POTENCIAL DE ENERGÍA EÓLICA OFFSHORE EN EL MAR CARIBE COLOMBIANO

SANTIAGO FRANCO RAMIREZ
Ingeniero civil

Santiago Ortega Arango
Maestría en Ingeniería

ESCUELA DE INGENIERÍA DE ANTIOQUIA
INGENIERÍA CIVIL
ENVIGADO
2015

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
AGRADECIMIENTOS

Quisiera agradecer a toda mi familia, especialmente a mis padres Jorge Enrique Franco y Ofelia Ramírez y a mi tía Gloria Ramírez. Gracias a sus esfuerzos fue posible que llegara a este momento en mi formación profesional.

Hago una mención especial a los profesores Santiago Ortega Arango, Daniel Ruiz Carrascal y Francisco Jaime Mejía quienes fueron los principales motivadores en mi periodo de estudio. Sus enseñanzas me ayudaron a encontrar un camino a seguir en la ingeniería. Finalmente agradezco a la profesora Marta Isabel Posada, que gracias a sus instrucciones debo parte de este trabajo.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
CONTENIDO

<table>
<thead>
<tr>
<th>1. PRELIMINARES</th>
<th>pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Planteamiento del problema</td>
<td>13</td>
</tr>
<tr>
<td>• Contexto y caracterización del problema</td>
<td>13</td>
</tr>
<tr>
<td>• Formulación del problema</td>
<td>16</td>
</tr>
<tr>
<td>1.2 Objetivos del proyecto</td>
<td>17</td>
</tr>
<tr>
<td>• Objetivo General</td>
<td>17</td>
</tr>
<tr>
<td>• Objetivos Específicos</td>
<td>17</td>
</tr>
<tr>
<td>1.3 Marco de referencia</td>
<td>17</td>
</tr>
<tr>
<td>• Sistemas de viento de la tierra</td>
<td>17</td>
</tr>
<tr>
<td>• Vientos zonales, brisas del mar</td>
<td>19</td>
</tr>
<tr>
<td>• Energía a partir del viento</td>
<td>19</td>
</tr>
<tr>
<td>• Límite de Betz</td>
<td>20</td>
</tr>
<tr>
<td>• Corrección de velocidad del viento por altura</td>
<td>23</td>
</tr>
<tr>
<td>• Estructuras de soporte para turbinas eólicas offshore</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. METODOLOGÍA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 determinación de las Zonas de estudio</td>
<td>24</td>
</tr>
<tr>
<td>• Determinación de la profundidad máxima cimentación</td>
<td>24</td>
</tr>
<tr>
<td>• Ubicación de las áreas protegidas y límites marítimos</td>
<td>24</td>
</tr>
<tr>
<td>2.2 Datos de viento</td>
<td>25</td>
</tr>
<tr>
<td>• Extracción de los datos de viento</td>
<td>25</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

LISTA DE TABLAS

Tabla 1, *Capacidad instalada por tecnología* (Unidad de Planeación Minero Energética, 2014) .. 15

Tabla 2, *Dirección del viento vector de velocidad de viento de acuerdo a sus componentes* .. 25

LISTA DE ILUSTRACIONES

Ilustración 1, *Consumo mundial de energía* (U.S Energy Information Administration, 2013) .. 13

Ilustración 2, *Generación neta de energía eléctrica por fuente* (U.S Energy Information Administration, 2013) .. 14

Ilustración 3, *Participación por tecnología en la matriz eléctrica colombiana* (Unidad de Planeación Minero Energética, 2014) .. 15

Ilustración 4, *Capacidad instalada en Atlántico, Bolívar, Cesar, Córdoba, la Guajira, Magdalena y Sucre* (Unidad de Planeación Minero Energética, 2014) .. 16

Ilustración 5, *Sistemas de viento de la tierra, modificada de* (Boyle, 2004) 18

Ilustración 6, *Vientos Zonales, brisas del mar, tomada de* (Boyle, 2004) 19

Ilustración 7, *Flujo a través de un rotor eólico* (DANISH WIND INDUSTRY ASSOCIATION, 2003) .. 21

Ilustración 8, *Curva de eficiencia eólica* (DANISH WIND INDUSTRY ASSOCIATION, 2003) .. 22

Ilustración 9, *Subestructuras de cimentación por método* (European Wind Energy Association (EWEA), 2015) .. 27

Ilustración 10, *Subestructuras de cimentación instaladas en el año 2014 por fabricantes* (European Wind Energy Association (EWEA), 2015) .. 28

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
LISTA DE ANEXOS

El trabajo de grado realizado contiene anexos incluidos en el presente informe tanto como anexos digitales que se adjuntan de manera independiente en un disco formato DVD

Anexos contenidos en el presente informe:

Mapa 1, Potencial eólico offshore enero ... 52
Mapa 2, Potencial eólico offshore febrero ... 53
Mapa 3, Potencial eólico offshore marzo ... 54
Mapa 4, Potencial eólico offshore abril ... 55
Mapa 5, Potencial eólico offshore mayo ... 56
Mapa 6, Potencial eólico offshore junio ... 57
Mapa 7, Potencial eólico offshore julio ... 58
Mapa 8, Potencial eólico offshore agosto ... 59
Mapa 9, Potencial eólico offshore septiembre ... 60
Mapa 10, Potencial eólico offshore octubre ... 61
Mapa 11, Potencial eólico offshore noviembre .. 62
Mapa 12, Potencial eólico offshore diciembre .. 63
Mapa 13, Potencial eólico offshore trimestre 1 ... 64
Mapa 14, Potencial eólico offshore trimestre 2 ... 65
Mapa 15, Potencial eólico offshore trimestre 3 ... 66
Mapa 16, Potencial eólico offshore trimestre 4 ... 67
Mapa 17, Potencial eólico offshore anual ... 68
Mapa 18, Zona de estudio ... 69

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Anexos independientes formato digital:

Análisis estadístico:

- 68 gráficos correspondientes a los histogramas y probabilidades de excedencia de cada punto de interés.
- 68 gráficos del análisis estadístico mensual y horario de cada punto de interés.
- 68 gráficos del análisis estadístico trimestral de cada punto de interés.
- 68 hojas de cálculo en Microsoft Excel con la información del comportamiento del viento en cada punto de interés.

Calcular el Potencial:

- 17 mapas correspondientes al potencial calculado en el presente trabajo.
- 17 hojas de cálculo correspondiente a la información numérica del potencial calculado.

Zona de estudio:

- 1 Mapa de la zona de estudio y los puntos a evaluar.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
RESUMEN

Palabras Clave: Energía Eólica, potencial eólico, ubicación de turbinas eólicas.

Este trabajo de grado presenta el cálculo del potencial teórico de energía eólica offshore en el mar caribe colombiano, como una alternativa energética para los departamentos de la región atlántica colombiana. Identifica las zonas en las cuales es posible instalar parques eólicos offshore de acuerdo con las áreas declaradas como reserva natural y con las tecnologías de cimentación utilizadas actualmente. El potencial es calculado a partir de la base de datos de viento del North American Regional Reanalysis utilizando la ecuación $P = \frac{1}{2} \rho v^3 A \eta$ para las velocidades de viento en cada uno de los puntos de la zona de estudio. Esta ecuación corresponde a la potencia máxima teórica que una turbina puede alcanzar (Límite de Betz) y esta expresada en W/m2 de tal manera que el cálculo de potencia no sea dependiente de la selección de equipos. El presente trabajo también describe el cálculo y análisis estadístico del comportamiento del viento corregido por el método logarítmico a alturas de 40, 50 y 60 metros en cada punto de interés, mostrando en detalle la caracterización de las zonas de alto y bajo potencial en el mar Caribe colombiano. Finalmente se identifica que los puntos más atractivos para la posible ejecución de proyectos eólicos offshore se encuentran en las aguas de los departamentos de Atlántico y La Guajira.
ABSTRACT

Key words: Wind power, wind power potential, location of wind farms.

This project shows the estimation of the theoretical offshore wind power in the Colombian Caribbean Sea as an alternative for power generation in Colombia’s Atlantic region. This work identifies the areas in which it is possible to install offshore wind farms according with the natural reserve areas and the foundation depths of the current technology. The potential is calculated using wind data from the North American Regional Reanalysis, and the equation \(P = \frac{1}{2} \rho v^3 A \eta \) for all the wind speed data on each point of study. This equation agrees to the theoretical maximum efficiency that a wind turbine can reach (according to the Betz limit) and is expressed in W/m², so it is not dependent on the selection of the equipment. This work also describes the calculation and statistical analysis of the wind behavior corrected with the logarithmic method for heights of 40, 50 and 60 meters in each point of interest, showing in detail the characterization of high and low potential areas at the Colombian Caribbean Sea. The most attractive areas for the possible implementation of offshore wind projects are in identified off the coast of Atlántico and La Guajira Departments.
INTRODUCCIÓN

La energía eólica se ha convertido en una alternativa para satisfacer las necesidades energéticas de la humanidad. En comparación con los recursos utilizados actualmente para la generación de energía, el viento es muy atractivo al ser renovable y gratuito. Por este motivo, el mundo ha visto la energía eólica como un complemento (o incluso en algunos casos como un remplazo) a la energía fósil y nuclear.

La mayor parte de la energía eléctrica en el sistema colombiano proviene de fuentes renovables, esto se debe a la gran participación de las fuentes hídricas. Sin embargo, en los departamentos de la región caribe colombiana no existe infraestructura para esto debido a que la topografía no es la más conveniente para la generación de energía hidráulica. Por esto es interesante repensar el panorama energético eólico del Caribe colombiano donde existe un antecedente importante con el parque eólico Jepiráchí en el departamento de La Guajira. Este parque ha aportado electricidad a la red colombiana desde abril del 2004 y cuenta una capacidad instalada de 19.5 MW, correspondiente a 15 turbinas con una capacidad de 1.3 MW cada una. (Alvaro Pinilla, 2009)

En el primer capítulo de este trabajo se habla de la generación de energía eléctrica desde el nivel macro (generación mundial) hasta un nivel micro (región Caribe colombiana), planteando allí el problema y el objetivo de este trabajo. En el segundo capítulo se explica en detalle la metodología y los criterios utilizados para el cálculo del potencial. En el tercer capítulo se presenta el detalle de la elaboración de los análisis estadísticos del viento y el cálculo del potencial. Por último, en los capítulos cuarto y quinto se muestran los resultados obtenidos y los puntos más atractivos para el posible desarrollo de proyectos. Finalmente se presentan las conclusiones y recomendaciones para futuros trabajos.
1. PRELIMINARES

1.1 PLANTEAMIENTO DEL PROBLEMA

- Contexto y caracterización del problema

A lo largo de la historia el hombre siempre ha buscado satisfacer sus necesidades energéticas. Hoy en día, el aumento de la población, el crecimiento de las industrias y el comportamiento de la economía ha causado un incremento progresivo en la demanda de energía. En la Ilustración 1 se puede observar el comportamiento de este consumo en los últimos 25 años y sus perspectivas a futuro.

![Ilustración 1, Consumo mundial de energía (U.S Energy Information Administration, 2013)](image)

Debido a esta creciente demanda, la sociedad se ha esforzado por investigar y descubrir nuevos métodos de generación de energía y por mejorar los actuales de modo que sean más eficientes. Actualmente existen plantas de generación de energía que operan con recursos térmicos (carbón, petróleo, gas natural, combustóleo y ACPM), plantas que operan con energía nuclear y plantas cuyo funcionamiento está basado en recursos renovables: energía hidráulica, eólica, radiación solar entre otras. Las proporciones y

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Cantidades de energía aportadas por cada fuente se pueden observar en la ilustración 2. Allí se muestra el aporte global de energía por cada tipo de fuente desde el año 2010 y las proyecciones hasta el año 2040.

La principal fuente de generación de energía a nivel global es aquella proveniente de los combustibles fósiles. A diferencia de la tendencia mundial, Colombia genera casi toda su energía por medio de fuentes hidráulica, sumando el 64,1% de participación en el mercado. Esto es posible gracias a los grandes recursos hídricos y a la geografía que posee el país, favoreciendo así la construcción de plantas hidroeléctricas como una solución al problema energético. En segundo lugar le sigue la generación con fuentes térmicas con el 31% de participación y por último se encuentran las plantas menores (tórmicas e hidráulicas) y los cogeneradores con el 4.5% y el 0.5% respectivamente. Esta distribución de participaciones por tecnología se puede observar en la Ilustración 3 (Unidad de Planeación Minero Energética, 2014).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Tal como se muestra en la Tabla 1 el parque generador colombiano cuenta con una capacidad instalada de 14589.3 MW, de los cuales 9362 MW provienen de fuentes hidráulicas, 4519 MW de térmicas, 651 MW de fuentes de generación menores y 66.3MW de cogeneradores. Si se hace énfasis en la energía eólica en la red colombiana, se observa que el parque eólico Jepirachi es el único aportante mediante el uso de esta tecnología y provee 19.5 MW de los 14589.3 MW instalados en todo Colombia, lo que corresponde al 0.13% de la participación en la red colombiana. (Unidad de Planeación Minero Energética, 2014)

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>Potencia [MW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidráulica</td>
<td>9,362.0</td>
</tr>
<tr>
<td>Térmica</td>
<td>4,519.0</td>
</tr>
<tr>
<td>Menores</td>
<td>651.0</td>
</tr>
<tr>
<td>Cogeneradores</td>
<td>66.3</td>
</tr>
<tr>
<td>Total</td>
<td>14,598.3</td>
</tr>
</tbody>
</table>

Fuente de datos: Informe ejecutivo, XM - Febrero de 2013
Fuente de tabla: UPME

Tabla 1, Capacidad instalada por tecnología (Unidad de Planeación Minero Energética, 2014)

Como se mencionaba anteriormente, gracias a la gran participación de la energía hidráulica nos encontramos en un país cuya generación es mayoritariamente limpia y renovable. Sin embargo este sistema hidráulico no es altamente confiable ya que

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Colombia posee un ciclo estacional bimodal y puede ser afectado gravemente por el fenómeno de El Niño. Por este motivo es importante tener otras alternativas de generación de energía y aprovechar otros recursos renovables. Cabe resaltar que debido a la gran influencia del fenómeno del niño sobre el sistema eléctrico colombiano, existe un esquema llamado cargo por confiabilidad que se encarga de velar por la seguridad del sistema dotándolo con energía firme. (Comisión de Regulación de Energía y Gas, 1994)

En la Región Caribe colombiana la mayor parte de la energía generada proviene de plantas térmicas (Ilustración 4). Si bien algunas de estas plantas térmicas hacen parte del sistema de energía firme colombiano, la gran mayoría son instaladas debido a que la región Atlántica no tiene gran potencial de energía hidráulica en comparación con las zonas del interior del país. Esta energía generada con fuentes fósiles no es limpia y al usarla se desaprovecha un gran potencial de generación no convencional.

Ilustración 4, Capacidad instalada en Atlántico, Bolívar, Cesar, Córdoba, la Guajira, Magdalena y Sucre (Unidad de Planeación Minero Energética, 2014)

- **Formulación del problema**

Ante la falta de alternativas de generación de energía en la costa Atlántica se propone hacer un estudio para calcular el potencial de generación de energía eólica offshore en el mar Caribe colombiano. De esta forma se cuantificaría un recurso diferente a la energía térmica predominante en esta región. A su vez este estudio representaría un apoyo a los mecanismos renovables y no convencionales de generación. (Unidad de Planeación Minero Energética, 2014)

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
1.2 OBJETIVOS DEL PROYECTO

- **Objetivo General**

 Calcular el potencial de energía eólica offshore en el mar Caribe colombiano limitándose a las zonas en las cuales sea posible cimentar.

- **Objetivos Específicos**

 o Determinar las áreas geográficas a trabajar a partir de las limitaciones de las profundidades a las cuales es posible cimentar y también de acuerdo a las áreas protegidas.

 o Corregir los datos de vientos, realizar el proceso estadístico para la recopilación y determinación de la distribución que sigue la información.

 o Estimar el potencial.

1.3 MARCO DE REFERENCIA

- **Sistemas de viento de la tierra**

 Como todos los gases, el aire se expande cuando se calienta y se contrae cuando se enfría. El aire caliente es menos denso que el aire frío alcanzando grandes altitudes atmosféricas cuando es calentado por la radiación solar.

 En el Ecuador se crea un cinturón de baja presión con patrones de clima nublado y lluvioso debido al aire caliente y húmedo que se eleva hasta que alcanza la tropopausa. En la tropopausa el aire en el hemisferio norte de la tierra se mueve hacia el norte y en el hemisferio sur se mueve hacia el sur. Este aire se enfría gradualmente hasta que alcanza los 30 grados de latitud donde cae a la superficie terrestre creando un cinturón de presiones bajas y aire seco. Este aire seco es forzado a viajar nuevamente a la zona de baja presión en el Ecuador donde vuelve y comienza el ciclo de circulación conocido como la celda de Hadley.

 No todo el aire proveniente del Ecuador cae a los 30 grados de latitud, una parte de este aire se mueve hasta alcanzar los 60 grados de latitud donde se encuentra con los aires fríos provenientes de los polos, conocidos como frentes polares. La interacción de estas masas hace que el aire más cálido se eleve y circule de vuelta a la latitud de los 30 grados, contribuyendo así al cinturón de presión alta. Esto completa la circulación que es llamada como la celda de Ferrel. El aire restante que se eleva en la latitud 60 grados viaja hacia los polos donde este cae y viaja nuevamente a la latitud de los 60 grados, completando así la celda polar. La ilustración 5 muestra el patrón de circulación previamente descrito.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
• **Vientos zonales, brisas del mar**

Las brisas del mar son generadas en área costeras como el resultado de las diferencias de calor entre el mar y la tierra. La tierra tiene menos capacidad térmica que el mar y se calienta más rápido durante el día mientras que en la noche se enfria más rápido que el mar. En el día el aire frío fluye hacia la costa donde el aire cálido se eleva sobre la tierra y viaja de nuevo al mar para completar el ciclo. Durante la noche el flujo de aire se invierte. Este fenómeno se puede observar a continuación en la ilustración 6 (Boyle, 2004).

![Ilustración 6, Vientos Zonales, brisas del mar, tomada de (Boyle, 2004)](image)

• **Energía a partir del viento**

La energía cinética proviene de cualquier tipo de masa que este en movimiento y dado a que el viento es una masa en movimiento la energía que este es capaz de generar corresponde a la cinética. La energía eólica es la proveniente de la transformación de la energía cinética del viento a energía mecánica por medio de una turbina eólica la cual a su vez transformara esta energía mecánica en eléctrica. (Rosa, 2009)

El potencial eólico está determinado por la ecuación:

$$ P = \frac{1}{2} \rho v^3 A $$

Ecuación 1, Potencia del viento

Donde

\(v \) = Velocidad del viento
\(\rho \) = Densidad del aire
A = Área del Rotor

A continuación se presenta el modelo matemático para llegar a la ecuación descrita.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
1: \[E = W = F \times X \]

E = energía W = Trabajo X=Distancia

De acuerdo con la segunda ley de Newton se tiene que la fuerza es igual a la masa por aceleración:

2: \[F = m \times a \]

m = masa a = aceleración

Al remplazar 2 en 1, se obtiene la expresión 3:

3: \[E = m \times a \times X \]

Aplicando la ecuación de movimiento \(V^2 = V_0^2 + 2 \times a \times X \) en 3, se llega a la ecuación de energía cinética:

4: \[E = \frac{1}{2} mv^2 \]

La potencia está dada por el cambio de la energía con respecto al tiempo, de esta manera se tiene:

5: \[P = \frac{dE}{dt} = \frac{1}{2} v^2 \frac{dm}{dt} \]

6: \[\frac{dm}{dt} = \rho A \frac{dx}{dt} = \rho Av \]

Finalmente remplazando 6 en 5 se llega a la ecuación de potencia eólica:

\[P = \frac{1}{2} \rho v^3 A \]

- **Límite de Betz**

Las turbinas eólicas al igual que todos los mecanismos no operan al 100% de su capacidad, estas operan con un factor menor y a dicho factor se le conoce como eficiencia.

Albert Betz calculó la cantidad máxima de energía que se puede aprovechar de una turbina eólica. De acuerdo con su publicación en 1919 encontró que la eficiencia máxima

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
que puede tener una turbina eólica es de 59.3%. Este factor nos indica que de la energía cinética del viento solo es posible extraer dicho porcentaje garantizando el flujo de aire a través de las aspas de la turbina y el funcionamiento de esta.

Por lo tanto la potencia real a la que puede operar una turbina eólica está dada por la ecuación.

\[P = \frac{1}{2} \rho v^3 A 0.593 \]

Ecuación 2, Potencia teórica de una turbina eólica

(Rosa, 2009)

A continuación se presenta el modelo mediante el cual Albert Betz llegó a este resultado:

Para lograr que las aspas de un generador eólico roten, se debe garantizar un flujo de aire a través de ellas. Se cuenta con una velocidad de entrada (V1) y una velocidad de salida (V2) tal como se muestra en la ilustración 7.

![Ilustración 7, Flujo a través de un rotor eólico (DANISH WIND INDUSTRY ASSOCIATION, 2003)](image)

De acuerdo con los estudios realizados por Betz se tiene que la velocidad de la masa de aire que atraviesa el rotor es el promedio entre velocidad de entrada y velocidad de salida.

La masa de aire que atraviesa el área del rotor en un segundo está determinada por la ecuación:

\[m = \rho A (V1 + V2)/2 \]

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Donde \(m \) = masa por segundo, \(\rho \) = densidad del aire, \(A \) = área del rotor, \(V_1 \) = velocidad de entrada y \(V_2 \) = velocidad de salida.

Remplazando la ecuación anterior en la ecuación de energía cinética \(E = \frac{1}{2} m(v_1^2 - v_2^2) \)

Se obtiene:

\[
P = \frac{\rho}{4} A (v_1^2 - v_2^2)(V_1 + V_2)
\]

Nótese que al realizar el remplazo de masa por segundo en la ecuación de energía se convierte en la expresión de la potencia extraída del viento.

Albert Betz comparó esta potencia \(P \) con la potencia teórica \(P_0 = \frac{1}{2} \rho v^3 A \) desarrollada en el numeral anterior y graficó \(P/P_0 \) en razón de \(V_2/V_1 \).

Ilustración 8, Curva de eficiencia eólica (DANISH WIND INDUSTRY ASSOCIATION, 2003)

Como se puede observar en la ilustración 8 la función alcanza su máximo cuando \(\frac{V_2}{V_1} = \frac{1}{3} \) y la potencia máxima que se puede obtener equivale al 59.3% de la potencia total del viento llegando así a la expresión descrita en el inicio:

\[
P = \frac{1}{2} \rho v^3 A 0.593
\]

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
• **Corrección de velocidad del viento por altura**

La velocidad del viento cambia con la altitud debido a los efectos friccionales de la superficie de la tierra, por este motivo se debe hacer una corrección de vientos por altura mediante la ecuación del perfil logarítmico del viento (Lysen 1982). Esta ecuación permite graficar el perfil de velocidad de viento en diferentes alturas con base en valores conocidos. Esto se convierte un aporte sumamente importante debido a que las mediciones instrumentales generalmente proveen la información a un nivel determinado de altura.

\[
v_2 = v_1 \frac{\ln\left(\frac{h_2}{Z_0}\right)}{\ln\left(\frac{h_1}{Z_0}\right)}
\]

Ecuación 3, Corrección de velocidad del viento por altura

Donde \(v_1\) = velocidad inicial del viento, \(v_2\) = velocidad final del viento, \(h_1\) = altura inicial, \(h_2\) = altura final y \(Z_0\) = longitud de rugosidad

• **Estructuras de soporte para turbinas eólicas offshore**

Las estructuras de soporte para turbinas eólicas offshore se dividen en dos grupos, las estructuras flotantes y las ancladas a tierra. Estas últimas se dividen a su vez en dos subgrupos las que cuentan con una estructura de soporte y aquellas que tienen una fundación directa. Para las estructuras ancladas a tierra mencionadas anteriormente existen 5 tipos de fundaciones o anclajes; monopilas, tripilas, estructuras de gravedad, trípodes y plataformas. (4COffshore, 2013)

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
2. METODOLOGÍA

El cálculo teórico del potencial eólico es calculado teniendo en cuenta el límite de Betz y es expresado en W/m2 para hacerlo así independiente de los tamaños y tipos de turbinas existentes en el mercado. Además de esto, las únicas restricciones para la determinación de la zona de estudio son la profundidad máxima en la que se pueden instalar los equipos y que las zonas de estudio no se encuentren en áreas protegidas o Parques Nacionales Naturales. Otras variables como la distancia a la costa, población, impactos ambientales, impactos sociales, equipos, entre otras no se tienen en cuenta debido a que estos corresponden a variables para el caso de un estudio de factibilidad y no para el cálculo del potencial teórico.

2.1 DETERMINACIÓN DE LAS ZONAS DE ESTUDIO

Para calcular el potencial eólico offshore del litoral caribe colombiano es necesario seleccionar puntos de interés o zonas de estudio. Estas se determinan a partir de tres criterios que deben cumplirse para poder ser evaluadas:

- La zona de estudio no puede comprender áreas protegidas o reservas naturales.
- La zona de estudio debe estar comprendida entre la línea costera y la profundidad máxima de cimentación.
- La zona de estudio debe estar comprendida dentro de los límites marítimos colombianos

Determinación de la profundidad máxima cimentación

El valor de la profundidad máxima de cimentación es seleccionado con base en los datos de fabricantes de soportes y fundaciones para turbinas eólicas offshore en el mercado actual. Además de esto se realiza un ajuste de acuerdo con los proyectos eólicos offshore en operación comercial y los que se encuentran en estado de construcción y licitación. Para esta última parte se tendrá en cuenta el reporte “The European offshore wind industry key trends and statistics 2014” realizado en enero del 2015 por la Asociación Europea de energía eólica (EWEA por sus siglas en ingles). (European Wind Energy Association (EWEA), 2015).

Ubicación de las áreas protegidas y límites marítimos

Para la ubicación e identificación las áreas protegidas y límites Colombianos, se usan las herramientas de información georreferenciada proveídos por el “Sistema de Información Geográfica para la Planeación y el Ordenamiento Territorial (SIG-OT)”. Este sistema cuenta con los mapas de los Parques Nacionales Naturales y los límites marítimos colombianos.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
2.2 DATOS DE VIENTO

• Extracción de los datos de viento

Es necesario obtener una base de datos con velocidades del viento para cada zona de estudio. Dichas bases de datos se obtendrán del North American Regional Reanalysis (NARR), un modelo de reanálisis climático de norte américa que contiene datos de viento cada 3 horas desde 1979 hasta 2013 (Earth System Research Laboratory (ESRL)).

Los datos de viento presentados por el NARR son datos sintéticos de viento reportados a 10 metros de altura de la superficie y contienen los vientos U con dirección de oeste a este y los vientos V con dirección de sur a norte. Estos datos se encuentran contenidos en una cuadricula definida y proveída por el NARR con tamaño de celdas de 32.463 metros por 32.463 metros (Earth System Research Laboratory (ESRL)). Es importante resaltar que las coordenadas contenidas en una misma celda tienen los mismos datos de velocidad y dirección del viento sin importar su separación.

La magnitud del vector de velocidad de viento será determinada por la expresión \(\sqrt{u^2 + v^2} \) y la dirección por la expresión \(\arctan(\frac{v}{u}) \) teniendo en cuenta los signos de cada componente y su respectivo ángulo de referencia para así ubicarlos en cuadrante correcto de plano cartesiano. A su vez se indica la dirección en la que sopla el viento, la cual equivale a la dirección opuesta del vector resultante. En la siguiente tabla se muestra el criterio de asignación de cuadrantes para cada combinación entre los vientos U y V.

<table>
<thead>
<tr>
<th>Viento U</th>
<th>Viento V</th>
<th>Cuadrante del vector resultante</th>
<th>Cuadrante de la procedencia del viento</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabla 2: Dirección del viento y vector de velocidad de viento de acuerdo a sus componentes

• Corrección de vientos

Para la corrección de los datos de vientos se utiliza la ecuación de perfil logarítmico del viento ya mencionada en el marco teórico del presente trabajo.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

\[v_2 = v_1 \frac{\ln\left(\frac{h_2}{z_0}\right)}{\ln\left(\frac{h_1}{z_0}\right)} \]

Donde \(v \)=velocidad del viento \(h \)=altura \(z_0 \)= longitud de rugosidad

Los vientos se corregirán para alturas de 20 m, 30 m, 40 m, 50 m y 60 m sin embargo los resultados del presente trabajo solo presentan productos terminados para los datos obtenidos de 40 m, 50m y 60 m. la corrección y análisis estadístico para el resto de alturas se incluirá en la sección de anexos.

- **Análisis estadístico**

Para cada zona de estudio se elabora un histograma del comportamiento del viento, la probabilidad de excedencia de velocidades, promedio de velocidades mensual, promedio de velocidades trimestral, promedio de velocidades anual, ciclo diurno y nocturno mensual y rosas de dirección de vientos trimestrales y anuales.

- **Cálculo del potencial**

Con los resultados obtenidos en el análisis estadístico se procede a calcular el potencial teórico de energía eólica offshore para cada punto de interés. Dicho cálculo se realizara con la expresión de potencia descrita en el marco teórico del presente trabajo.

Los valores de potencia se presentan en W/m\(^2\) lo que indica que él potencial es independiente de el área instalada de aerogeneradores.
3. DESARROLLO DEL PROYECTO

3.1 ZONA DE ESTUDIO, PROFUNDIDAD DE CIMENTACIÓN Y ÁREAS PROTEGIDAS

Para determinar la profundidad en la que es posible instalar proyectos eólicos offshore se toma como base la información de los proyectos europeos que existen actualmente y aquellos que se encuentran en desarrollo. De esta forma se puede llegar a un resultado acorde a lo que se presenta en el mercado offshore.

Al finalizar el año 2014 Europa contaba 2920 subestructuras instaladas para el soporte de turbinas eólicas offshore. Las subestructuras más comunes son las monopilas con 2301 unidades (78.8% de todas las fundaciones instaladas), las segundas más comunes son las estructuras de gravedad con 303 unidades (10.4%), le siguen las estructuras con plataforma con 137 unidades (4.7%), los trípodes con 120 unidades (4.1%), las tripilas con 55 (1.9%) y dos estructuras flotantes que representan el 0.1% y que se encuentran en fase experimental. Esta distribución se puede observar gráficamente en la Ilustración 9. (European Wind Energy Association (EWEA), 2015)

![Ilustración 9, Subestructuras de cimentación por método (European Wind Energy Association (EWEA), 2015)](image)

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
De acuerdo con el mercado anual offshore, como se observa en la Ilustración 10, solo en el 2014 se instalaron 446 subestructuras. Las monopilas continuaron siendo las subestructuras más populares con 406 unidades instaladas (91%) seguidas por 36 plataformas (8.1%) y 4 trípodes (0.9%). Las fundaciones de dicho año fueron proveídas por seis compañías diferentes: Bladt (195 fundaciones, 43.7%), Sif (111 fundaciones, 24.9%), EEW (80 fundaciones, 17.9%) Smulders (49 fundaciones, 11%), Aker Verdal (7 fundaciones, 1.6%) y Siag (4 fundaciones, 0.9%). (European Wind Energy Association (EWEA), 2015)

Ilustración 10, Subestructuras de cimentación instaladas en el año 2014 por fabricantes (European Wind Energy Association (EWEA), 2015)

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
De acuerdo con los fabricantes cada subestructura está configurada para ser situada a cierto rango de profundidad marina. A continuación se presenta cada tipo de estructura con su respectivo rango de profundidad:

- **Monopilas**: rango de profundidad 0 a 30 metros

Ilustración 11, *Monopila (4COffshore, 2013)*

- **Estructuras de gravedad**: rango de profundidad 20 a 60 metros

Ilustración 12 *Estructuras de gravedad (4COffshore, 2013)*

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
• Plataformas: rango de profundidad rango 20 a 50 metros (probadas) y hasta 70 metros de profundidad en estado de prueba.

Ilustración 13, Plataformas (4COffshore, 2013)

• Tripilas: rango de profundidad 25 a 40 metros

Ilustración 14, Tripilas (4COffshore, 2013)

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
• Trípodes: rango de profundidad 10 a 20 m

Ilustración 15, Tripodes (4COffshore, 2013)

Las estructuras flotantes no se incluyen en este estudio. Esto se debe a que representan el 0.1% del total de estructuras fundadas y están en estado experimental.

Con el paso de los años los parques eólicos offshore han migrado cada vez a aguas más profundas. Al final del 2014 la profundidad media era de 22.4 metros y la distancia media a la costa era de 32.9 kilómetros. Los proyectos en construcción, concedidos y planeados que se muestran en la ilustración 16 confirman que estos promedios de profundidades y distancia a la costa crecerán.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Considerando el estado de la tecnología de las subestructuras de fundación, los proyectos actuales y la planificación europea, se ha considerado que para el presente trabajo se tendrán en cuenta como zonas de estudio aquellas que se encuentren en el rango entre profundidades de 0 a 60 metros. Este rango a su vez se dividirá en dos subrangos: entre 0 a 30 metros y entre 30 a 60 metros. Esto es debido a que la monopila es la estructura más popular y se encuentra en el primer subrango definido.

Definida la profundidad de cimentación se pudo proceder a seleccionar los puntos de interés a evaluar, se descargaron los mapas de los parques nacionales colombianos y los límites marítimos y oceánicos del Sistema de Información Geográfica para la Planeación y el Ordenamiento Territorial (SIG-OT). Se extrajo la información de la batimetría oceánica, procedente del ETOPO1, el cual es un modelo del relieve de la superficie de la tierra que integra la topografía terrestre y la batimetría oceánica. Este modelo es propiedad de la Administración nacional Oceánica y Atmosférica (NOAA por sus siglas en inglés) de los Estados Unidos de América, la precisión horizontal este es de un minuto de arco tangente mientras que la precisión vertical según los desarrolladores es de mínimo 10 metros (Amante, C. and B.W. Eakins, 2009).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Se ingresó la información de los tres mapas al programa de procesamiento geoespacial Arcmap en el cual se filtró la información de la batimetría obteniendo las franjas con los rangos de profundidad descritos anteriormente (0-30 m y 30-60 m). Luego se superpusieron los mapas de los parques nacionales, límites marítimos y límites terrestres definiendo así la zona de estudio. Esta corresponde a las áreas que se encuentren dentro de los rangos de profundidades descritas, los límites marítimos y terrestres y aquellas que no se encuentren dentro de Parques Nacionales Naturales.

Con una zona de estudio definida, se desplegó la cuadricula con la información de los datos de vientos proveídos por el “North American Regional Reanalysis (NARR)”, se seleccionaron las celdas que concordaban con la zona de estudio y se marcaron los puntos de interés, los cuales se marcaron en el centro de cada una de las celdas. Las celdas ubicadas en zonas protegidas fueron descartadas.

El resultado de estos ejercicios se ve representado en la ilustración 17 “zona de estudio”:

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Se identifican 68 puntos de interés los cuales están enumerados del 1 al 69, sin contar el 24 ya que este fue eliminado posteriormente debido a que no cumple los requisitos para ser evaluado debido a que se había situado en el Parque Nacional Natural Corales del Rosario y de San Bernardo.

Es importante resaltar que los Parques Nacionales Naturales presentes en las zonas de estudio son: Corales del Rosario y San Bernardo, Isla de Salamanca, Tayrona, Los flamencos, Sierra Nevada de Santa Marta y Ciénaga grande de Santa Marta.

La Zona que comprende el parque Corales del Rosario y San Bernardo es ignorado completamente ya que abarca toda el área de celda de información de vientos en estos puntos. En el resto de los parques donde la información de las celdas apenas se superponen y por eso se incluyen en el análisis.

3.2 ANÁLISIS ESTADISTICO DE LOS DATOS DE VIENTO

Para el área asignada a cada punto de interés se extrajeron los datos de velocidad del viento en las componentes U y V. cada una de estas áreas asignadas contienen datos de velocidad de viento cada 3 horas (horario GMT 0:00) desde el primero de enero de 1979 hasta el 31 de diciembre de 2013, el equivalente a 102.272 datos de velocidad de viento para cada una de sus componentes.

Con los datos en las componentes U y V se procedió a hallar la magnitud y dirección de acuerdo a lo definido en la metodología de trabajo. Una vez obtenida la velocidad resultante para cada dato se realizó la corrección de vientos por altura con la ecuación de corrección de perfil logarítmico del viento.

\[
v_2 = v_1 \frac{\ln\left(\frac{h_2}{z_0}\right)}{\ln\left(\frac{h_1}{z_0}\right)}
\]

Dónde:

- \(v_2\) = velocidad del viento corregida
- \(v_1\) = velocidad del viento a 10 metros de altura (dato original de los datos del reanálisis)
- \(h_2\) = altura de corrección
- \(h_1\) = 10 metros (dato original de los datos del reanálisis)
- \(z_0\) = longitud de rugosidad

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Para el presente trabajo se realizó la corrección para los valores de altura 20, 30, 40, 50, y 60 metros y se utilizó un valor de z_0 de 0.0002 m, valor definido para las superficies de agua como océanos y lagos (The Swiss Power Data Website).

Finalmente, con los resultados de las correcciones, se realizaron análisis estadísticos del viento para realizar el cálculo de potencial y caracterizar el comportamiento del viento. Es importante mencionar que:

- los análisis se realizaron de igual forma para cada uno de los diferentes 68 puntos.
- Cada uno de los análisis estadísticos se encuentran adjuntos en los anexos del presente trabajo.
- Aunque existe análisis numérico en hojas de cálculo para las alturas de 20, 30, 40, 50 y 60 metros solo se presentan gráficos para los análisis estadísticos de las tres últimas alturas.
- El presente trabajo muestra solamente las gráficas resultantes del punto 38 como ejemplo con el fin de mostrar los resultados de las actividades realizadas (ver ilustraciones 18, 19 y 20).

A continuación se describe cada uno de los análisis estadísticos realizados:

- **Promedio multianual de la velocidad del viento**:
 Este se calculó con la división entre la suma de la totalidad de datos de velocidad de viento y el número de datos.

- **Promedio mensual de la velocidad del viento**
 Este se calculó para cada uno de los 12 meses del año, la operación utilizada fue la división entre la suma de los datos de velocidad de viento del mes n y el número de datos presentados en dicho mes. Los resultados gráficos de este ejercicio se pueden ver en la ilustración 19.

- **Promedio trimestral de la velocidad del viento**
 Este se calculó para cada uno de los 4 trimestres del año, la operación utilizada fue la división entre la suma de los datos de velocidad de viento del trimestre n y el número de datos presentados en dicho trimestre. Los resultados gráficos de este ejercicio se pueden ver en la ilustración 20.
• **Ciclo diurno y nocturno mensual de la velocidad del viento**

Este análisis muestra el comportamiento del viento en cada uno de los meses del año y las horas del día, se realizó con cada uno de los promedio del mes i en la hora i. Los resultados gráficos de este ejercicio se pueden ver en la ilustración 19.

• **Promedio de la velocidad del viento cada 3 horas**

Este se calculó cada tres horas desde la hora $i = 00:00$, hasta la hora $i = 21:00$. La operación utilizada fue la división entre la suma de los datos de velocidad de viento en la hora i y el número de datos presentados en dicha hora. Los resultados gráficos de este ejercicio se pueden ver en la ilustración 19.

• **Histograma anual de la velocidad del viento:**

Este histograma muestra el porcentaje de apariciones para cada valor de velocidad de viento registrada en los datos, se realizó contando el número de apariciones de cada uno de los datos en un rango de velocidades de viento y luego se divide entre el número total de datos para así encontrar su porcentaje de apariciones. Para este caso valores de 0 m/s hasta 20 m/s con un intervalo de 0.5 m/s. Los resultados gráficos de este ejercicio se pueden ver en la ilustración 18.

• **Curva de probabilidad de excedencia:**

Esta muestra la probabilidad de que cierto valor de velocidad de viento pueda sobrepasar una velocidad determinada. Este análisis se realizó contando el número de apariciones de cada uno de los datos en un rango de velocidades de viento y luego este valor se divide por la cantidad de valores contenidos en los otros rangos diferentes a ese. Al igual que en el caso anterior el rango de valores va desde velocidades de 0 m/s hasta 20 m/s con un intervalo de 0.5 m/s. Los resultados gráficos de este ejercicio se pueden ver en la ilustración 18.

• **Rosa de vientos anual:**

Esta muestra el número de datos para cada dirección en la que el viento sopla, este análisis se realizó contando el número de apariciones de cada uno de los datos en un rango de ángulos de dirección de viento. Los resultados gráficos de este ejercicio se pueden ver en la ilustración 18.

• **Rosa de vientos trimestral**

Esta se realizó para cada uno de los 4 trimestres del año, su proceso es igual al anteriormente descrito pero con el número de datos de cada trimestre. Los resultados gráficos de este ejercicio se pueden ver en la ilustración 20.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
A continuación se muestran los resultados gráficos de los procesos estadísticos obtenidos en un punto de la zona de estudio. (el resto de los gráficos se pueden ver en los anexos digitales)

Ilustración 18, Histogramas y Probabilidades de excedencia Punto 38

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Ilustración 19, Datos mensuales y horarios punto 38
Ilustración 20, Datos trimestrales punto 38

3.3 CÁLCULO DEL POTENCIAL

Obtenido el dato consolidado de la velocidad media anual, trimestral y mensual para cada punto de interés, se procedió a calcular el potencial teórico eólico offshore para cada uno de estos. Para este cálculo se utilizó la expresión:

$$P = \frac{1}{2} \rho v^3 A \eta$$

Dónde:

$\rho =$ densidad del viento.

$v =$ velocidad del viento.

$A =$ área

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

\[\eta \text{= eficiencia} \]

Definición de variables

De acuerdo con la información proveniente del parque eólico Jepírachi se estima que la densidad local del aire es de 1.16 kg/m\(^3\) (Alvaro Pinilla, 2009). Por otro lado, de acuerdo al modelamiento físico del viento y energía eólica elaborado por la Unidad de Planeación Minero Energética (UPME) de Colombia se tiene que en los lugares ubicados a nivel del mar la densidad del aire es de 1.2 kg/m\(^3\) (Unidad de Planeación Minero Energética (UPME), 2006). De acuerdo con estos dos artículos se decidió tomar un valor medio entre estos dos valores, por lo tanto el valor de densidad utilizado para el cálculo del potencial eólico offshore será de 1.18 kg/m\(^3\). Aunque exista cierto grado de incertidumbre en el valor de la densidad del aire es importante mencionar que esta fluctuación no afecta de gran manera el resultado ya que la variable más importante y con mayor relevancia es la de velocidad del viento la cual está elevada a una potencia de tres.

Para la variable eficiencia (\(\eta\)) se estableció el valor de 0.593, correspondiente al límite de eficiencia de Betz. Esto significa que los resultados obtenidos corresponden a límites teóricos ya que no corresponden a valores de eficiencias de fabricantes de turbinas.

La variable Área (A) se expresa en valor unitario, de tal modo que el potencial calculado es independiente del área y número de turbinas. De este forma el potencial eólico offshore se muestra en términos de Watts por metro cuadrado (W/m\(^2\)).

Los cálculos y resultados del potencial eólico offshore calculado para cada uno de los periodos planteados (mensual, trimestral y anual) se pueden encontrar en los anexos. La información numérica es presentada en archivos de Microsoft Excel y como resultado final se generaron mapas de potencial para uno de los periodos, estos mapas se muestran en el capítulo cuatro “discusión de resultados”.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
4. DISCUSIÓN DE RESULTADOS

4.1 COMPORTAMIENTO DEL VIENTO

De acuerdo con los resultados obtenidos, se llega a una idea general del comportamiento del viento en el litoral caribe colombiano.

En las zonas más al oeste del litoral caribe (Urabá Antioqueño, Córdoba y Sucre) la dirección de viento predominante es de norte a sur. También se identificó que en los cabos geográficos, donde la masa terrestre rodea el mar se presenta, el fenómeno de viento local de brisas del mar donde la orientación del viento se invierte en horas de la noche. Este comportamiento se puede observar en la ilustración 21, correspondiente a un punto ubicado en la zona sur del golfo de Urabá.

Ilustración 21, Rosa de viento punto 1, dirección invertida de vientos

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
En los departamentos de Bolívar, Atlántico, Magdalena y La Guajira, la dirección de viento predominante va de este a oeste, acorde a los vientos alisios. Es allí donde se presentan las magnitudes más grandes de velocidad del viento. En la ilustración 22, imagen que corresponde a un punto evaluado en una de estas zonas, se puede ver claramente esta dirección de viento predominante.

4.2 PUNTOS CON MAYOR POTENCIAL Y ZONAS ATRACTIVAS PARA PROYECTOS

De acuerdo con los resultados que se muestran en la ilustración 23 correspondiente al potencial eólico offshore anual, Los puntos con mayor potencial respecto a los otros son los puntos 30, 31, 32 (Atlántico), 33, 38, 39 (Magdalena), 56, 58 y 59 (Alta Guajira).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Ilustración 23, Potencial eólico offshore anual

Aunque los puntos 33, 38 y 39 tienen el mayor potencial, parte del área correspondiente de estos puntos se superpone sobre parques naturales (Tayrona e Isla de Salamanca) en los cuales no es posible realizar proyectos. En el área restante sí sería permitido sin embargo son zonas completamente aisladas donde no hay población para abastecer y ni infraestructura para instalar líneas de transmisión.

Los puntos 30, 31 y 32 son los puntos que presentan el máximo valor de potencial en el primer trimestre del año. Estos están ubicados en departamento del Atlántico donde se encuentra la ciudad de Barranquilla, la cual posee una población grande para abastecer e infraestructura eléctrica y portuaria. Sin embargo, los valores de potencial en estos puntos no se mantienen constantes a lo largo del año, a diferencia de lo que pasa en los puntos 56, 58 y 59 ubicados en la Guajira. Es importante resaltar que cerca al punto 56 se encuentra el parque eólico Jepirachi. Esta variación de potencial descrita anteriormente se puede observar en la ilustración 24 y 25.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Ilustración 24, Potencial eólico offshore trimestral a 60 metros de altura

 Debido al cambio de potencial durante los diferentes periodos del año se realizó una comparación gráfica que muestra la variación de del potencial en cada punto de interés para los diferentes meses del año. Esta comparación gráfica se puede observar en la ilustración 25.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Ilustración 25, Comparación de Potenciales Puntos 30, 31, 32, 56, 58 y 59

Los puntos 30, 31 y 32 así como los puntos 58 y 59 comportan de manera similar entre sí. Por este motivo solo se diferencian tres curvas.

El comportamiento en la variación del potencial en los diferentes puntos es similar. En las épocas en que este aumenta (DEF-JJA) se evidencia un incremento general. Lo mismo ocurre en las épocas en las que disminuye (MAM–SON). La gran diferencia está en la las proporciones en las que ocurre. También se puede identificar que para los puntos ubicados en el departamento de la guajira se tienen dos periodos de potenciales máximos, mientras que en los puntos ubicados en Atlántico se produce un único periodo máximo a principio de año pero que d cae con el tiempo.

Debido a la similitud entre puntos descritos se decide mostrar los resultados del análisis estadístico solo para los puntos 32 y 58 mediante las Ilustraciones 29 y 30.

En el Punto 32, ubicado en las aguas del departamento de Atlántico, se evidencia que los vientos predominantes provienen del nordeste, con una distribución muy uniforme. La velocidad media anual es de 7.79 m/s y se garantiza una velocidad entre 2 y 2.5 m/s el 95% del tiempo. Ver ilustración 29.
El punto 58, correspondiente al departamento de la Guajira, se observa que los vientos en general provienen del este. La velocidad media anual es de 9.13 m/s y se garantiza una velocidad entre 3 y 3.5 m/s el 95% del tiempo. Ver ilustración 30.

Ilustración 26, probabilidad de excedencia Punto 32
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Ilustración 27, probabilidad de excedencia Punto 58
5. CONCLUSIONES Y CONSIDERACIONES FINALES

El presente trabajo considera una escala dimensional muy grande, muestra una visión general del recurso eólico e identifica los puntos más atractivos para futuros proyectos; dejando así una base y un camino abierto para estudios posteriores.

EL trabajo realizado se encuentra sujeto a la precisión de los datos del reanálisis y los de la batimetría del ETOPO1, por lo cual se recomienda comparar con datos instrumentales. Estos datos instrumentales podrían ofrecer una mayor precisión, ya que corresponderían a una escala más local y a zonas de estudio más específicas. Aun así, los datos reportados se encuentran el mismo orden de magnitud que los datos del proyecto Jepírachi y por lo tanto sirven como un buen primer indicador del potencial.

Se evidencia gran potencial en los departamentos de Magdalena, Atlántico y La Guajira. Sin embargo, en el Magdalena los valores más altos están en las cercanías del Parque Nacional Natural Tayrona donde no es posible realizar proyectos debido a su estado de protección. Aun si se consideran las zonas que no afectan al parque actualmente no existe la infraestructura necesaria para instalar los equipos y transmitir la energía a producir. En el caso del departamento de Atlántico es donde se observa con mayor entusiasmo la eólica offshore como una alternativa de generación de energía, debido a los altos valores hallados y a la cercanía que tiene con Barranquilla; una ciudad portuaria con una población y actividades económicas significativas. Finalmente, también se observa con gran atractivo los puntos evaluados en La Guajira debido a que allí ya se cuenta con el parque eólico Jepírachi el cual podría ver un complemento en los proyectos offshore.

Los periodos con mayor potencial eólico corresponden al primer trimestre del año, donde las altas temperaturas y la escasez de lluvias afectan fuertemente las fuentes hídricas. Debido a que el 64.1% de la energía proviene de la fuente hidráulica el precio de la energía aumenta. El comportamiento eólico es complementario a la oferta hídrica, por eso proyectos de esta naturaleza podrían diversificar y aumentar la disponibilidad en el sector eléctrico en épocas de escasez. Adicionalmente a esto según el análisis horario (con su respectiva corrección GMT 0:00 a GMT -5:00) los picos máximos de generación eólica en las áreas de mayor potencial se encuentran a las 19:00 horas, momento en el cual la demanda de energía se encuentra en sus puntos más altos.

La posible incursión de Colombia en la generación de energía eólica es dependiente de terceros. Colombia es un país que no tiene experiencia en este campo y desconoce el comportamiento de este tipo de energía en el mercado, por lo que estaría sujeta a las metodologías, fabricantes, experiencias y estudios de otros países. La forma en la que Colombia podría avanzar en esta materia sería mediante asesorías de países con experiencia en el tema y poco a poco crecer en el ámbito eólico.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Este estudio solo se muestra un resultado teórico de potencial. Para continuar o ampliar este trabajo se recomienda hacer una investigación más localizada, teniendo en cuenta fabricantes y equipos de turbinas, mediciones en campo, afectaciones locales, impactos sociales y estudios geológicos entre otras.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
6. BIBLIOGRAFÍA

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
7. ANEXOS

Mapa 1, Potencial eólico offshore enero

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Mapa 2, Potencial eólico offshore febrero

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Mapa 4, Potencial eólico offshore abril
Mapa 5, Potencial eólico offshore mayo

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Mapa 6, Potencial eólico offshore junio

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Mapa 9, Potencial eólico offshore septiembre
Mapa 10, Potencial eólico offshore octubre

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Mapa 11, Potencial eólico offshore noviembre
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Mapa 13, Potencial eólico offshore trimestre 1
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Mapa 16, Potencial eólico offshore trimestre 4
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.