diferencias significativas en los ángulos de flexión y extensión, pero sí se presentan diferencias en los otros 2 ejes; frontal y transversal. En la articulación del codo y en los ejes sagitales y frontales de la muñeca, se presentan diferencias significativas, por último, en los ángulos transversales de la muñeca no se presentan diferencias en los lanzamientos. Lo cual significa que estadísticamente el deportista realiza variaciones en su gesto en ambos tipos de lanzamiento.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Adicionalmente, se evaluaron las gráficas de los ángulos para verificar la similitud de los lanzamientos en la realidad y con la herramienta de realidad virtual (Figura 86), en las cuales se pudo observar que el deportista 04 realiza gestos muy similares en las articulaciones de hombro y codo, y en la articulación de muñeca se tienen algunas diferencias en los gestos.

Figura 86. Gráficas del deportista 04 a 2 metros

Por último, se presentan los resultados de los análisis para el deportista 04 a la distancia de 5 metros, los cuales se registraron en la Tabla 51.

Tabla 48. Prueba de Wilcoxon para hombro a 5 metros del deportista 04

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Número de prueba</th>
<th>Estadística de Wilcoxon</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>°XHombro 5 m</td>
<td>9</td>
<td>40,00</td>
<td>0,044</td>
</tr>
<tr>
<td>°YHombro 5 m</td>
<td>9</td>
<td>0,00</td>
<td>0,009</td>
</tr>
<tr>
<td>°ZHombro 5 m</td>
<td>9</td>
<td>0,00</td>
<td>0,009</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Tabla 49. Prueba de Wilcoxon para codo a 5 metros del deportista 04

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Número Estadística de prueba</th>
<th>Número Estadística de Wilcoxon</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>°XCodo5m</td>
<td>9</td>
<td>43,00</td>
<td>0,018</td>
</tr>
</tbody>
</table>

Tabla 50. Prueba de Wilcoxon para muñeca a 5 metros del deportista 04

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Número Estadística de prueba</th>
<th>Número Estadística de Wilcoxon</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>° X Muñeca 5 m</td>
<td>9</td>
<td>45,00</td>
<td>0,009</td>
</tr>
<tr>
<td>° Y Muñeca 5 m</td>
<td>9</td>
<td>45,00</td>
<td>0,009</td>
</tr>
<tr>
<td>° Z Muñeca 5 m</td>
<td>9</td>
<td>45,00</td>
<td>0,009</td>
</tr>
</tbody>
</table>

Tabla 51. Análisis prueba de Wilcoxon para el deportista 04 a 5 metros

<table>
<thead>
<tr>
<th>Articulación</th>
<th>Resultado de la prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td>°X Hombro 5 m</td>
<td>Se rechaza la hipótesis nula (Ho) con un valor de $p = 0.044$ lo que significa que las muestras son significativamente diferentes.</td>
</tr>
<tr>
<td>°Y Hombro 5 m</td>
<td>Se rechaza la hipótesis nula (Ho) con un valor de $p = 0.009$ lo que significa que las muestras son significativamente diferentes</td>
</tr>
<tr>
<td>°Z Hombro 5 m</td>
<td>Se rechaza la hipótesis nula (Ho) con un valor de $p = 0.009$ lo que significa que las muestras son significativamente diferentes</td>
</tr>
<tr>
<td>°X Codo 5 m</td>
<td>Se rechaza la hipótesis nula (Ho) con un valor de $p = 0.018$ lo que significa que las muestras son significativamente diferentes</td>
</tr>
<tr>
<td>° X Muñeca 5 m</td>
<td>Se rechaza la hipótesis nula (Ho) con un valor de $p = 0.009$ lo que significa que las muestras son significativamente diferentes</td>
</tr>
<tr>
<td>° Y Muñeca 5 m</td>
<td>Se rechaza la hipótesis nula (Ho) con un valor de $p = 0.009$ lo que significa que las muestras son significativamente diferentes</td>
</tr>
<tr>
<td>° Z Muñeca 5 m</td>
<td>Se rechaza la hipótesis nula (Ho) con un valor de $p = 0.009$ lo que significa que las muestras son significativamente diferentes</td>
</tr>
</tbody>
</table>

De acuerdo con el análisis de la tabla anterior, en todas las articulaciones se rechazó la hipótesis nula, lo que significa que en los lanzamientos a 5 metros con las bochas y con la herramienta de realidad virtual se obtuvieron diferencias significativas en sus ángulos, y observando los datos de las tablas del Anexo 7, el deportista 04 fue el que presentó menos diferencias en sus ángulos de todos los lanzamientos, por lo tanto, se continúa con en análisis de las gráficas.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Adicionalmente, se evaluaron las gráficas de los ángulos para verificar la similitud de los lanzamientos en la realidad y con la herramienta de realidad virtual (Figura 87), en las cuales se pudo observar que el deportista 04 realiza gestos muy similares en las articulaciones de hombro y codo y muñeca a 5 metros en ambos tipos de lanzamiento e incluso el gesto es más similar que a la distancia de 2 metros.

Los resultados de los análisis anteriores mostraron que existen diferencias estadísticas en varios ejes, cuando se comparan los lanzamientos del gesto deportivo de Boccia en un ambiente real y en un ambiente de realidad virtual. Sin embargo, hay varios factores que se deben tener en cuenta antes de dar una conclusión sobre los resultados obtenidos, primero, es normal que entre un ambiente real y un ambiente de realidad virtual se presenten diferencias debido a las condiciones del escenario virtual, en la cual, aunque se hace todo lo posible para que el usuario viva una experiencia real, el uso de las gafas y los controles especiales de estas, pueden hacer que se presenten diferencias entre los lanzamientos, segundo, los deportistas no realizan siempre exactamente el mismo el gesto de lanzamiento, y si además de eso, no practican con regularidad, el gesto de lanzamiento va a tener aún más variaciones, tercero, en el proceso de selección de los datos puede que no se hayan escogido exactamente los mismos instantes de lanzamiento en ambos casos, sin embargo, se intentó tener la mayor precisión posible.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Adicionalmente, al realizar el análisis de las gráficas de los ángulos, se pudo observar que los deportistas sí realizan gestos similares de lanzamiento tanto en la realidad como con el uso de la herramienta de realidad virtual, exceptuando el caso de la articulación de la muñeca, en el cual se observan más diferencias en las gráficas, pero esto es debido al agarre utilizado con la bocha y el agarre utilizado con el control, en los cuales se van a presentar variaciones.

3.3.4 Análisis de la prueba de usabilidad

Se realizó una prueba de usabilidad a los deportistas cuando estaban en el Laboratorio de Ciencias Aplicadas al Movimiento (CAME) para las grabaciones de los análisis biomecánicos con la herramienta de realidad virtual TechBo. Los criterios de evaluación y las respuestas se encuentran en la tabla Tabla 52.

<table>
<thead>
<tr>
<th>Tabla 52. Prueba de usabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterio de evaluación</td>
</tr>
<tr>
<td>¿El usuario ha utilizado juegos en el celular?</td>
</tr>
<tr>
<td>¿El usuario está familiarizado con la realidad virtual?</td>
</tr>
<tr>
<td>¿El usuario sabe dónde ubicar gafas y controles?</td>
</tr>
<tr>
<td>¿El usuario sabe manejar el control?</td>
</tr>
<tr>
<td>¿Cuánto tiempo le tomó aprender a manejar el control?</td>
</tr>
<tr>
<td>Se le pide al usuario que navegue por los menús. ¿Cómo es la interacción?</td>
</tr>
<tr>
<td>Pedirle al usuario que ingrese al modo de competencia. ¿Logró el objetivo?</td>
</tr>
<tr>
<td>Pedirle al usuario que ingrese al menú de práctica y escoja la práctica que desee. ¿Logró el objetivo?</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
¿Es fácil o difícil navegar por los menús del juego?	Difícil	Fácil	Fácil
¿El usuario comprendió que debía realizar en cada modo de práctica?	Sí	Sí	Sí
¿Qué le cambiarías o mejorarías a TechBo?	Requiere un control más fácil de manejar, sin embargo, resaltó que le gustó mucho el juego y es como estar en un ambiente totalmente diferente.	Que las bolas puedan aparecer otra vez en el modo de competencia por si se pierden en el lanzamiento, pero le gustó mucho la aplicación y disfrutó jugando.	-Las bolas deben rodar más -Posición de la canasta más cerca Se entretuvo jugando la aplicación y le gustó.

Teniendo en cuenta la tabla anterior, para el deportista 02 es necesario que un acompañante lo ubique en el escenario que el desea escoger y de ahí en adelante él puede manejar el juego (coger y lanzar las bolas), también, debido a que su espasticidad ha aumentado en los últimos meses, le es difícil manejar el control ya que su motricidad fina no es muy buena.

Los análisis generales de usabilidad de los otros dos deportistas representan que el juego tiene buen nivel de eficiencia: facilidad con la que el usuario puede realizar una tarea, eficacia: exactitud con la que el usuario puede realizar una tarea y satisfacción: calidad de la experiencia del usuario, adicionalmente, teniendo en cuenta los requerimientos finales, se realizó una modificación en la ubicación de la canasta para que fuera más sencillo para los deportistas coger las bochas y se realizó una modificación en el material de las bochas para que rueden más. Finalmente, en el escenario de competencia, aunque se hicieron pruebas de funcionamiento, en ninguna prueba se había perdido una bocha en el escenario y por lo tanto no se había considerado la opción de poder recuperar bochas desubicadas, por lo tanto, se implementó esta consideración para que los deportistas puedan finalizar los parciales de Boccia correctamente.

Después de las modificaciones anteriores, la herramienta tecnológica en realidad virtual TechBo se envió a revisión a la Dirección Nacional de Derecho De Autor para iniciar el proceso de registro de Software el cual fue ingresado con número de radicado 1-2022-31443 (Figura 88). Finalmente, la aplicación desarrollada se encuentra en el Anexo 10.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Señor usuario:
Usted ha realizado satisfactoriamente la solicitud de inscripción en el Registro Nacional de Derecho de Autor, la cual ha sido radicada con el número:1-2022-31443

Debe tener presente que su solicitud de inscripción inicia un proceso de estudio sujeto a aprobación o devolución, cuyo trámite tiene una duración de treinta (30) días hábiles, contados a partir del día hábil siguiente al envío del formulario.

Por favor verifique constantemente su cuenta personal pues es allí donde aparecerá publicado su certificado (asegúrese de hacer clic en la opción “Buscar” sin digitar ningún otro dato adicional).

La entidad NO ENVIARÁ correos electrónicos, la consulta del certificado deberá hacerse a través de su cuenta personal.

Si la obra que registró es inédita y tiene interés en comercializarla, lo invitamos a visitar el Portal Red Naranja

manuela.munozr028@gmail.com

Para cualquier información adicional puede comunicarse a:
PBX: 341 81 77
Correo electrónico: info@derechoautor.gov.co
Dirección: Calle 28 No.13 A 16 Piso 17
Bogotá - Colombia

Figura 88. Solicitud de registro de Software

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
4. CONCLUSIONES Y CONSIDERACIONES FINALES

Como se mencionó en los antecedentes del proyecto, no se habían realizado muchos estudios para evaluar la efectividad de los deportes, tanto en el mundo real como en las herramientas de realidad virtual desarrolladas (Neumann et al., 2017), y precisamente, dentro de los objetivos del presente trabajo se verificó el comportamiento del gesto deportivo de los lanzamientos de Boccia de cuatro deportistas, utilizando la herramienta en realidad virtual y en el ambiente real.

Los resultados obtenidos presentaron algunas diferencias estadísticas, sin embargo, mediante las gráficas se pudo hacer un análisis, en el cual se observó que algunos gestos deportivos fueron similares y que, efectivamente los deportistas pudieron alcanzar los objetivos propuestos utilizando la herramienta de realidad virtual. Especialmente, Techbo le va a permitir a los deportistas continuar con sus entrenamientos de fuerza y precisión en casa, incluso cuando se puedan presentar situaciones que estén por fuera de su control, como problemas con el desplazamiento al lugar de práctica debido a condiciones ambientales o económicas, incluso eventos como la pandemia del Covid-19, durante la cual muchos deportistas no pudieron realizar sus entrenamientos habituales. Un claro ejemplo es el caso del deportista 02, quien aumentó su nivel de espasticidad o rigidez y disminuyó el control de sus músculos, porque no pudo volver a entrenar presencialmente.

Hay varias razones por las cuales un deportista no puede practicar en casa, bien sea porque no cuenta con el espacio o no cuenta con la motivación necesaria para realizar la práctica del deporte en casa. En este caso, las herramientas tecnológicas como los juegos serios representan una alternativa diferente importante para la inclusión, ya que, al ser interactivos, permiten cautivar la atención de los usuarios y motivarlos a realizar sus entrenamientos, y en el caso específico de la realidad virtual, representan un ambiente totalmente inmersivo, en el cual se cuenta con un espacio virtual lo suficientemente grande para poder realizar las actividades deseadas. En TechBo se implementaron cuatro escenarios diferentes para motivar al deportista a hacer la actividad que desee teniendo diversas opciones, los entrenamientos diseñados fueron construidos basados en la información obtenida de entrenadores de Boccia para asegurar que, mediante estos el deportista pueda fortalecer habilidades como la fuerza, la precisión y la estrategia, además de la coordinación, que es una habilidad indispensable en este deporte.

Por otro lado, en los resultados del análisis biomecánico del objetivo 3, es normal presentar variaciones en los ángulos de la muñeca en los dos tipos de lanzamientos debido al agarre que tienen los deportistas con la bocha y con el control, ya que la forma y el peso de ambos es diferente y por lo tanto afecta el comportamiento de las articulaciones al momento del lanzamiento. Por ejemplo, para el deportista 02, que es un deportista que no ha vuelto a practicar el deporte de Boccia con regularidad, fue al que más le costó trabajo replicar los lanzamientos en la herramienta de realidad virtual, puesto que, la falta de entrenamiento ha

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
generado el aumento de la espasticidad en su brazo y no controla la motricidad fina en los dedos de las manos. En estos casos, sería de gran ayuda desarrollar un control con forma de bola de Boccia para que los deportistas no tengan problemas con la motricidad fina. También, se tuvo un deportista menos en el último análisis debido a que se encontraba incapacitado por una cirugía de cadera reciente, y al cual se le realizará la prueba de usabilidad cuando se recupere.

Para concluir, Techbo les va a permitir a deportistas de Boccia entrenar desde casa independientemente del espacio que dispongan, del clima y de elementos como las bochas, todo esto basado en los análisis biomecánicos efectuados, que permitieron implementar e integrar las características del juego a la herramienta, como el incluir varios tipos de bochas y hacer la verificación final de la similitud de los lanzamientos en ambos ambientes. Adicionalmente, representa una herramienta para dar a conocer el deporte de Boccia, a personas que no lo conozcan y permitir un acercamiento a todas las personas interesadas en el deporte.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
REFERENCIAS

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
ANEXOS

Anexo 2. Aprobación comité de ética.
Anexo 3. Asentimiento informado participante.
Anexo 5. Consentimiento informado tutor.
Anexo 6. Análisis de lanzamientos del primer objetivo.
Anexo 7. Prueba de usabilidad.
Anexo 8. Análisis de lanzamientos del tercer objetivo.
Anexo 9. Modelo del lanzamiento de Boccia.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.