DISEÑO DE UN PROTOCOLO PARA LA TOMA DE MEDIDAS CINEMÁTICAS EN ATLETAS UTILIZANDO TECNOLOGÍA DE SENSORES VESTIBLES

Exploratorio

SIMÓN CATAÑO JIMÉNEZ

Trabajo de grado para optar al título de

Ingeniero Biomédico

Andrés Torres Velásquez

MSc. Ingenería Biomédica.

UNIVERSIDAD EIA

INGENIERÍA BIOMÉDICA

ENVIGADO

2019

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
CONTENIDO

INTRODUCCIÓN

1. PRELIMINARES
 1.1 Planteamiento del problema
 1.2 Objetivos del proyecto
 1.2.1 Objetivo General
 1.2.2 Objetivos Específicos
 1.3 Marco de referencia
 1.3.1 Antecedentes
 1.3.2 Marco teórico

2. METODOLOGÍA
 2.1 Caracterizar la muestra poblacional a utilizar de deportistas de alto rendimiento y de categoría aficionada, en la categoría de atletismo principalmente en marcha atlética para la medición de los movimientos deportivos
 2.2 Realizar un análisis cuantitativo de las variables relevantes en atletas, mediante el uso de sensores weareables

3. PRESENTACIÓN Y DISCUSIÓN DE RESULTADOS

4. CONCLUSIONES Y CONSIDERACIONES FINALES

REFERENCIAS

ANEXOS
LISTA DE TABLAS

Tabla 1. Plantilla para la recolección de datos para la medición cinemática y cinética a partir de sensores vestibles. .. 29
Tabla 2. Medidas antropométricas sujeto 1... 40
Tabla 3. Medidas antropométricas sujeto 2... 40
Tabla 4. Medidas antropométricas sujeto 3... 41
Tabla 5. Medidas antropométricas sujeto 4... 42
Tabla 6. Medidas antropométricas sujeto 5... 43
Tabla 7. Medidas antropométricas sujeto 6... 44
Tabla 8. Medidas antropométricas sujeto 7... 45
Tabla 9. Medidas antropométricas sujeto 8... 46
Tabla 10. Promedio y desviación estándar medidas antropométricas para hombres y mujeres en condiciones ideales ... 47
Tabla 11. Promedio y desviación estándar medidas antropométricas para mujeres deportistas amateur .. 48
Tabla 12. Promedio y desviación estándar medidas antropométricas para mujeres atletas de alto rendimiento .. 49
Tabla 13. Promedio y desviación estándar medidas antropométricas para hombres deportistas amateur .. 49
Tabla 14. Promedio y desviación estándar medidas antropométricas para hombres atletas de alto rendimiento .. 50
Tabla 15. Coeficientes R cuadrado, tomado a partir de los promedios y desviaciones del sujeto 1... 52
Tabla 16. Coeficientes R cuadrado, tomado a partir de los promedios y desviaciones del sujeto 2... 53

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
ANEXOS

Anexo 1. Sujeto 1 vista lateral .. 71
Anexo 2. Sujeto 1 vista posterior ... 71
Anexo 3. Sujeto 2 vista lateral ... 71
Anexo 4. Sujeto 2 vista posterior .. 72
Anexo 5. Sujeto 3 vista lateral ... 72
Anexo 6. Sujeto 3 vista posterior .. 73
Anexo 7. Sujeto 4 vista lateral ... 73
Anexo 8. Sujeto 4 vista posterior .. 74
Anexo 9. Sujeto 5 vista lateral ... 74
Anexo 10. Sujeto 5 vista posterior .. 75
Anexo 11. Sujeto 6 vista posterior .. 76
Anexo 12. Sujeto 8 vista lateral .. 76
Anexo 13. Sujeto 8 vista posterior .. 77

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
RESUMEN

Este proyecto busca desarrollar una metodología o protocolo funcional, con un enfoque cuantitativo y cualitativo en la toma de medidas cinemáticas para deportistas de alto rendimiento, mediante el uso de tecnología "wearable" (tecnología vestible). Haciendo uso de los sensores marca Shimmer que se encuentran en el laboratorio CAME, ubicado en la universidad EIA, y que cuentan con diferentes tipos de mediciones.

El procedimiento para la investigación consiste en seleccionar una muestra representativa de atletas en la modalidad de alto rendimiento y de categoría aficionada, posteriormente se les realizará una evaluación en el laboratorio CAME, donde se realizan la toma de muestras de medidas antropométricas a partir de la ISAK, para garantizar la composición corporal y tener este valor como posible comparador en otras investigaciones.

Para ello se dispone de unos tallímetros en donde se realizaran 8 medidas antropométricas, previamente consultadas en la ISAK, como lo son: Diámetro biliocrestal, Diámetro bicondileo del fémur, diámetro bimaleolar del tobillo, altura trocantérea, altura tibial, longitud del muslo, longitud de la pierna y longitud del pie.

Seguido de esto se realiza un protocolo el cual tiene como fin, tener un reporte de información de los deportistas de alto rendimiento y amateur en cuanto a esta disciplina.

Dicho fin facilitara uno de los objetivos del laboratorio que es establecer parámetros de la población y definir características que puedan ser comparadas con futuros deportistas que ingresen al laboratorio CAME. Como también en futuras investigaciones, con diferentes modalidades deportivas.

La empresa Shimmer, ha diseñado acelerómetros que no solo toman medidas de aceleración o velocidad, sino que también tienen la posibilidad de tomar otras medidas como electromiografía, posicionamiento a partir del magnómetro, o de velocidades angulares con el giroscopio, que posteriormente se integrara con el tiempo para conocer con presión los ángulos descritos en la marcha.

Este dispositivo vestible toma las medidas de inercia y de aceleración en todos los ejes en tiempo real, y de manera remota de ser necesario, con un alcance a aproximado de 8 metros a la redonda. Dicho dispositivo es lo más reciente en el mercado y cuenta con tecnología muy avanzada para la toma de medidas cinéticas o cinemáticas.Teniendo en cuenta la duración del entrenamiento y la intensidad de este, como resultado se espera obtener medidas significativas y cuantificables para la comparación de datos y la determinación de gestos deportivos óptimos con el fin de mejorar el rendimiento que debe tener un triatleta para aplicar en su entrenamiento.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Palabras claves: Biomecánica deportiva, acelerómetro, sensores vestibles, triatlón, análisis cinemático

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
ABSTRACT

This research seeks to develop a functional methodology or protocol, with a quantitative and qualitative approach in the taking of kinematic measures for high-performance athletes, using wearable technology.

Making use of the sensors found in the CAME laboratory, of the company Shimmer, and that have different types of measurements. The procedure for the research initially is to select a representative sample of athletes in the high-performance and amateur category modality, then they will be evaluated in the CAME laboratory, where they are taken samples of anthropometric measures from ISAK, to ensure body composition and have this value as a possible comparator in other research.

Following this is a protocol which has as its ultimate purpose, to have a report of information of athletes and amateurs regarding this discipline. This purpose will facilitate one of the objectives of the laboratory which is to establish population parameters and define characteristics that can be compared with future athletes entering the CAME laboratory.

As well as in future research, with different sports modalities. The company Shimmer, has designed accelerometers that not only take acceleration or velocity measurements, but also have the possibility to take other measures such as electromyography, positioning from the manometer, or angular speeds with the gyroscope, which would then be integrated over time to know with pressure the angles described in the gait.

This wearable device will take the measures of inertia and acceleration on all axes, taking into account the duration of the training and the intensity of the training, as a result it is expected to obtain significant and quantifiable measures for the comparison of data and the determination of optimal sports gestures in order to improve the performance that a triathlete must have to apply in his training.

Keywords: Sports biomechanics, accelerometer, wearable sensors, triathlon, kinematic analysis.
INTRODUCCIÓN

A lo largo de la historia, el deporte ha ido evolucionando, tanto en la estructura de cómo se practica, como en la recuperación de los deportistas en este. El análisis biomecánico de todos los movimientos que se involucran es fundamental para el desarrollo de cualquier deporte, así mismo, la aparición de lesiones comúnmente asociadas a la práctica indebida. A medida que esta evolución se lleva acabo también la manera en que se mide y cuantifica la biomecánica ha ido creciendo y ha tenido nuevos instrumentos de medida como lo son las cámaras optoelectrónicas o los sensores vestibles, que analizan el movimiento de manera estática o dinámica, respectivamente. Debido a esto se pretende diseñar un protocolo para la determinación de las variables cinemáticas relevantes en atletas, mediante tecnología wearable(tecnología vestible), con potencial aplicación en la prevención de lesiones y optimización del rendimiento durante la actividad física.

Por ello el presente trabajo de grado se refiere al tema de biomecánica deportiva, que se define como “disciplina que estudia y hace análisis físicos de los movimientos del cuerpo humano” (Stuart, 2012).

Actualmente se cuenta con un laboratorio de cámaras optoelectrónicas de la marca VICON, en un ambiente controlado, por lo que en un ambiente ajeno a la condición del atleta se propone una serie de análisis cuantitativos y cualitativos que se realizaran en el laboratorio CAME con la ayuda de los sensores vestibles de la marca Shimmer ya que el sistema anteriormente mencionado es un sistema estático. El objetivo de este Trabajo de grado es proporcionar información acerca de las mediciones que estos sensores pueden tomar en tiempo real, de manera remota o guardando los datos de este.

Este Trabajo de grado se basa en la toma de medidas antropométricas y en la valoración de deportistas en dos categorías; sujetos que pertenecen a población de deportistas de alto rendimiento y sujetos que hacen parte de los deportistas aficionados o profesionales.

Para analizar esta problemática es necesario mencionar sus causas:

Una de ellas es la falta de conocimiento de la biomecánica deportiva y de los sensores vestibles en la área de la investigación deportiva y también en la industria deportiva, desde un punto de vista de empresas fabricantes de tecnología para el deporte, o de técnicas para la prevención o rehabilitación de lesiones a nivel deportivo.

Y como en muchos sistemas se habla de sistemas estáticos o en condiciones ajenas a la práctica del deportista, este propone un sistema dinámico que va a garantizar la toma de medidas en tiempo real.

Desde lo anteriormente mencionado se generó un interés por parte del área de biomecánica para realizar un protocolo que no solo contuviera información acerca de la marcha atlética, sino que también proporcionara información para el laboratorio.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
También se busca realizar comparaciones cinéticas y dinámicas de los deportistas para que en próximas ocasiones fuera posible utilizarlo en deportistas, ya sea en la categoría de alto rendimiento o de aficionado.

La técnica que se utiliza para la toma de medidas antropométricas está dada por el libro “Variables antropométricas de la población” Alicia S. Canda (Canda, 2012). Posteriormente se realizan las pruebas durante 120 segundos obteniendo datos que luego van a ser filtrados y luego comparados entre los mismos sujetos de estudio. Los instrumentos de medición fueron goniómetros, de precisión 0.1 cm, y con esto a evitar malos cálculos a la hora de presentación de datos.

Posteriormente se tomaron muestras de aceleraciones en un periodo de 120 segundos por sujeto. Dicho sujeto estuvo en la banda corredora a una velocidad aproximada de 5 km / m².

Los datos son comparados estadísticamente, y se sacan mediciones de tipo: Varianza, covarianza, promedio y correlación.
1. PRELIMINARES

1.1 PLANTEAMIENTO DEL PROBLEMA

En general, en los deportes existen momentos, ejecuciones y fases del movimiento en donde se involucran gran parte de las extremidades del cuerpo. Existe una ciencia conocida como Biomecánica, que consiste en una “disciplina que estudia y hace análisis físicos de los movimientos del cuerpo humano” (Stuart, 2012).

La biomecánica deportiva se enfoca en medirla la fuerza y aceleraciones del gesto deportivo, además de realizar investigaciones sobre torque, cantidad de movimiento y perdida de este.

Partiendo de un enfoque más especializado y señalando al atletismo como deporte elegido para analizar en este trabajo, es indispensable explicar cómo se comporta esta disciplina y como está constituida a partir de sus movimientos y sus momentos cinéticos.

El atletismo por su parte es un conjunto de prácticas donde se involucra velocidad principalmente, para ello se hacen cambios constantes de ritmo en la marcha para su ejecución y su respectiva progresión. (J. Andújar Gutiérrez, López del Amo, & Marina Evrard, 2014).

El atletismo como marcha atlética y competitiva es conocido a nivel mundial a lo largo de los años y cuenta con una gran variedad de modalidades y de eventos en el mundo donde se compite.

Con lo anterior, se propone determinar a lo largo de una investigación de una de las áreas de Ingeniería Biomédica, la siguiente problemática, para los deportistas de alto rendimiento y deportistas que apenas comienzan su vida deportiva en Colombia. ¿Cómo se puede caracterizar el movimiento a través de tecnología wearable con el fin de determinar el rendimiento óptimo en una actividad física como la marcha en el atletismo?
1.2 OBJETIVOS DEL PROYECTO

1.2.1 Objetivo General

Diseñar un protocolo para la determinación de las variables cinemáticas relevantes en atletas, mediante tecnología wearable, con potencial aplicación en la prevención de lesiones y optimización del rendimiento durante la actividad física.

1.2.2 Objetivos Específicos

- Caracterizar la muestra poblacional que se aplicará a los deportistas de alto rendimiento y de categoría amateur, en la categoría de atletismo principalmente en marcha atlética para la medición de los movimientos deportivos.
- Realizar un análisis cuantitativo de las variables relevantes en atletas, mediante el uso de sensores wearable(tecnología vestible).
- Enunciar los procedimientos para la adquisición y evaluación de adquirir y evaluar las variables cinemáticas de acuerdo con los gestos deportivos óptimos que debe tener un triatleta en su entrenamiento.
1.3 MARCO DE REFERENCIA

1.3.1 Antecedentes

- En la publicación “Análisis biomecánico de la carrera tras 40km de bici en competición”, (Mejías, Fernández, & Cabello, 2008) realizado en Madrid por la Universidad Politécnica de Madrid (UPM), estudió la frecuencia de zancada, la longitud de zancada, la altura de la cadera, la oscilación vertical del vertex, la distancia de la cadera al apoyo, el ángulo tobillo apoyado en el despegue, el ángulo rodilla apoyada en el despegue, y el ángulo de muslos en el apoyo; se encontró cómo los resultados de dichas mediciones difieren mucho de los estudios realizados en otros laboratorios, y que el principal problema radica en la poca especificidad de los test que han sido utilizados en estos estudios.

- En la investigación realizada en de Blas, (2012), se propone utilizar sistemas de monitoreo para el ciclismo y el atletismo de uso gratuito, de este modo proponer a los atletas y entrenadores utilizarlos para obtener un mayor rendimiento, y evitar lesiones.

- De acuerdo con Andújar Gutiérrez, López del Amo, & Marina Evrard, (2014), se ha tenido una gran evolución en los últimos años con la biomecánica deportiva, pero el problema que ha tenido mayor evidencia ha sido que esta misma técnica no se utiliza adecuadamente en deportes como el atletismo y ciclismo, dichos deportes hacen parte del triatlón (disciplina que se quiere estudiar en esta investigación).

- En el 2017 Kobsar et, al., mostró una manera más eficiente de que los médicos diagnostiquen una enfermedad como osteoartritis de rodilla, ubicando 3 sensores de acelerómetro en la parte posterior y anterior de los gastrocnemios y en la parte posterior del muslo de treinta y nueve pacientes adultos con osteoartritis de rodilla, interviniendo en la sesión de fortalecimiento de cadera durante seis semanas (Kobsar, Osis, Boyd, Hettinga, & Ferber, 2017).

- En la investigación publicada en el Journal of Biomechanics, realizado por Kiernan, (2018), se analizó la aceleración de los atletas luego de una cirugía o lesión asociada al aductor de cualquiera de sus dos piernas, encontrando como resultado que después de la cirugía o lesión, la carga efectiva en el tejido blando se calculaba ponderando los resultados de lesionado y dolor con los de fatiga media no lesionada, utilizando sensores ADXL345 (Kiernan, 2018).

- En el artículo publicado por Havens se tomó como muestra 14 individuos, 7 mujeres y 7 hombres a los cuales se les realizó un análisis de la aceleración axial del muslo y la absorción de la potencia de la rodilla en el atletismo. Como instrumentación se utilizaron unos dispositivos de la marca Opal, APMD Inc., la aceleración fue la principal variable de interés para la medición de inercia. Como
resultados se encontraron que es posible predecir la asimetría de absorción de potencia de la articulación de la rodilla y sugieren que puede ser una herramienta para detectar dichas asimetrías a ciertas poblaciones (Havens, Cohen, Pratt, & Sigward, 2018).

- En el 2018 un estudio realizado en la University of Calgary, se propuso clasificar a 51 corredores divididos en dos grupos específicos, primero por sexo, y luego como competitivos o recreativos. Basado en las aceleraciones del centro de masa, y haciendo uso de los sensores Shimmer3®, se midió durante 5 minutos la marcha en banda y 24 de esos 51 fueron seleccionados para ser caracterizados, teniendo como resultados que es posible analizar la biomecánica de la carrera en corredores competitivos y recreativos utilizando solo patrones de aceleración CoM (centro de masa) y como los patrones de carrera cambian según entorno y tipo de corredor. (Clermont, Benson, Osis, Kobsar, & Ferber, 2019)

1.3.2 Marco teórico

1.3.2.1 Tecnología vestible

- La tecnología vestible (WT) se ha convertido en un medio viable para proporcionar datos clínicamente sensibles de bajo costo para una evaluación más informada del paciente. El beneficio más grande de WT, es su bajo costo y que es posible integrarlo en redes de comunicación, es decir, es de fácil monitoreo remoto. Sin embargo, WT es poco conocido y la innovación tecnológica que se presenta a diario es más alta (Godfrey, 2018).

- Existe la necesidad de sensores portátiles para evaluar las señales fisiológicas y la cinemática corporal durante el ejercicio. Dichos sensores deben ser fáciles de usar. Esto permitiría a los usuarios monitorear su progreso mientras se someten a un programa de entrenamiento con ejercicios sin la necesidad de conectar dispositivos externos (S. Coyle, 2017).

- Los sensores vestibles tienen la capacidad de medir acelerometría triaxial, uno de ellos en el mercado es el sensor Triaxial Shimmer3®, que tiene una capacidad de frecuencia de muestreo de aproximadamente 1024 Hz. Por ello es utilizada en investigaciones sobre la marcha atlética o atletismo, haciendo uso de estos en extremidades corporales para medir la capacidad de aceleración de un atleta. (Benson, Clermont, Osis, Kobsar, & Ferber, 2018)

1.3.2.2 Acelerómetros y podómetros

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
• El acelerómetro no es el único dispositivo que constantemente se utiliza en biomecánica deportiva, se puede notar en la Figura 1, como es posible la medición en los 3 ejes axiales de la magnitud vectorial en aceleración. También se encuentra el giroscopio que cuando es sometido a una rotación, mide la deformación de una articulación o de un movimiento, generando un voltaje de salida que es proporcional a la velocidad angular de la rotación. La posición angular también puede ser obtenida de manera agil a través de una simple integración de la señal del giroscopio (Rocon, 2003).

• Existen dos métodos para valorar de manera más precisa y objetiva la actividad física realizada, como son los podómetros y los acelerómetros. Los primeros solo valoran las aceleraciones verticales. Mientras que los segundos valoran la actividad física realizada en uno, o varios ejes (Ver Figura 1), su gran ventaja es que permite valoraciones precisas a lo largo de varios días, analizando las diferentes intensidades utilizadas. Es por ello por lo que en la biomecánica deportiva son muy utilizados para realizar el reconocimiento de la actividad midiendo directamente la aceleración; calcular la velocidad y la posición mediante la integración numérica de la señal, o para estimar la orientación de las partes del cuerpo en combinación con giroscopios (Escalante, 2011).

• El uso de sensores vestibles ha sido de gran importancia para el avance en la implementación de protocolos deportivos, no solo a nivel competitivo sino también a nivel competitivo, es por ello por lo que la empresa Shimmer Sensing, ha creado dispositivos para la toma de medidas de aceleración y de electromiografía mediante el uso de tecnología vestible. Estos sensores de un tamaño relativamente pequeño, y de un peso mínimo son utilizados para la captura de medidas en tiempo real. Recreando así una serie de datos que luego son procedas y debidamente analizadas. Como se ilustra en la Figura 2 (Shimmer, 2013a).

• En otras investigaciones también se usan los sensores vestibles para tomar la captura de datos para prevenir o pronosticar enfermedades con una mayor precisión y con metodología menos invasiva. La capacidad locomotora es una actividad fundamental para todos los seres humanos, y es un componente esencial para mantener la independencia y una calidad de vida saludable. Sin embargo, se entiende que los cambios fisiológicos producto de la edad o de exceso de actividad física, genera enfermedad en uno a más sistemas, en la medida que la función de la marcha puede verse comprometida. (Barden, Clermont, Kobsar, & Beauchet, 2016)

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

1.3.2.3 Electromiografía

Figura 1. Uso de acelerómetro en los 3 ejes (Havens, 2018)

Figura 2. Sensor Shimmer3 (Shimmer, 2013a)
• En el 2003, se desarrollaron trabajos para la predicción de fatiga en los músculos, así, como optimización en el diseño de los algoritmos de reconocimiento de patrones en tiempo real. Mediante el uso de procesamiento de señales por electromiografía (EMG). Las señales EMG son producidas como respuesta a un movimiento muscular, donde el nivel de esfuerzo está determinado por el número de fibras musculares activadas durante la contracción por una neurona. El potencial eléctrico de una unidad motora puede ser medido utilizando electrodos de aguja o de superficie (SPARC (Organization) & Universidad Tecnológica de Pereira., 1995).

• En el cuerpo humano cada segmento esta unido a su adyacente formando las articulaciones que son los puntos fijos sobre los que tiene lugar los cambios de posición de los segmentos. los segmentos corporales pueden tener como máximo seis grados de libertad y estudiar la dinámica del cuerpo requiere de seis coordenadas independientes. Para ello en 1983, Grood&Sunthay, inventaron un sistema más fácil para visualizar los ángulos de Euler (α, β y γ) ya que los otros 3 ejes son los más conocidos (XYZ). Dicho sistema se determina empleando un análisis vectorial en donde el plano de coordenadas tiene un eje flotante o movible, permitiendo la captura de movimiento en tiempo real y de manera más precisa, como se muestra en la figura 1 (Uso de acelerómetro en los 3 ejes), esto con el fin de facilitar la toma de medidas cinéticas y cinemáticas en el área de la biomecánica (Instituto Tecnológico Metropolitano (Medellín, 2013).

• La biomecánica en cualquier tipo de deporte cumple una función importante, en cuanto al debido proceso o técnica que se debe llevar acabo. En el ciclismo hay varios factores que se evalúan, pero hay tres aspectos claves en un buen estudio de éste. Como lo son: Orientación hacia el estudio de las fuerzas que se oponen al desplazamiento en especial el análisis de las resistencias aerodinámicas, la segunda, el estudio de las fuerzas propulsivas específicamente las aplicadas contra el pedal y, por último, las orientadas hacia los aspectos que determinan la eficacia mecánica del desplazamiento en el ciclismo. En este último evaluando las diferentes cadencias sobre el trabajo muscular de las piernas, es decir, los momentos articulares de la cadera, rodilla y tobillo, las cuales fueron correlacionadas con las fuerzas ejercidas sobre los pedales y los registros electromiográficos (Gutierrez, 1995).

• En el ciclismo también es importante evaluar y cuantificar aspectos que tienen como objetivo, analizar la movilidad articular de las extremidades (superior e inferior), las inclinaciones y rotaciones de las cinturas escapular y pélvica, el desplazamiento del centro de gravedad y la pronosupinación del retropí en el desplazamiento de la marcha atlética y la normal. En la biomecánica se estudia principalmente la extremidad inferior, desde el contacto del talón hasta el siguiente contacto del mismo talón. Así, un ciclo completo cada extremidad inferior pasa por dos fases:

 a) Fase de apoyo: Tiempo en el que, el pie este contacto con el suelo, y representa cerca del 50% del ciclo.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
b) Fase de oscilación: tiempo durante el que, el pie está suspendido en el aire, constituyendo alrededor del 50% del ciclo (Andrade, Villarroya-aparicio, & Calero, 2017).

Figura 3: Graficas de deportista de alto rendimiento, analizando la marcha en el laboratorio CAME, universidad EIA. Análisis de cintura, rodilla y tobillo, en 3 fases.
2. METODOLOGÍA

En el desarrollo de este trabajo de grado, de acuerdo con los objetivos planteados, se realizarán una serie de actividades.

2.1 Caracterizar la muestra poblacional que se aplicará a los deportistas de alto rendimiento y de categoría aficionada, en la categoría de atletismo principalmente en marcha atlética para la medición de los movimientos deportivos.

- Inicialmente se debe caracterizar la población de acuerdo con los criterios y los y los instrumentos de la Sociedad internacional para el estudio de cineantropometría avanzada (ISAK siglas en ingles).

- Toma de medidas antropométricas del cuerpo para la definición de medidas, y tener una ligera clasificación de los usuarios con los que se va a tratar.

- La técnica antropométrica mide las dimensiones corporales: peso, estatura, longitudes, perímetros, diámetros y pliegues cutáneos. En esta investigación se quiere dar enfoque a las 5 primeras medidas, ya que se consideran indispensables para un posible procesamiento de datos, con el fin de realizar ecuaciones de regresión y fórmulas estadísticas para obtener información de la corporación corporal, y proporcionada que ofrecen los atletas (Canda, 2012).

- Las medidas longitudinales, perimétricas y diamétricas que se eligieron para la técnica de antropometría, fueron: Diámetro biliocrestal, Diámetro bicondileo del fémur, diámetro bimaleolar del tobillo, altura trocantérea, altura tibial, longitud del muslo, longitud de la pierna y longitud del pie. Así como también se realizaron las dos medidas básicas pertinentes como el peso y la altura. Todo esto utilizando como base las técnicas de medición de “Variables antropométricas de la población deportista” Alicia S.Canda (Canda, 2012).

- El método utilizado para cada medición fue tomado y adaptado de acuerdo con las medidas que la ISAK propone. A continuación, se describe el paso a paso de cada medida con su respectiva ilustración:

 - Diámetro biliocrestal: Esta distancia se toma en la proyección entre los puntos más laterales del borde superior del ala del íleon o cresta iliaca. Se puede llamar también transverso pélvico. Esta medida representa la anchura de la cintura pélvica. Es utilizado en la composición corporal para calcular el peso residual y en proporcionalidad para determinar la forma del tronco. En la presente investigación se realiza para saber la distancia que debe tener el sensor de lado a lado de la cadera con el fin de optimizar el espacio donde se va a realizar el montaje de este.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La técnica que se utilizó para la toma de esta medida fue poner al sujeto de espadas mientras estuviera de pie y con los talones juntos, se localizaba ambos puntos con el dedo índice de cada mano, y luego se procedía a poner el goniómetro desde cada cresta iliaca, hasta la línea medio axilar. Como se muestra en la Figura 4.

Figura 4. Diametro biliocrestal (Canda, 2012)

- Diámetro bicondileo del fémur: Es la máxima distancia tomada en proyección entre los cóndilos femorales. Esta medida representa la anchura o diámetro de la rodilla. Se utiliza para estimar el tamaño corporal y para el cálculo de masa ósea, como también el componente mesomórfico del somatotipo. Se utiliza un calibrador de menor tamaño y se mide en cm por lo general.

La técnica que se va a utilizar consiste en colocar al sujeto sentado, con la pierna flexionada a nivel de la rodilla en alguno recto con el muslo. El antropometrista se para frente al sujeto y palpa con los dedos índice o medio de cada mano la zona mas sobresaliente del cóndilo lateral y medial respectivamente, buscando la máxima distancia entre ellos. Se sugiere orientar el calibrador a 45 grados con la horizontal (Ver figura 5).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 5. Diámetro bicondíleo del femur (Canda, 2012)

- Diámetro bimaleolar del tobillo: Este diámetro comprende la máxima distancia tomada en proyección entre los maléolos laterales y mediales del peroné y la tibia respectivamente. Dicho ancho representa el diámetro del tobillo. Se utiliza para estimar el tamaño corporal o el cálculo de masa ósea. Se utiliza un calibrador de igual medida que el del bicondíleo del fémur, se recomienda utilizar un instrumento con precisión de 1mm.

Figura 6. Diámetro bimaleolar del tobillo (Canda, 2012)

- Altura trocantérea: La altura trocantérea se define como la distancia vertical que existe entre punto trocantéreo y el plano de sustentación. Esta variable representa la longitud del miembro inferior, incluye las longitudes de muslo (fémur), pierna (tibia-perine) y la altura del pie (astrágalo, calcáneo, y almohadilla plantar) Se utiliza para la proporcionalidad. El instrumento que se emplea para la medida es un antrometro de rama recta, la medida se entrega en centímetros.

La técnica que se utiliza para esta medida es tener al sujeto de pie con las piernas rectas y los talones juntos, sobre una banca para tener mayor alcance de la parte posterior a esto se toma la medida desde la cresta ilíaca hasta el maléolo externo de tobillo, tomando así la medida del largo de pierna total.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 7. Altura trocantérea (Canda, 2012)

- **Altura Tibial**: Se define como la distancia vertical que existe entre punto tibial lateral y el plano de sustentación. Representa el segmento medio o mesomélco de la longitud del miembro inferior, incluye la longitud de la pierna (tibia y peroné) y la altura del pie (astrágalo, calcáneo y almohadilla plantar).

La técnica para tomar la medida de esta altura es la misma que la altura trocantérea, la diferencia está en que, aunque la posición sea la misma, se coloca el antropómetro o instrumento de medición desde la tibia lateral (punto de referencia) y se lleva el otro extremo hasta la tibia medial conservando la distancia en dirección anteroposterior.
o Longitud de muslo: La longitud de muslo es la distancia tomada en proyección entre el punto trocánter del fémur y el punto tibial lateral. También se denomina longitud del segmento trocantéreo-tibial. Esta variable indica la contribución proximal o la medida total del miembro inferior y es utilizada por los estudios de proporcionalidad.

La técnica empleada para esta medición es igual a las dos anteriormente mencionadas, en donde el sujeto se encuentra de pie con las piernas rectas y los talones juntos, sobre un banco, para que se posicione con mayor altura y sea más fácil la toma de la medida. Se utiliza el mismo goniómetro de medida que el de altura tibial, pero esta vez el primer extremo se pone desde el punto superior del trocánter y llevándola por todo el muslo, para conocer su distancia completa.
Figura 9. Longitud de muslo (Canda, 2012)

- Longitud de pierna: Se define como la distancia tomada en proyección entre el punto tibial medial y el punto maleolar, también denominada longitud segmentaria tibial medial-maleolar medial. Esta variable indica la contribución del segmento medio o mesomélico a la medida total del miembro inferior y es utilizada en los índices de proporcionalidad.

La técnica para tomar esta medida se basa en tener al sujeto sentado en la banca, con la pierna derecha (pierna dominante) cruzada sobre la pierna izquierda de forma que el tobillo de la pierna derecha aporte sobre la rodilla de la pierna izquierda, dejando el pie derecho en posición relajada. La persona que realiza la medida utiliza el goniómetro descrito anteriormente y se ubica de forma paralela a la pierna con un eje longitudinal de la pierna. La primera parte se pone desde la tibial medial y se desliza la otra rama del medidor hasta el maleolar.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 10. Longitud de la pierna (Canda, 2012)

- Longitud del pie: Tiene por definición la distancia tomada desde los puntos pternion y acropodion. Es decir, entre el punto más posterior del talón (calcáneo) y el punto más anterior del pie, situado en el primer o segundo dedo (falange distal). También se denomina longitud del segmento pterno-acropodion.

La técnica para la toma de esta medida consiste en que el sujeto se coloque de pie sobre la banca para facilitar la medición, los pies ligeramente separados y con los dedos rectos. El instrumento de medición debe ser pequeño y de alta precisión y se sitúa en el piso, estando paralelo con el piso, uno de los extremos se encuentra en la porción más prominente del talón (pternion) y la rama más extrema de esta se sitúa por delante del dedo más largo del pie (acropodion). La presión de las ramas de medición debe ser mínima para no comprimir el tejido, logrando así una falla en la medición que se toma (Ver figura 11).

Figura 11. Longitud del pie (Canda, 2012)
• Para la selección de los deportistas en ambas categorías, es importante contar con la disponibilidad de ellos, y elaborar un registro de sus actividades físicas diarias. Ya que la variable más importante del estudio será la cantidad de tiempo (en años) entrenando de dicho deportista, para poder realizar una comparación más optima con los otros deportistas.

• En el momento que se seleccionan los deportistas amateurs y los deportistas de alto rendimiento se utiliza una tabla de referencia en donde se llenan unos campos para la verificación de la información y la comparación entre estos. Con la ayuda de medidas aceptadas por la ISAK. A continuación, se anexa la tabla de utilizada para la recolección de datos.

Tabla 1. Plantilla para la recolección de datos para la medición cinemática y cinética a partir de sensores vestibles.

| Protocolo para la medición cinemática y cinética, a partir de sensores vestibles. |
| Diseñado por: Simón Cataño Jiménez |
| **Objetivo:** caracterizar la muestra poblacional preseleccionada de deportistas de alto rendimiento y de categoría aficionada, en la disciplina de triatlón para la medición de los movimientos deportivos. |

Nombre:	
Edad (años):	
Actividad (Horas / Semana):	
Observaciones	
Peso (kg):	
Altura (m):	
Running Experience (años):	
Diámetro Bilocrestal (cm)	
Diámetro Bicondileo Fémur (cm)	
Diámetro Bibaleolar Tobillo (cm)	
Altura Trocantérea (cm)	
Altura Tibial (cm)	
Longitud Muslo (cm)	
Longitud Pierna (cm)	
Longitud Pie (cm)	

• Se procede a ejecutar criterios de inclusión y exclusión para utilizar una población adecuada, logrando así no un estudio de caso, si no un estudio en donde se

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
puedan realizar comparaciones estadísticas y sacar conclusiones para futuras investigaciones.

Inicialmente se toman muestras a dos grupos de personas de ambos géneros, y de diferentes edades, manejando un promedio de veinte dos años, se definen las horas de entrenamiento por semana, si tiene o no competencias en el año para la población de deportistas de alto rendimiento, esperando obtener información con respecto a otros atletas que no tienen tanta experiencia en el atletismo.

- Cuando se cuenta con la información anterior, se procede a tomar unas fotos (*Ver figura 12*), para tener evidencia de como fueron ubicados los sensores vestibles. El primero de los sensores se encontrará ubicado en la línea con el ombligo es decir la unión entre las vértebras L2 y L3, que está cerca del sensor de cada participante. Con la ubicación de dicho sensor se ha demostrado que el atleta registra medidas de aceleraciones que son válidas y que la medición es confiable con respecto a los patrones de aceleración asociados a la marcha atlética, La coordenada ortogonal ejes -x,y, y z se orientaron en el medio lateral, El segundo sensor se encuentra en la pierna dominante y está ubicado en la parte posterior del cuerpo en miembro inferior, específicamente entre la tibia y el peroné, que es donde se ubican la mayor cantidad de aceleraciones axiales involucradas en la marcha, como también se describe óptimamente el ángulo de inclinación que debe tener el deportista con respecto al piso, es decir, con la horizontal (Clermont et al., 2019).
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 12. Disposición de los sensores Shimmer ubicados en zona lumbar y pierna dominante en la marcha.

- Antes de iniciar la prueba, se verifican los sensores y posteriormente se toma el tiempo en banda, que sea aproximadamente de 2 minutos (120 segundos), para tomar alrededor de 120 datos (Luego de su filtrado).

La caminadora que se utilizó fue la del laboratorio de ciencias aplicadas al movimiento CAMÉ, en un ambiente controlado, y siempre con la banda en una velocidad de 5 km/h.

2.2. Realizar un análisis cuantitativo de las variables relevantes en atletas, mediante el uso de sensores wearable.

- Inicialmente se hace uso de los sensores vestibles marca Shimmer®. Estos sensores son una pequeña plataforma de sensores inalámbricos muy adecuados para aplicaciones portátiles. Cuenta con características muy elementales como sensores cinemáticos integrados, gran capacidad de comunicación basada en estándares de baja potencia. El sensor utilizado en este protocolo es el Shimmer3, que cuenta con una comunicación Shimmer-to-Shimmer de hasta 12 microsegundos, es decir tiene grabación de 12 microsegundos a segundo es equivalente a tomar 0.72 milisegundos un dato, o poder tomar cada segundo durante un día datos (Shimmer, 2013b)

- El siguiente es el protocolo que se realizó para la captura de dato, tanto como aceleración axial (aceleración en el eje z), como los ángulos descritos con la horizontal.
 - Inicialmente esta es la interfaz del programa ConsensysPRO (herramienta con la que cuenta Shimmer para el funcionamiento de los sensores vestibles). Dicha interfaz cuenta con dos bloques; el primero contiene el nombre del sensor (referencia por defecto) y el estado de carga (0% a 100%), y en el otro bloque cuenta con la base15 donde se pueden depositar 15 sensores vestibles, este último bloque en la parte inferior tiene 3 signos, el primero es si el sensor esta bloqueado (Docked), el segundo es si el sensor no ha sido reconocido por el programa (Unknown) , o si el sensor ha sido reconocido y esta listo para ser utilizado (Pending). (Ver figura 13).
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 13. Interfaz gráfica del programa ConsesysPro, de Shimmer sensing.

- Luego se procede a borrar “los datos anteriores del sensor, es decir, si el sensor ha sido utilizado, si el sensor ha sido calibrado, lo mejor es primero limpiar los datos que contiene, para que se le puedan cargar los nuevos algoritmos, y las nuevas ecuaciones que van a ser utilizadas. Este proceso cuenta con tres etapas. La primera etapa es dar clic en la parte inferior donde dice “programar” luego se ejecuta la opción que viene por defecto de Shimmer sensing, luego la segunda etapa es para cargar el Firmware (Ver figura 14). Y la segunda y última etapa es cuando están 100% cargados, con el limpiador de datos, y que están listos para ser usados (Ver figura 15 y 16).

Figura 14. Interfaz inicial donde se procede para la limpieza de los sensores.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 15. Interfaz para la limpieza de datos.

Figura 16. Interfaz con el sensor en su 100% de limpieza, y listo para ser utilizado.
Luego se dispone a cargar los datos que han sido seleccionados para esta investigación. En este proceso se utilizan dos sensores con una frecuencia de 512 Hz, se tomaron más de veinte mil datos, pero se les realiza un proceso de filtrado. Con el cual se obtiene una respuesta de aceleración axial en Z, un ángulo con la horizontal en un tiempo de 120 segundos. (ver figuras #17, 18, 19 y 20)

Figura 17. Interfaz gráfica de calibración para el sensor ubicado en la lumbar.

Figura 18. Interfaz gráfica de algoritmos para el sensor ubicado en la lumbar.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 19. Interfaz gráfica de calibración para el sensor ubicado en la pierna dominante.

Figura 20. Interfaz gráfica de algoritmos para el sensor ubicado en la pierna derecha.

- Seleccionar las variables a medir del gesto deportivo que se va a analizar, para conocer la cinemática de los segmentos corporales. Estos segmentos corporales son analizados por el software ConsesysPro, y posteriormente se hace un análisis mixto, en donde la parte cuantitativa y numérica se lleva acabo en el software Excel, con cálculos como media, desviación estándar de la aceleración y comparaciones en gráficos.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Se revisa en la literatura qué medidas son las más importantes en la cinemática del movimiento, en el atletismo. A partir de esto se toman las medidas antropométricas con instrumentos de medida de alta precisión. Basados en la Sociedad internacional para el estudio de cineantropometría avanzada (ISAK, siglas en ingles). (Canda, 2012)

• Las utilizadas en la presente investigación son la de acelerómetro, la de ángulos por medio de giroscopio.

 o Acelerómetro por medio de Sensor Shimmer3: Los acelerómetros están etiquetados como LNAccelerometer (Acelerómetro de Bajo ruido) y acelerómetro WRA (Amplio rango), el primero describe un acelerómetro que tiene un solo rango y es análogo (+/-2 g. Por otra parte, el acelerómetro WRA es digital y tiene rangos diferentes de medición desde +2g hasta +/-8g. (Shimmer, 2013b)

 o En cuanto al giroscopio existen dos, uno de baja potencia y otro de alta potencia, que cuenta con cuatro rangos seleccionables: 250 dps, 500 deps, 100 dps y 2000dps. En esta investigación se utilizó el de 500 dps (grados por segundo, siglas en ingles), (Shimmer, 2013b)

• Con las medidas seleccionadas, se procede a definir en qué categoría de medición se encuentra, puesto que el sensor puede tener mediciones de aceleración (acelerómetro), de ángulos (giroscopio), de cambio de energía (electromiografía) o alguna combinación de estos.

• Luego a cada deportista se procede a colocar los sensores y se toman las primeras pruebas. Todos estos datos se van a llevar a cabo en el software de Shimmer®. Y con la ayuda de Excel, se van a procesar los datos, se realizará un filtrado, y se generará gráficas de movimiento.

• A partir, de las variables obtenidas en el software Shimmer®, se limpian los datos, en este proceso se busca filtrar al máximo las mediciones, para mirar tener los datos más relevantes y los tiempos donde se puede sacar más información.

2.3. **Enunciar los procedimientos para adquirir y evaluar las variables cinemáticas de acuerdo con los gestos deportivos óptimos que debe tener un atleta en su entrenamiento.**

• Con las mediciones tomadas a los deportistas de alto rendimiento, y de categoría aficionado y con base a los análisis que se realizaron y las gráficas y datos que se obtuvieron, se procede a generar una metodología de entrenamiento en donde el deportista garantice que su rendimiento va a mejorar, a partir de técnicas de los deportistas de alto rendimiento.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
3. PRESENTACIÓN Y DISCUSIÓN DE RESULTADOS

El protocolo realizado tuvo una participación total de 21 sujetos de estudio entre hombres y mujeres, de los cuales se seleccionaron y filtraron 8 sujetos (2 hombres y 6 mujeres), dentro de dicha población se encuentra 1 hombre y 3 mujeres atletas de alto rendimiento con más de 5 años de experiencia y los restantes son población aficionada, que apenas inician con la actividad deportiva.

A cada deportista o atleta aficionado se le tomo las 8 medidas antropométricas, aparte de tener su peso y estatura en kilogramos y centímetros respectivamente.

Se tomó en cuenta la pierna dominante en la marcha atlética, suponiendo que si era conocida, de lo contrario, se realizó un análisis cualitativo de la marcha para conocer dicha medida y poder sujetar los 2 sensores Shimmer3, uno en la zona lumbar entre L2 y L3, como también en la parte anterior del soléo en la pierna. Todo esto teniendo en cuenta la literatura y las dos investigaciones más importantes para dicha presentación de resultados.

El protocolo inició con el atleta en la banda corredora del laboratorio CAME, donde se tomaron muestras durante 120 segundos aproximadamente, con una frecuencia de muestreo del sensor de 512 Hz, por lo que se obtuvo un dato cada 0.0019 segundos.

El sensor tomó medidas de aceleración y de velocidad angular, en cada uno de los 3 ejes del espacio coordenado (X,Y,Z), y para poder obtener la aceleración axial (aceleración que hace referencia al avance horizontal del cuerpo), se realizó cinemática del movimiento obteniendo dos aceleraciones por metodologías distintas (Logarítmica LN, y Euler), así mismo, la velocidad angular se integró respecto al tiempo, para obtener la posición del ángulo que se describía con su eje paralelo es decir, la superficie.

Para las aceleraciones se realizó una calibración teniendo en cuenta la matriz de alineación, la matriz de sensibilidad y el vector de compensación haciendo uso de la ecuación implementada por el software que se describe a continuación:

\[C = R^{-1} \cdot K^{-1} \cdot (u - b) \]

Ecuación 1. Ecuación para calcular el vector de calibración (Shimmer, 2013a)

Dónde:

- \(C \) = 3x 1 Inversa del Vector de calibración
- \(R \) = 3x3 Inversa de la Matriz de alineación
- \(K \) = 3x3 Matriz de Sensibilidad

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

\[u = 3 \times 1 \text{ Vector no calibrado} \]

\[b = 3 \times 1 \text{ Vector de “offset”} \]

De igual forma la velocidad angular entregada en grados sobre segundo al cuadrado (deg/s²). Fue calculada mediante el método de calibración 6Dof que se basa en el trabajo hecho por Ferraris en su investigación “Procedure for Effortless In-Field Calibration of Three Axis Rate Gyros and Accelerometers”

\[y_g = K_g \omega + b_g \]

Ecuación 2. Método de calibración del giroscopio *(Ferraris, Gorini, Grimaldi, & Parvis, 1994)*

Donde:

\(K_g \) Es la escala de conversión del giroscopio

\(b_g \) Es la escala “offset” del giroscopio, considerando que la función sigue una trayectoria lineal

Finalmente se obtuvieron 14.000 mil datos por sujeto estudiado, teniendo en cuenta que el arreglo matricial tuvo 120 filas por 13 columnas, teniendo en cuenta que las dos aceleraciones se normalizaron respecto al tiempo, y que la velocidad angular se integró y normalizó para posibles comparaciones.

A continuación, se muestra cada uno de los resultados de los sujetos anteriormente mencionados, con el propósito de evidenciar el alcance de cada uno de los objetivos específicos de la investigación.

- *Caracterizar la muestra poblacional* que se aplicará a los deportistas de alto rendimiento y de categoría aficionada, en la categoría de atletismo principalmente en marcha atlética para la medición de los movimientos deportivos.

Como se mencionó anteriormente, se eligieron 8 sujetos para ser comparados entre ellos, por lo que se les realizó a cada una de las siguientes mediciones antropométricas registradas en cada tabla.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Tabla 2. Medidas antropométricas sujeto 1

<table>
<thead>
<tr>
<th>Nombre:</th>
<th>Sujeto 1 - Femenino - Deportista de alto rendimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>24</td>
</tr>
<tr>
<td>Actividad</td>
<td>12 horas</td>
</tr>
<tr>
<td>Observaciones</td>
<td>Ninguna</td>
</tr>
<tr>
<td>Peso</td>
<td>60.6</td>
</tr>
<tr>
<td>Altura</td>
<td>1.59</td>
</tr>
<tr>
<td>Running Experience (años)</td>
<td>6 años</td>
</tr>
<tr>
<td>Diámetro Bilocrestal</td>
<td>26</td>
</tr>
<tr>
<td>Diámetro Bicondileo Fémur</td>
<td>9.5</td>
</tr>
<tr>
<td>Diámetro Bibaleolar Tobillo</td>
<td>4.2</td>
</tr>
<tr>
<td>Altura Trocantérea</td>
<td>86</td>
</tr>
<tr>
<td>Altura Tibial</td>
<td>53</td>
</tr>
<tr>
<td>Longitud Muslo</td>
<td>33</td>
</tr>
<tr>
<td>Longitud Pierna</td>
<td>39</td>
</tr>
<tr>
<td>Longitud Pie</td>
<td>38</td>
</tr>
</tbody>
</table>

Tabla 3. Medidas antropométricas sujeto 2

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Objetivo: caracterizar la muestra poblacional preseleccionada de deportistas de alto rendimiento y de categoría amateur, en la disciplina de triatlón para la medición de los movimientos deportivos.

<table>
<thead>
<tr>
<th>Nombre:</th>
<th>Sujeto 2 - Masculino - Deportista de Alto rendimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>29</td>
</tr>
<tr>
<td>Actividad</td>
<td>8 horas</td>
</tr>
<tr>
<td>Observaciones</td>
<td>Tendinitis pie dominante. Pubalgia</td>
</tr>
<tr>
<td>Peso</td>
<td>69.1</td>
</tr>
<tr>
<td>Altura</td>
<td>1.62</td>
</tr>
<tr>
<td>Running Experience (años)</td>
<td>10 años</td>
</tr>
<tr>
<td>Diámetro Bilocrestal</td>
<td>26</td>
</tr>
<tr>
<td>Diámetro Bicondileo Fémur</td>
<td>8.5</td>
</tr>
<tr>
<td>Diámetro Bibaleolar Tobillo</td>
<td>5</td>
</tr>
<tr>
<td>Altura Trocantérea</td>
<td>85</td>
</tr>
<tr>
<td>Altura Tibial</td>
<td>53</td>
</tr>
<tr>
<td>Longitud Muslo</td>
<td>39</td>
</tr>
<tr>
<td>Longitud Pierna</td>
<td>37.2</td>
</tr>
<tr>
<td>Longitud Pie</td>
<td>23</td>
</tr>
</tbody>
</table>

Tabla 4. Medidas antropométricas sujeto 3

| Protocolo para la medición cinemática y cinética, a partir de sensores vestibles. |
| Diseñado por: Simón Cataño Jiménez |

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Objetivo: caracterizar la muestra poblacional preseleccionada de deportistas de alto rendimiento y de categoría amateur, en la disciplina de triatlón para la medición de los movimientos deportivos.

<table>
<thead>
<tr>
<th>Nombre: Sujeto 3 - Femenina - Deportista de alto rendimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>Actividad</td>
</tr>
<tr>
<td>Correr, gimnasio</td>
</tr>
<tr>
<td>Observaciones</td>
</tr>
<tr>
<td>Dolor en la rodilla dominante</td>
</tr>
<tr>
<td>Peso</td>
</tr>
<tr>
<td>58.7</td>
</tr>
<tr>
<td>Altura</td>
</tr>
<tr>
<td>1.63</td>
</tr>
<tr>
<td>Running Experience (años)</td>
</tr>
<tr>
<td>5 años</td>
</tr>
<tr>
<td>Diámetro Bilocrestal</td>
</tr>
<tr>
<td>26.5</td>
</tr>
<tr>
<td>Diámetro Bicondileo Fémur</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>Diámetro Bibaleolar Tobillo</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>Altura Trocantérea</td>
</tr>
<tr>
<td>92</td>
</tr>
<tr>
<td>Altura Tibial</td>
</tr>
<tr>
<td>44</td>
</tr>
<tr>
<td>Longitud Muslo</td>
</tr>
<tr>
<td>48</td>
</tr>
<tr>
<td>Longitud Pierna</td>
</tr>
<tr>
<td>34</td>
</tr>
<tr>
<td>Longitud Pie</td>
</tr>
<tr>
<td>23</td>
</tr>
</tbody>
</table>

Tabla 5. Medidas antropométricas sujeto 4

Protocolo para la medición cinemática y cinética, a partir de sensores vestibles.

Diseñado por: Simón Cataño Jiménez

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Objetivo: caracterizar la muestra poblacional preseleccionada de deportistas de alto rendimiento y de categoría amateur, en la disciplina de triatlón para la medición de los movimientos deportivos.

<table>
<thead>
<tr>
<th>Nombre:</th>
<th>sujeto 4 - Femenina - Atleta de alto rendimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>21</td>
</tr>
<tr>
<td>Actividad</td>
<td>10 horas de ejercicio semanal</td>
</tr>
<tr>
<td>Observaciones</td>
<td>Ninguna</td>
</tr>
<tr>
<td>Peso</td>
<td>54.7</td>
</tr>
<tr>
<td>Altura</td>
<td>1.62</td>
</tr>
<tr>
<td>Running Experience (años)</td>
<td>6 años</td>
</tr>
<tr>
<td>Diámetro Bilocrestal</td>
<td>27.5</td>
</tr>
<tr>
<td>Diámetro Bicondileo Fémur</td>
<td>12.5</td>
</tr>
<tr>
<td>Diámetro Bibaleolar Tobillo</td>
<td>6.5</td>
</tr>
<tr>
<td>Altura Trocantérea</td>
<td>90</td>
</tr>
<tr>
<td>Altura Tibial</td>
<td>39</td>
</tr>
<tr>
<td>Longitud Muslo</td>
<td>55</td>
</tr>
<tr>
<td>Longitud Pierna</td>
<td>35</td>
</tr>
<tr>
<td>Longitud Pie</td>
<td>26</td>
</tr>
</tbody>
</table>

Tabla 6. Medidas antropométricas sujeto 5

Protocolo para la medición cinemática y cinética, a partir de sensores vestibles.
Diseñado por: Simón Cataño Jiménez

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Objetivo: caracterizar la muestra poblacional preseleccionada de deportistas de alto rendimiento y de categoría amateur, en la disciplina de triatlón para la medición de los movimientos deportivos.

<table>
<thead>
<tr>
<th>Nombre:</th>
<th>Sujeto 5 - Femenina - Amateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>22</td>
</tr>
<tr>
<td>Actividad</td>
<td>0</td>
</tr>
<tr>
<td>Observaciones</td>
<td>Arritmia sinusal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peso</th>
<th>64.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura</td>
<td>1,55</td>
</tr>
<tr>
<td>Running Experience (años)</td>
<td>0</td>
</tr>
<tr>
<td>Diámetro Bilocrestal</td>
<td>32</td>
</tr>
<tr>
<td>Diámetro Bicondileo Fémur</td>
<td>9.5</td>
</tr>
<tr>
<td>Diámetro Bibaleolar Tobillo</td>
<td>7.2</td>
</tr>
<tr>
<td>Altura Trocantérea</td>
<td>91</td>
</tr>
<tr>
<td>Altura Tibial</td>
<td>37</td>
</tr>
<tr>
<td>Longitud Muslo</td>
<td>54</td>
</tr>
<tr>
<td>Longitud Pierna</td>
<td>53</td>
</tr>
<tr>
<td>Longitud Pie</td>
<td>35.5</td>
</tr>
</tbody>
</table>

Tabla 7. Medidas antropométricas sujeto 6

Protocolo para la medición cinemática y cinética, a partir de sensores vestibles.

Diseñado por: Simón Cataño Jiménez

Objetivo: caracterizar la muestra poblacional preseleccionada de deportistas de alto

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

<table>
<thead>
<tr>
<th>Nombre:</th>
<th>Sujeto 6 - Masculino - Amateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>21</td>
</tr>
<tr>
<td>Actividad</td>
<td>4 horas</td>
</tr>
<tr>
<td>Observaciones</td>
<td>Ninguna</td>
</tr>
<tr>
<td>Peso</td>
<td>76.5</td>
</tr>
<tr>
<td>Altura</td>
<td>1.81</td>
</tr>
<tr>
<td>Running Experience (años)</td>
<td>0</td>
</tr>
<tr>
<td>Diámetro Bilocrestal</td>
<td>29</td>
</tr>
<tr>
<td>Diámetro Bicondileo Fémur</td>
<td>9.5</td>
</tr>
<tr>
<td>Diámetro Bibaleolar Tobillo</td>
<td>6.2</td>
</tr>
<tr>
<td>Altura Trocantérea</td>
<td>98</td>
</tr>
<tr>
<td>Altura Tibial</td>
<td>47</td>
</tr>
<tr>
<td>Longitud Muslo</td>
<td>55</td>
</tr>
<tr>
<td>Longitud Pierna</td>
<td>44</td>
</tr>
<tr>
<td>Longitud Pie</td>
<td>29</td>
</tr>
</tbody>
</table>

Tabla 8. Medidas antropométricas sujeto 7

Protocolo para la medición cinemática y cinética, a partir de sensores vestibles.
Diseñado por: Simón Cataño Jiménez
Objetivo: caracterizar la muestra poblacional preseleccionada de deportistas de alto

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Sujeto 7 - Femenino - Amatuer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>22</td>
</tr>
<tr>
<td>Actividad</td>
<td>4 horas</td>
</tr>
<tr>
<td>Observaciones</td>
<td>Ninguna</td>
</tr>
<tr>
<td>Peso</td>
<td>62.3</td>
</tr>
<tr>
<td>Altura</td>
<td>1.48</td>
</tr>
<tr>
<td>Running Experience (años)</td>
<td>0</td>
</tr>
<tr>
<td>Diámetro Bilocrestal</td>
<td>34</td>
</tr>
<tr>
<td>Diámetro Bicondileo Fémur</td>
<td>8</td>
</tr>
<tr>
<td>Diámetro Bibaleolar Tobillo</td>
<td>4.2</td>
</tr>
<tr>
<td>Altura Trocantérea</td>
<td>88</td>
</tr>
<tr>
<td>Altura Tibial</td>
<td>40</td>
</tr>
<tr>
<td>Longitud Muslo</td>
<td>52</td>
</tr>
<tr>
<td>Longitud Pierna</td>
<td>36</td>
</tr>
<tr>
<td>Longitud Pie</td>
<td>23</td>
</tr>
</tbody>
</table>

Tabla 9. Medidas antropométricas sujeto 8

Protocolo para la medición cinemática y cinética, a partir de sensores vestibles.
Diseñado por: Simón Cataño Jiménez

Objetivo: caracterizar la muestra poblacional preseleccionada de deportistas de alto rendimiento y de categoría amateur, en la disciplina de triatlón para la medición de los movimientos deportivos.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

rendimiento y de categoría amateur, en la disciplina de triatlón para la medición de los movimientos deportivos.

<table>
<thead>
<tr>
<th>Nombre:</th>
<th>Sujeto 8 – Femenino - Amateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>23</td>
</tr>
<tr>
<td>Actividad</td>
<td>Ninguna. Zumba</td>
</tr>
<tr>
<td>Observaciones</td>
<td>Ninguna</td>
</tr>
<tr>
<td>Peso</td>
<td>57.9</td>
</tr>
<tr>
<td>Altura</td>
<td>1.61</td>
</tr>
<tr>
<td>Running Experience (años)</td>
<td>0</td>
</tr>
<tr>
<td>Diámetro Bilocrestal</td>
<td>30</td>
</tr>
<tr>
<td>Diámetro Bicondileo Fémur</td>
<td>10.5</td>
</tr>
<tr>
<td>Diámetro Bibaleolar Tobillo</td>
<td>5</td>
</tr>
<tr>
<td>Altura Trocantérea</td>
<td>91</td>
</tr>
<tr>
<td>Altura Tibial</td>
<td>41</td>
</tr>
<tr>
<td>Longitud Muslo</td>
<td>56</td>
</tr>
<tr>
<td>Longitud Pierna</td>
<td>35</td>
</tr>
<tr>
<td>Longitud Pie</td>
<td>23</td>
</tr>
</tbody>
</table>

Posterior a estos datos se realizaron 5 tablas más en donde se compararon las medidas antropométricas de los sujetos estudiados con la literatura en donde se propone unas medidas base para atletas en competencia (Canda, 2012).

Se sacaron los promedios de las medidas antropométricas para atleta de alto rendimiento, obteniendo como resultado dos desviaciones estándares por género (masculino y femenino), y se calculó la desviación estándar de los sujetos evaluados, obteniendo los siguientes resultados:

Tabla 10. Promedio y desviación estándar medidas antropométricas para hombres y mujeres en condiciones ideales

<table>
<thead>
<tr>
<th>GÉNERO: MUJER DEPORTISTA AMATEUR</th>
<th>Sujeto 5, Sujeto 7, Sujeto 8</th>
<th>DESVIACIÓN ESTÁNDAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro Bilocrestal</td>
<td>32.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Diámetro Bicondileo Femur</td>
<td>9.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

<table>
<thead>
<tr>
<th>Diametro Bibaleolar Tobillo</th>
<th>5.5</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura Trocanterea</td>
<td>90.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Altura Tibial</td>
<td>39.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Longitud Muslo</td>
<td>54.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Longitud Pierna</td>
<td>41.3</td>
<td>10.1</td>
</tr>
<tr>
<td>Longitud Pie</td>
<td>27.2</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Tabla 11. Promedio y desviación estándar medidas antropométricas para mujeres deportistas amateur

<table>
<thead>
<tr>
<th>GÉNERO: MUJER ATLETA DE ALTO RENDIMIENTO</th>
<th>Sujeto 1, Sujeto 3, Sujeto 4</th>
<th>DESVIACIÓN ESTÁNDAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro Bilocrestal</td>
<td>26.7</td>
<td>22.35</td>
</tr>
<tr>
<td>Diámetro Bicondileo Fémur</td>
<td>28.3</td>
<td></td>
</tr>
<tr>
<td>Diámetro Bibaleolar Tobillo</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>Altura Trocantérea</td>
<td>89.3</td>
<td></td>
</tr>
<tr>
<td>Altura Tibial</td>
<td>45.3</td>
<td></td>
</tr>
<tr>
<td>Longitud Muslo</td>
<td>45.3</td>
<td></td>
</tr>
<tr>
<td>Longitud Pierna</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>Longitud Pie</td>
<td>29.0</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 12. Promedio y desviación estándar medidas antropométricas para mujeres atletas de alto rendimiento

<table>
<thead>
<tr>
<th>GÉNERO: MUJER ATLETA DE ALTO RENDIMIENTO</th>
<th>Sujeto 1, Sujeto 3, Sujeto 4</th>
<th>DESVIACIÓN ESTÁNDAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diametro Bilocrestal</td>
<td>26.7</td>
<td>0.76</td>
</tr>
<tr>
<td>Diametro Bicondileo Femur</td>
<td>12.3</td>
<td>2.75</td>
</tr>
<tr>
<td>Diametro Bibaleolar Tobillo</td>
<td>5.2</td>
<td>1.17</td>
</tr>
<tr>
<td>Altura Trocanterea</td>
<td>89.3</td>
<td>3.06</td>
</tr>
<tr>
<td>Altura Tibial</td>
<td>45.3</td>
<td>7.09</td>
</tr>
<tr>
<td>Longitud Muslo</td>
<td>45.3</td>
<td>11.24</td>
</tr>
<tr>
<td>Longitud Pierna</td>
<td>36.0</td>
<td>2.65</td>
</tr>
<tr>
<td>Longitud Pie</td>
<td>29.0</td>
<td>7.94</td>
</tr>
</tbody>
</table>

Tabla 13. Promedio de medidas antropométricas para hombres deportistas amateur

<table>
<thead>
<tr>
<th>GÉNERO: HOMBRE DEPORTISTA AMATEUR</th>
<th>Sujeto 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diametro Bilocrestal</td>
<td>29</td>
</tr>
<tr>
<td>Diametro Bicondileo Femur</td>
<td>9.5</td>
</tr>
<tr>
<td>Diametro Bibaleolar Tobillo</td>
<td>6.2</td>
</tr>
<tr>
<td>Altura Trocanterea</td>
<td>98</td>
</tr>
<tr>
<td>Altura Tibial</td>
<td>47</td>
</tr>
<tr>
<td>Longitud Muslo</td>
<td>55</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

<table>
<thead>
<tr>
<th>Longitud Pierna</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud Pie</td>
<td>29</td>
</tr>
</tbody>
</table>

Tabla 14. Promedio de medidas antropométricas para hombres atletas de alto rendimiento

<table>
<thead>
<tr>
<th>GÉNERO: HOMBRE ATLETA DE ALTO RENDIMIENTO</th>
<th>Sujeto 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diametro Bilocrestal</td>
<td>26</td>
</tr>
<tr>
<td>Diametro Bicondileo Femur</td>
<td>8.5</td>
</tr>
<tr>
<td>Diametro Bibaleolar Tobillo</td>
<td>5</td>
</tr>
<tr>
<td>Altura Trocanterea</td>
<td>85</td>
</tr>
<tr>
<td>Altura Tibial</td>
<td>53</td>
</tr>
<tr>
<td>Longitud Muslo</td>
<td>39</td>
</tr>
<tr>
<td>Longitud Pierna</td>
<td>37.2</td>
</tr>
<tr>
<td>Longitud Pie</td>
<td>23</td>
</tr>
</tbody>
</table>
En el análisis de resultados a partir de las desviaciones estándares se puede concluir que las dos poblaciones de deportistas de alto rendimiento (tanto femenino como masculino) se acercaron considerablemente. En cuanto a la población aficionada, su postura hace que sus medidas antropométricas sean diferentes, evidenciando desgastes en zonas medulares del hueso (Benson et al., 2018).

- **Realizar un análisis cuantitativo de las variables relevantes en atletas, mediante el uso de sensores wearablees.**

- En esta sesión, se procede a comparar las aceleraciones axiales en el eje Z, y las angulaciones en este mismo eje, de cada participante con sí mismo, así como también una comparación general de todos los atletas y deportistas amateur, basados en la literatura y teniendo una línea base de cada una de estas mediciones.

- **Sujeto 1:**

Figura 21. Aceleración medida en metros por segundo al cuadrado del sujeto 1.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 22. Grafico de angulaciones medidas en grados a partir de la velocidad angular, tanto del sensor ubicado en la zona lumbar como en la pierna derecha del sujeto 1.

Tabla 15. Coeficientes R cuadrado, tomado a partir de los promedios y desviaciones del sujeto 1.

<table>
<thead>
<tr>
<th>Ubicación del Sensor Shimmer3</th>
<th>Coeficiente R^2</th>
<th>Coeficiente R^2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbar: LN y Euler</td>
<td>0.9990</td>
<td>100.000%</td>
</tr>
<tr>
<td>Pierna Derecha: Ln y Euler</td>
<td>0.99916</td>
<td>99.917%</td>
</tr>
<tr>
<td>LN Lumbar y LN Pierna Derecha</td>
<td>0.005237</td>
<td>0.524%</td>
</tr>
<tr>
<td>Euler Lumbar y Euler Pierna Derecha</td>
<td>0.00530</td>
<td>0.530%</td>
</tr>
<tr>
<td>Ángulos Lumbar y Pierna Derecha</td>
<td>0.00891</td>
<td>0.892%</td>
</tr>
</tbody>
</table>

Se puede evidenciar como tiene un comportamiento simétrico en cuanto a sus medidas, y que tanto el sensor ubicado en la zona lumbar como en el soleo trabajan de igual manera. Existe una gran correlación entre los datos obtenidos.

- **Sujeto 2:**

![Angulos vs Tiempo](image)

Figura 23. Gráfico de angulaciones medidas en grados a partir de la velocidad angular, tanto del sensor ubicado en la zona lumbar como en la pierna derecha del sujeto 2.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 24. Aceleración medida en metros por segundo al cuadrado del sujeto 1.

Tabla 16. Coeficientes R cuadrado, tomado a partir de los promedios y desviaciones del sujeto 2.

<table>
<thead>
<tr>
<th>Coeficiente R^2</th>
<th>Lumbar: LN y Euler</th>
<th>0.373679294</th>
<th>37.368%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PiernaDerecha: Ln y Euler</td>
<td>0.006016069</td>
<td>0.602%</td>
<td></td>
</tr>
<tr>
<td>LN Lumbar y LN Pierna Derecha</td>
<td>0.119409696</td>
<td>11.941%</td>
<td></td>
</tr>
<tr>
<td>Euler Lumbar y Euler Pierna Derecha</td>
<td>0.6363604</td>
<td>63.636%</td>
<td></td>
</tr>
<tr>
<td>Ángulos Lumbar y Pierna Derecha</td>
<td>0.046582414</td>
<td>4.658%</td>
<td></td>
</tr>
</tbody>
</table>

Se puede evidenciar como tiene un comportamiento asimétrico en cuanto a sus medidas, y que tanto el sensor ubicado en la zona lumbar como en el soleo trabajan de manera diferente. No hay gran correlación en sus datos, lo que es atípico tratándose de un deportista de más de 10 años de experiencia, lo que puede decirse que dependió también de su actualidad (si hay o no lesiones que lo acompañen)

- **Sujeto 3:**

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 26. Gráfico de angulaciones medidas en grados a partir de la velocidad angular, tanto del sensor ubicado en la zona lumbar como en la pierna derecha del sujeto 3.

Tabla 17. Coeficientes R cuadrado, tomado a partir de los promedios y desviaciones del sujeto 3.

<table>
<thead>
<tr>
<th>Ubicación del Sensor Shimmer3</th>
<th>Coeficiente R^2</th>
<th>Coeficiente R^2(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbar: LN y Euler</td>
<td>0.925571318</td>
<td>92.557%</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PiernaDerecha: Ln y Euler</td>
<td>0.997822185</td>
<td>99.782%</td>
</tr>
<tr>
<td>LN Lumbar y LN Pierna Derecha</td>
<td>0.016380155</td>
<td>1.638%</td>
</tr>
<tr>
<td>Euler Lumbar y Euler PiernaDerecha</td>
<td>0.012645329</td>
<td>1.265%</td>
</tr>
<tr>
<td>Ángulos Lumbar y PiernaDerecha</td>
<td>0.102355721</td>
<td>10.236%</td>
</tr>
</tbody>
</table>

Se puede evidenciar como tiene un comportamiento simétrico en cuanto a sus medidas del sensor ubicado en la lumbar y en la pierna derecha midiendo las aceleraciones, pero su postura no es correcta, porque encontramos un 10.2% de correlación, muy bajo para tratarse de una atleta de alto rendimiento.

- **Sujeto 4:**

![Figura 27. Aceleración medida en metros por segundo al cuadrado del sujeto 4.](image.png)

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Figura 28. Gráfico de angulaciones medidas en grados a partir de la velocidad angular, tanto del sensor ubicado en la zona lumbar como en la pierna derecha del sujeto 3.

Tabla 18. Coeficientes R cuadrado, tomado a partir de los promedios y desviaciones del sujeto 4.

<table>
<thead>
<tr>
<th>Ubicación del Sensor Shimmer3</th>
<th>Coeficiente R^2</th>
<th>Coeficiente R^2(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbar: LN y Euler</td>
<td>0.993402871</td>
<td>99.340%</td>
</tr>
<tr>
<td>Pierna Derecha: Ln y Euler</td>
<td>0.999982626</td>
<td>99.998%</td>
</tr>
<tr>
<td>LN Lumbar y LN Pierna Derecha</td>
<td>0.39842968</td>
<td>39.843%</td>
</tr>
<tr>
<td>Euler Lumbar y Euler Pierna Derecha</td>
<td>0.432932428</td>
<td>43.293%</td>
</tr>
<tr>
<td>Ángulos Lumbar y Pierna Derecha</td>
<td>0.571685655</td>
<td>57.169%</td>
</tr>
</tbody>
</table>

Se puede evidenciar como tiene un comportamiento simétrico en cuanto a sus medidas del sensor ubicado en la lumbar y en la pierna derecha midiendo las aceleraciones, su postura, aunque tiene una correlación no tan alta si demuestra que tiene gran

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

- **Sujeto 5:**

![Gráfico de angulaciones medidas en grados a partir de la velocidad angular, tanto del sensor ubicado en la zona lumbar como en la pierna derecha del sujeto 5.](image1)

Figura 29. Gráfico de angulaciones medidas en grados a partir de la velocidad angular, tanto del sensor ubicado en la zona lumbar como en la pierna derecha del sujeto 5.

![Aceleración medida en metros por segundo al cuadrado del sujeto 5.](image2)

Figura 30. Aceleración medida en metros por segundo al cuadrado del sujeto 5.

<table>
<thead>
<tr>
<th>Ubicación del Sensor</th>
<th>Coeficiente R^2</th>
<th>Coeficiente R^2(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbar: LN y Euler</td>
<td>0.800837226</td>
<td>80.084%</td>
</tr>
<tr>
<td>PiernaDerecha: Ln y</td>
<td>0.037513216</td>
<td>3.751%</td>
</tr>
</tbody>
</table>

Tabla 19. Coeficientes R cuadrado, tomado a partir de los promedios y desviaciones del sujeto 5.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
<table>
<thead>
<tr>
<th>Euler</th>
<th>LN Lumbar y LN Pierna Derecha</th>
<th>0.084867988</th>
<th>8.487%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euler Lumbar y Euler Pierna Derecha</td>
<td>0.187223096</td>
<td>18.722%</td>
<td></td>
</tr>
<tr>
<td>Angulos Lumbar y Pierna Derecha</td>
<td>0.000253021</td>
<td>0.025%</td>
<td></td>
</tr>
</tbody>
</table>

En este caso se trata de un sujeto de estudio amateur que apenas está iniciando su actividad deportiva, ore lo describe aceleraciones en la lumbar muy altas, pero no tiene esa misma transferencia en la pierna. En cuanto a angulaciones no describe una buena postura, de hecho, se trata de un sujeto que no tiene buena pisada a la hora de realizar la marcha.

- **Sujeto 6:**

![Gráfica de aceleración vs tiempo](image)

Figura 31. Aceleración medida en metros por segundo al cuadrado del sujeto 6.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 32. Gráfico de angulaciones medidas en grados a partir de la velocidad angular, tanto del sensor ubicado en la zona lumbar como en la pierna derecha del sujeto 6.

Tabla 20. Coeficientes R cuadrado, tomado a partir de los promedios y desviaciones del sujeto 6.

<table>
<thead>
<tr>
<th>Coeficiente R^2 Ubicación del Sensor Shimmer3</th>
<th>Coeficiente R^2</th>
<th>Coeficiente R^2(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbar: LN y Euler</td>
<td>0.134748807</td>
<td>13.475%</td>
</tr>
<tr>
<td>Pierna Derecha: Ln y Euler</td>
<td>0.927399017</td>
<td>92.740%</td>
</tr>
<tr>
<td>LN Lumbar y LN Pierna Derecha</td>
<td>0.006584157</td>
<td>0.658%</td>
</tr>
<tr>
<td>Euler Lumbar y Euler Pierna Derecha</td>
<td>0.011203366</td>
<td>1.120%</td>
</tr>
<tr>
<td>Ángulos Lumbar y Pierna Derecha</td>
<td>0.074781854</td>
<td>7.478%</td>
</tr>
</tbody>
</table>

Para este caso se puede ver la evidencia de un trabajo muy grande por parte de la pierna derecha a cuanto las aceleraciones, pero en cuanto a angulaciones se denota una gran asimetría por parte del sujeto de estudio, siendo muy bajos los resultados en sus correlaciones, así mismo, se evidencio en los gráficos como es necesario realizar una corrección en postura.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
• Sujeto 7:

Figura 33. Gráfico de angulaciones medidas en grados a partir de la velocidad angular, tanto del sensor ubicado en la zona lumbar como en la pierna derecha del sujeto 7.

Figura 34. Aceleración medida en metros por segundo al cuadrado del sujeto 7.

Tabla 21. Coeficientes R cuadrado, tomado a partir de los promedios y desviaciones del sujeto 7.

<table>
<thead>
<tr>
<th>Ubicación del Sensor Shimmer3</th>
<th>Coeficiente R(^2)</th>
<th>Coeficiente R(^2)(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbar: LN y Euler</td>
<td>0.044445191</td>
<td>4.445%</td>
</tr>
<tr>
<td>PiernaDerecha: Ln y Euler</td>
<td>0.028141869</td>
<td>2.814%</td>
</tr>
<tr>
<td>LN Lumbar y LN Pierna Derecha</td>
<td>0.007888761</td>
<td>0.789%</td>
</tr>
<tr>
<td>Euler Lumbar y Euler</td>
<td>0.008399738</td>
<td>0.840%</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
En este caso se trata de un sujeto de género femenino que apenas está iniciando con su actividad deportiva por lo que se esperaba que sus resultados en cuanto a la correlación fueron muy bajos, al igual que sus gráficos que tienen mucho por mejorar. Las aceleraciones son asimétricas y los ángulos descritos están muy por debajo de lo establecido, y de los parámetros base para un corredor.

Sujeto 8:

![Gráfico de angulaciones medidas en grados a partir de la velocidad angular, tanto del sensor ubicado en la zona lumbar como en la pierna derecha del sujeto 8.](image)

Figura 35. Gráfico de angulaciones medidas en grados a partir de la velocidad angular, tanto del sensor ubicado en la zona lumbar como en la pierna derecha del sujeto 8.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 36. Aceleración medida en metros por segundo al cuadrado del sujeto 8.

Tabla 22. Coeficientes R cuadrado, tomado a partir de los promedios y desviaciones del sujeto 8.

<table>
<thead>
<tr>
<th>Coeficiente R^2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbar: LN y Euler</td>
<td>0.922667153</td>
<td>92.267%</td>
</tr>
<tr>
<td>Pierna Derecha: Ln y Euler</td>
<td>0.351878711</td>
<td>35.188%</td>
</tr>
<tr>
<td>LN Lumbar y LN Pierna Derecha</td>
<td>0.069731307</td>
<td>6.973%</td>
</tr>
<tr>
<td>Euler Lumbar y Euler Pierna Derecha</td>
<td>0.310426328</td>
<td>31.043%</td>
</tr>
<tr>
<td>Ángulos Lumbar y Pierna Derecha</td>
<td>0.202467787</td>
<td>20.247%</td>
</tr>
</tbody>
</table>

En este caso se trata de un sujeto de género femenino que lleva poco tiempo en la actividad de atletismo, describe buenas aceleraciones por parte de lumbar y de soleo, pero cuando se comparan entre ellos tiene mala correlación o muy baja, hay que trabajar en cuanto a postura puesto que sus movimientos no son del todo bien.

- **Enunciar los procedimientos para adquirir y evaluar las variables cinemáticas de acuerdo con los gestos deportivos óptimos que debe tener un triatleta en su entrenamiento.**

En el siguiente diagrama se pretende mostrar el proceso por el cual se adquirieron y evaluaron los gestos deportivos.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 37. Diagrama de procedimientos para la recolección de datos.

- Con este objetivo se intenta garantizar que partir de las medidas tomadas anteriormente se realice una especie de pasos o de reglas, para que un deportista aficionado pueda obtener mejores resultados, no solo de manera cualitativa si no de manera cuantitativa siendo así una investigación de carácter mixto.

- También se recomienda tener en cuenta el tipo de calzado que es utilizado para esta marcha atlética, ya que de eso va a depender un 90% la postura que se alcance a la hora de llegar a velocidades máximas, o a tener desaceleraciones por parte del corredor.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
En cuanto a angulaciones, es necesario corregir la postura para así alcanzar un rendimiento óptimo en la zona de despegue de planta y apoyo de talón (Ver Figura 37 y 38).

Figura 38. Tomada del sistema Vicon en el laboratorio de ciencias aplicadas al movimiento. Describiendo el movimiento de marcha atlética en el momento de fase plantar (apoyo de talón).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Figura 39. Tomada del sistema Vicon en el laboratorio de ciencias aplicadas al movimiento. Describiendo el movimiento de marcha atlética en el momento de despegue de planta, y próxima marcha.

Angulo con la horizontal, de zona pélvica y de la tibia en la fase de despegue.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
4. CONCLUSIONES Y CONSIDERACIONES FINALES

Este protocolo tuvo como propósito inicial, realizar una comparación mixta (cuantitativa y cualitativa) con respecto a deportistas de alto rendimiento y deportistas aficionados o que apenas empiezan su actividad en el deporte. Se buscó realizar la comparación con algún sistema de medición que no se utilizara habitualmente o que no se tuviera registro de ello, como fueron los sensores vestibles con los que cuenta el laboratorio de ciencias aplicadas al movimiento (CAME) en la universidad EIA, sede Envigado.

Este estudio también tuvo como propósito realizar la comparación frente a las investigaciones que se venían haciendo en la universidad, como el sistema Vicon en comparación con los sensores vestibles, ya que se quería comparar de manera estadística aplicando conceptos matemáticos como influía las medidas de aceleración, angulación y dirección del movimiento.

Los resultados obtenidos fueron positivos, y se pudo realizar una comparación de manera cuantitativa y cualitativa frente a las demás tecnologías que se tienen hoy en día.

Se pudo establecer un parámetro de marcha, y conocer con precisión como es el comportamiento de un sujeto que este en el nivel de alto rendimiento o que por el contrario este iniciando su actividad deportiva.

En cuanto a la postura, se tiene que hacer un énfasis mayor, puesto que los participantes del estudio que apenas están comenzando con su vida deportiva, realizan gestos deportivos innecesarios o apoyos plantares no deseados.

Simultáneamente a los sensores vestibles de la empresa Shimmer, es posible determinar que son los mejores del mercado actualmente y que cuentan con herramientas y aplicaciones en tiempo real. En esta investigación se utilizaron de manera remota y se almacenaron los datos para posteriormente filtrarlos, pero se obtuvo una gran mejoría de datos, frente al sistema actual Vicon.

Como consideración se debe tener en cuenta el ambiente en el que se realiza el estudio con el sistema de sensores vestibles, porque, aunque sea controlado, lo ideal sería llevarlo al campo exterior donde se experimentará con superficies reales y con ambientes que harán que el sensor tome medidas de ruido y se filtren otro tipo de datos, haciendo así que el filtrado de datos sea más complicado, pero que los resultados tengan mayor precisión. Se recomienda utilizar los equipos del laboratorio CAME, aunque el ambiente sea un poco cerrado y con baja ventilación. El equipo utilizado para el software CONSYSPRO tiene buena capacidad de memoria, pero una tarjeta de video, por lo que se sugiere cambiar el equipo. El sistema bluetooth no fue posible utilizar debido a los inconvenientes que presenta dicho equipo en el laboratorio CAME.

Al comparar los datos de la población masculina de alto rendimiento, en relación con los atletas amateur se encontraron parámetros de aceleraciones en donde los máximos
fueron alcanzados por los deportistas, aunque los amateurs también describieron aceleraciones grandes, pero no fueron constantes durante el tiempo.

Al comparar deportistas de alto rendimiento de sexo masculino con deportistas de alto rendimiento de sexo femenino con respecto los sujetos no entrenados estos últimos hacen un patrón de apoyo plantar de talón-punta en comparación con la elite que hacen solo punta, es decir, un apoyo meta tarsal

Finalmente se sugiere para próximas investigaciones hacer uso de los sensores de manera remota, y de conectar el sistema de electromiografía para tener medidas de energía y de gasto energético del musculo, así alcanzar una precisión en datos tomados de manera remota.
REFERENCIAS

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

ANEXOS

Anexo 1. Sujeto 1 vista lateral

Anexo 2. Sujeto 1 vista posterior

Anexo 3. Sujeto 2 vista lateral

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Anexo 11. Sujeto 6 vista posterior

Nota: el sujeto 7 no aceptó la toma de fotografías.

Anexo 12. Sujeto 8 vista lateral

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Anexo 13. Sujeto 8 vista posterior

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.