PROPUESTA DE METODOLOGÍA DE MEDICIÓN PARA LA DETECCIÓN DE PROCESOS IMPRODUCTIVOS EN EL PROCESO DE INSTALACIÓN Y MANIPULACIÓN DEL ACERO DE REFUERZO

PABLO CALDERÓN SALAZAR
NATALIA PELÁEZ HENAO
Trabajo de grado para optar al título de Ingeniero Civil e Ingeniería Industrial

Ana María Mesa Mejía
Gerente de Innovación, Gestión y Sostenibilidad Constructora Conconcreto S.A

UNIVERSIDAD EIA
Ingeniería Civil- Ingeniería Industrial
ENVIGADO 2017

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
AGRADECIMIENTOS

Queremos agradecerle a la Constructora Conconcreto S.A por darnos la oportunidad de realizar esta investigación dentro de la compañía, el acceso a obra y el acompañamiento durante su realización. Especialmente queremos resaltar a Alejandra Carmona, Jefe de Innovación de la Constructora, quien nos brindó su apoyo incondicional durante este proceso y nos guió en muchos aspectos, haciendo el proyecto más llevadero y facilitando la comunicación entre las partes. También, queremos agradecer a nuestra directora de grado Ana María Mesa y a los profesores Jairo Gómez y Jorge Enrique Sierra, que con sus conocimientos en las diferentes áreas del tema, permitieron que este documento que abarca dos áreas del conocimiento diferentes, se pudiera resumir en una y en un fin.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
CONTENIDO

<table>
<thead>
<tr>
<th>Sección</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCCIÓN</td>
<td></td>
</tr>
<tr>
<td>1. PRELIMINARES</td>
<td>12</td>
</tr>
<tr>
<td>1.1 CONTEXTUALIZACIÓN Y ANTECEDENTES</td>
<td>12</td>
</tr>
<tr>
<td>1.2 Objetivos del proyecto</td>
<td>12</td>
</tr>
<tr>
<td>1.2.1 Objetivo General</td>
<td>17</td>
</tr>
<tr>
<td>1.2.2 Objetivos Específicos</td>
<td>17</td>
</tr>
<tr>
<td>1.3 Marco de referencia</td>
<td>17</td>
</tr>
<tr>
<td>2. ENFOQUE Y METODOLOGÍ</td>
<td>27</td>
</tr>
<tr>
<td>3. PRODUCTOS, RESULTADOS Y ENTREGABLES OBTENIDOS</td>
<td>43</td>
</tr>
<tr>
<td>4. CONCLUSIONES Y RECOMENDACIONES</td>
<td>92</td>
</tr>
<tr>
<td>REFERENCIAS</td>
<td>95</td>
</tr>
<tr>
<td>ANEXO 1</td>
<td>99</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
LISTA DE TABLAS

Tabla 1. KPI's más importante encontrados en la literatura (Ali et al., 2013) 18
Tabla 2. Importancia relativa entre actividades 51
Tabla 3. Valores de tabla anterior en decimales 52
Tabla 4: Matriz de actividades elevada al cuadrado (Elaboración propia) 53
Tabla 5: Valores de verificación del Eigenvector (elaboración propia) 54
Tabla 6: Resultado priorización actividades (Elaboración propia) 54
Tabla 7. Importancia relativa de los KPI's en el transporte interno (Elaboración propia) 59
Tabla 8. Importancia relativa de los KPI's en el descargue (Elaboración propia) 60
Tabla 9. Importancia relativa de los KPI's en la verificación de llegada del producto (Elaboración propia) 60
Tabla 10. Importancia relativa de los KPI's en el proveedor (Elaboración propia) 60
Tabla 11. Importancia relativa de los KPI's en la búsqueda de material (Elaboración propia) 61
Tabla 12. Importancia relativa de los KPI's en el almacenamiento e inventario (Elaboración propia) 61
Tabla 13. Ponderación de KPI dentro de las actividades con su importancia (Elaboración propia) 67
Tabla 14. Resultado AHP. (Elaboración propia) 68
Tabla 15. Ventajas y desventajas de usar la app como herramienta de medición 79
Tabla 16. Mediciones ejecutadas por el ayudante del patiero 87
LISTA DE FIGURAS

Figura 1. Ejemplo de prueba de los 5 minutos (Concreto S.A, n.d.)................................. 29
Figura 2. Pérdidas en la mampostería (Concreto S.A, n.d.) .. 30
Figura 3. Tiempos de soporte en la mampostería. (Concreto S.A, n.d.) 30
Figura 4. Tiempo sin valor agregado en la mampostería (Concreto S.A, n.d.) 31
Figura 5. Esperas en la mampostería (Concreto S.A, n.d.) .. 31
Figura 6. Reprocesos en la mampostería (Concreto S.A, n.d.) 32
Figura 7. Tiempo ocioso en mampostería (Concreto S.A, n.d.) 32
Figura 8. Causas de incumplimiento en las actividades. (Concreto S.A, 2016) 34
Figura 9. Diagrama de Flujo de proceso del acero de refuerzo (Elaboración propia) 46
Figura 10. Calificación de las actividades en la encuesta (Elaboración propia) 48
Figura 11. Resultado del AHP de las actividades .. 55
Figura 12. Diagrama de Ishikawa (Elaboración propia) .. 56
Figura 13. Valor promedio de los resultados obtenidos de la encuesta (Elaboración Propia) .. 58
Figura 14. Importancia de KPI’s en el transporte interno (Elaboración propia) 62
Figura 15. Importancia de KPI’s en el descargue (Elaboración propia) 63
Figura 16. Importancia de KPI’s en la verificación de llegada del producto (Elaboración propia) .. 64
Figura 17. Importancia de KPI’s en el proveedor (Elaboración propia) 65
Figura 18. Importancia de KPI’s en la búsqueda de material (Elaboración propia) 65
Figura 19. Importancia de KPI’s en el almacenamiento del inventario (Elaboración propia) .. 66
Figura 20. Resultado final AHP (Elaboración propia) .. 68

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
RESUMEN

El presente trabajo tiene como objetivo generar una propuesta de metodología de medición de productividad para las actividades que estén involucradas en la manipulación, almacenamiento e instalación del acero de refuerzo para la Constructora Conconcreto S.A. Esta se basó en 3 fases: el desarrollo de la metodología en sí (priorización de KPI's), la herramienta para realizar la medición y el análisis de los datos obtenidos. Para la primera fase, se utilizó la metodología AHP, la cual tiene en cuenta la opinión de expertos de la empresa, el diagrama de Ishikawa, visitas a obra, el estado del arte en el tema para realizar la priorización de las actividades e indicadores más importantes a medir, siendo estas el almacenamiento, descargue y transporte interno del material. Para la segunda, se propone el interfaz de una aplicación cuyo enfoque es para los maestros de obra y demás personas que componen la mano de obra operativa; y para la tercera, dentro de la misma aplicación se tendrá acceso a gráficas donde se harán comparativos con un valor meta y mediciones realizadas anteriormente para verificar la evolución de las mismas. Con esto, se espera que esos datos representen mejor la realidad para así permitir la mejor tomar decisiones en obra en la planeación de futuros proyectos.

Palabras clave: Lean Construction, Productividad, AHP, Acero en Construcción.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
ABSTRACT

The main purpose of this document is to create a productiveness measuring methodology for the activities involved on the process of manipulation of the reinforced steel for the Colombian construction company called Constructora Conconcreto S.A. These methodology was made in three steps: the development of the methodology per se (the KPI ranking), the measuring tool and the data analysis. For the first step, the AHP methodology was used, and to prioritize the most important activities and KPI’s, aspects such as experts opinion, Ishikawa’s diagram, construction sites visited and the state of art of the main subject were used as input. For the measuring tool, an app interface is proposed, and the main focus is the foreman’s and construction workers understanding, so it was aimed to them. By last, within the app, they have access to the KPI’s graphs, where a comparison between the last measure, the current week measure and the indicator's baseline is shown. This information is expected to depict a more accurate representation of the actual condition of the company, in order to allow a better decision making on the future construction project planning.

Keywords: Lean Construction, Productiveness, AHP, Steel in Construction.
INTRODUCCIÓN

La globalización y el sistema económico actual, hace que los sectores sean más competitivos y al menos en el caso particular de la construcción, la productividad juega un papel fundamental al influenciar los costos directos de los proyectos, por lo que se puede afirmar que la empresa con mejores índices productivos puede ofrecer un proyecto más económico o de más rápida realización, factores que busca el consumidor, ya sea el Estado, una empresa o una persona natural. (Lopera, 2016)

Concreto es una de las empresas de construcción más reconocidas de Colombia, debido a la cantidad y calidad de los proyectos que ha desarrollado. A pesar de esto, la constructora no ha sido ajena a los bajos niveles en términos productivos del sector de la construcción, que según el Foro Económico Mundial, es uno de los sectores que no ha cambiado notoriamente en los últimos cincuenta años. (WEF, 2016)

Debido a esto, este documento se enfoca en impulsar los esfuerzos de la empresa para ser más reconocidos y competitivos en el sector, realizando un diagnóstico sobre las actividades realizadas por la empresa en aras a lograr su objetivo, para así encontrar posibles fallas que permitan hacer una propuesta buscando una mejoría, específicamente en el sistema de medición que se usa en las actividades

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
donde se involucra el acero de refuerzo. Estas actividades fueron seleccionadas debido a la importancia que tiene este material dentro del costo directo y además de eso, los expertos de la empresa ven una buena oportunidad de mejora.

Entendiendo a nivel macro el proceso que se realiza en la Constructora Concreto S.A para las actividades que relacionan el acero de refuerzo en proyectos de construcción vertical y teniendo en cuenta las mediciones históricas que se han realizado en la empresa, además de usar la opinión de los expertos, es posible identificar las actividades que pueden resultar más importantes para este trabajo. A partir de una encuesta, literatura y la metodología del diagrama de causa efecto, se identifican los indicadores de las actividades principales y por medio del método AHP se ordenan las actividades según su importancia al igual que sus indicadores, lo cual podrá es útil para generar o verificar que los indicadores que sean medidos, permitan una mejor toma de decisiones.
1. PRELIMINARES

1.1 CONTEXTUALIZACIÓN Y ANTECEDENTES

La economía de un país es movida gracias al desarrollo de cada uno de los sectores que la componen, siendo algunos de los más importantes: el agropecuario, el industrial, el de transporte, el de construcción, el financiero, el minero-energético y el del comercio. (Subgerencia Cultural del Banco de la República, 2015)

En particular, el sector de la construcción representa el 6-8% del PIB mundial, al usar alrededor del 50% del acero y ser un importante consumidor de materias primas, sin mencionar el hecho de que sirve como impulsor de otras economías. (WEF, 2016)

En Colombia, la construcción ha registrado un crecimiento promedio de 8,1 % entre el 2000-2014 y en los primeros nueve meses del 2015 el sector mantiene un desempeño superior al total de la economía con una tasa del 4,6%. (Andi, 2015)

En contraste con estos indicadores, y según el Foro Económico Mundial, es importante reconocer el hecho de que el sector en general debido a lo fluctuante que es en aspectos como la contratación y la variación en sus proyectos, no ha podido adaptarse al cambio que se debería en términos tecnológicos, por lo que en su mayoría se sigue construyendo con casi los mismos métodos con los que se

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
una forma de diseñar sistemas de producción para minimizar la pérdida de materiales, tiempo, y esfuerzo, con el fin de generar la mayor cantidad de valor posible, como se cita en Barshan, (2011) la cual intenta responder a la necesidad de cambio del sector, para evitar que se continúen presentando los desfases en los presupuestos de los proyectos, las entregas tardías del proyecto y la alta accidentalidad en obra que se ve afectada por la falta de organización en el área, otro factor que mejora la metodología Lean.

Actualmente en Colombia la metodología Lean Construction es utilizada en algunas empresas, incluyendo aquellas constructoras de vivienda de interés social, pero esta práctica no ha sido muy popular debido a la falta de conocimiento acerca de cómo funciona y/o cómo se aplica. Para el 2012 la Universidad EAFIT de Medellín tenía como proyecto crear una base de datos aquellas empresas que lo están aplicando y con ayuda de CAMACOL y sus cursos de capacitación, se ha logrado tener un avance notable con respecto a su popularización (Diaz, 2012).

Se debe tener en cuenta que el primer paso para mejorar una actividad o proceso y así evitar desperdicios, sin importar el sector económico al que pertenezca, consiste en la identificación de los factores que puedan resultar críticos dentro de la misma, los cuales llevan inevitablemente al no aprovechamiento eficiente de los recursos, entendiéndose por recursos la materia prima, el tiempo, el personal, entre otros. En caso de que se intente mejorar un proceso pero no se tenga claro
el verdadero problema, la solución que se planteé podría ayudar a mejorar la productividad, pero no estaría tratando la raíz principal del problema.

Una de las formas de encontrar esta raíz principal, es con un estudio de tiempos, que es simplemente un procedimiento sistemático de investigación, recolección y registro de datos absolutamente precisos para completar una operación. (Vaughn & Vallhonrat Bou, 1988)

Con respecto a este tema, Concreto actualmente implementa metodologías que pertenecen a Lean Construction como Last Planner o último planificador, con la cual busca aumentar la confiabilidad disminuyendo la incertidumbre de la planificación de los proyectos introduciendo planificaciones intermedias y semanales, enmarcadas en un plan maestro general del proyecto analizando las restricciones (cuellos de botella) que se interponen en el desarrollo de actividades; también utiliza la metodología de medición indirecta de productividad, donde se busca tomar tiempos productivos, contributivos y no contributivos durante un lapso de 5 minutos de manera aleatoria, realizándose distribuidas durante el horario de trabajo (Concreto, 2015).

Estas metodologías fueron implementadas en el año 2003 exitosamente y a pesar de los buenos resultados y/o mejora, después de esto, los esfuerzos para la búsqueda de nuevas alternativas fueron escasos, por lo que inevitablemente llevó

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
a que la empresa no progresara significativamente en términos productivos en los últimos años.

Dentro de los procesos involucrados en la construcción de edificaciones, la logística del acero de refuerzo es un proceso en el cual hay que tener una alta precaución debido a que su almacenamiento y transporte se deben realizar con cuidado y esto es porque a la hora de su instalación, la pieza debe estar libre de grasas, óxido, tierra, barro, o de cualquier material que pueda afectar en su adherencia (Alcaldía Mayor de Bogotá, n.d.).

Además de esto, para Camilo Salazar, integrante del equipo de productividad de Conconcreto, también es considerada una actividad crítica con respecto a otros factores, y esto se debe a la cantidad de inconvenientes que han tenido en sus proyectos, causados por problemas como la cantidad de tiempos perdidos debido a que la grúa para bajar el acero enviado por el proveedor, no se encuentra disponible a todas las horas del día, también la cantidad de recursos perdidos al armar las canastas para las cimentaciones, vigas y columnas; y la pérdida de tiempos debido al mal manejo del inventario del acero de refuerzo (Salazar, Comunicación personal, agosto de 2016).

Además, en un proyecto de vivienda de la constructora, como lo fue Entreparques, el costo del acero de refuerzo fue un 6% sobre el costo directo del proyecto, equivalente a más de 3 mil millones de pesos. Dentro de este costo, un 13 %...
corresponde al pago de la nómina relacionada, y se pudo establecer que el tiempo de la jornada dedicada a actividades que no aportan valor fue del 9,3 % y 17,5 % para tiempo de soporte (Conconcreto S.A, n.d.).

Por lo tanto, las actividades relacionadas con el acero de refuerzo deben ser medidas y analizadas para la detección de posibles fallas en la logística que hay detrás de este proceso y que afectan la productividad de la empresa, para que se puedan tomar decisiones enfocadas a la mejora de esta actividad, lo cual se traduce en competitividad para Conconcreto.

1.2 OBJETIVOS DEL PROYECTO

1.2.1 Objetivo General

Diseñar un sistema de medición para la Constructora Conconcreto S.A, que le permita encontrar los factores que mejoren la eficiencia en las actividades relacionadas con la manipulación, almacenamiento e instalación del acero de refuerzo en la construcción de edificaciones.

1.2.2 Objetivos Específicos

- Diagnosticar la situación actual de la Constructora Conconcreto S.A en cuanto a la logística que hay detrás de la instalación, transporte, y en general de la manipulación del acero de refuerzo.
Detectar las actividades y mediciones críticas en la instalación, transporte y manipulación del acero de refuerzo.

Diseñar un sistema de medición para las actividades relacionadas con el acero de refuerzo.

Validar el sistema de medición aplicándolo a un caso de estudio.

1.3 MARCO DE REFERENCIA

1.3.1 Estado del arte

En el mundo de la construcción, del documento “Indicators for measuring performances of building construction companies in Kingdom of Saudi Arabia”, Ali, Al-Sulaihi, & Al-Gahtani, (2013) se pudo evidenciar un estado del arte de la relevancia de los diferentes KPI's en el mundo desde 1997 en el Reino Unido, Arabia Saudita, India, China, Canadá, Vietnam, Estados Unidos y Tailandia, de los cuales se obtuvieron 47 KPI's donde se encontró que las 3 perspectivas en las cuales se debía hacer más enfoque era en la financiera, la de consumidor y los negocios internos dentro de la compañía, estos en sí se subdividieron en los 10 KPI's más importantes que fueron:

<table>
<thead>
<tr>
<th>Perspectiva</th>
<th>#</th>
<th>KPI</th>
<th>Método de medición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financiera</td>
<td>1</td>
<td>Rentabilidad</td>
<td>ROI, Ingresos netos,</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
<table>
<thead>
<tr>
<th>Núm.</th>
<th>Medida</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Crecimiento</td>
<td>Crecimiento en ganancias y el volumen y tasa de crecimiento de la empresa.</td>
</tr>
<tr>
<td>3</td>
<td>Estabilidad financiera</td>
<td>Tasa de deuda</td>
</tr>
<tr>
<td>4</td>
<td>Flujo de caja</td>
<td>Flujos de caja según el tipo de utilidad</td>
</tr>
<tr>
<td>5</td>
<td>Calidad del servicio y trabajo</td>
<td>Factor de reprocesos</td>
</tr>
<tr>
<td>6</td>
<td>Satisfacción del cliente externo</td>
<td>Porcentaje de clientes que vuelven a contratar y número de quejas</td>
</tr>
<tr>
<td>7</td>
<td>Cuota de mercado</td>
<td>Cantidad de trabajos realizados por la empresa / el total de trabajos realizados en el sector</td>
</tr>
<tr>
<td>8</td>
<td>Seguridad</td>
<td>Desempeño de la seguridad, costos de accidentes.</td>
</tr>
<tr>
<td>9</td>
<td>Eficiencia del negocio</td>
<td>Ratio de eficiencia</td>
</tr>
<tr>
<td>10</td>
<td>Efectividad de planeación</td>
<td>Costo y tiempo predecido, y el costo del cambio de factor</td>
</tr>
</tbody>
</table>

Todas estas son las mediciones que se realizan de manera Macro en las compañías de construcción para verificar su efectividad con respecto al mercado.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Ahora, haciendo un análisis más profundo dentro de las actividades, se encontró una alta ineficiencia en las mediciones no financieras tales como la satisfacción del consumidor externo, la seguridad, la eficiencia y eficacia en el negocio y la planeación, y si nos enfocamos hacia la rentabilidad, es muy importante tener presentes la calidad, productividad, seguridad, tiempo y costo (Ali et al., 2013).

Otro artículo relacionado con la medición de productividad en construcción el cual se tomó base para definir la importancia, es el artículo “Improving Projects Performance With Lean Construction: State Of The Art, Applicability And Impacts” (Locatelli, Manchini, Gastaldo, & Mazza, 2013) trata de proponer y verificar el estado del arte de las metodologías Lean que hacían frente a cuatro factores muy importantes: Costo, tiempo, calidad y despilfarro. De estos cuatro aspectos, realizan un mapeo en el cual se hace un relacionamiento de cómo estos aspectos, (que en nuestro caso tomaremos como mediciones), pueden afectar en una construcción y como con Lean pueden verse mejorados algunos, pero en esta sección de documento, nos enfocaremos a la importancia dada a los aspectos.

También, del artículo “A review of performance measurement for success concurrent construction” de Ahmad, S valestuen, Andersen, & Torp, (2016), en la evolución de le eficiencia de las medidas, donde se habla acerca de cómo el tiempo, el alcance y el costo siempre han sido importantes, y en la noción que usan del proyecto core como restricciones, estas 3 hacen parte de lo que llaman el

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
triángulo de hierro, los cuales son los principales para lograr el alcance y calidad correctas. Según los autores (Ahmad et al., 2016), cualquier cambio en alguna restricción de estas puede afectar las otras 2; es por esto que las mediciones de efectividad deben estar directa o indirectamente ligadas a estas 3 restricciones.

Otro artículo que resume un poco las métricas utilizadas en construcción, es la tesis de (Ault, 2013)“ *Control Charts as a Productivity Improvement Tool in Construction*”, menciona que Koskela (1992) tenía como prioridad y requerimiento en las medidas que éstas incluyeran captura de datos de tiempo, las cuales debían ser más físicas que financieras, y las cuales debían adaptarse a la situación. También, en el estado del arte que propone en su documento, que inicialmente se pensaba que las mediciones debían incluir una entrada y una salida, y que era necesario separar producción de productividad, pero con el tiempo se convierten estas medidas en simplemente medidas de tareas, tomando índices de medición de productividad para verificar el rendimiento de actividades con base en un valor de referencia. También, remarca la importancia del costo y la programación de las actividades, y la variación dentro de cada una de las actividades, y cómo estas afectan la fecha de estimada de finalización del proyecto (Ault, 2013).

1.3.2 Conceptos

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
El presente trabajo busca diseñar un sistema de medición que le permita a la empresa Conconcreto detectar fallas en la logística relacionada con la manipulación, almacenamiento e instalación del acero de refuerzo.

Para efectos del trabajo, se deberá entender el término sistema de medición como una colección de operaciones y procedimientos enfocados a asignar un valor numérico a las variables que afectan el proceso a analizar. Dado que el fin último es dar una herramienta que permita mejorar la productividad, esta debe ser entendida como la relación que hay entre la actividad del acero analizada (ya sea su manipulación o su instalación) por unidad de recursos empleados para la realización de la misma. Dentro de la productividad, hay 3 términos que han sido discutidos pero que se deberán comprender dentro de la siguiente definición:

- **Eficiencia**: es la relación de los recursos utilizados en un proyecto y los logros conseguidos con el mismo. Se da cuando se utilizan menos recursos para lograr un objetivo, o más objetivos con la misma cantidad de recursos.
- **Eficacia**: nivel de consecución de metas y objetivos. Capacidad para lograr lo que nos proponemos.
- **Efectividad**: conseguir eficiencia y eficacia a la vez con respecto a los logros propuestos. (Gómez, comunicación personal, agosto 2016)

Se considera también necesario dar la definición del término “Indicadores” debido a que estos son un pilar fundamental del sistema de medición. Se debe entender...
por indicador, según Ginés (1999) citado por Juan, Baena, & Medina, (n.d.) como una medida objetiva, usualmente cuantitativa de algún sistema en general, definiéndose como variable cuantitativa aquellas cuyos valores son diferentes y se pueden representar como mayo o menor.

Otro concepto a tener en cuenta es el de *Lean Construction*, que es una metodología que según Lean Construction Institute, (2017) busca mejorar las empresas de construcción y de diseño, a partir de enfoques de *Lean* en la entrega y diseño, además, busca desarrollar y administrar los proyectos con base en relaciones, conocimiento compartido y metas compartidas. Se enfoca principalmente en aumentar el valor del proyecto, descubriendo y mejorando los recursos perdidos tales como:

- Tiempos perdidos
- Movimientos perdidos
- Pérdida de potencial humano

(Lean Construction Institute, 2017)

Una de las maneras o metodologías utilizadas para poder hacer esto posibles es la de *Last Planner*, que al igual que Lean, será mencionada en múltiples ocasiones en este documento. Esta metodología consiste, según el Tommelein & Ballard, (2007), en un ciclo que busca mejorar la confiabilidad y exactitud de la planeación para poder así mejorar el rendimiento, el cual según (Brioso Lescano, 2015) lo

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
hace por medio de la eliminación de esperas, haciendo las actividades en la secuencia más conveniente y coordinando la interdependencia entre actividades por realizar, esto se logra a partir del ciclo de planeación de *Last Planner* el cual comprende:

- **Master plan ó Planificación Maestra (Cronograma General o Maestro):**
 Siendo el primer elemento del sistema, en este lo que se realiza un listado de las actividades en forma general con sus respectivos plazos o hitos para el cronograma general, con una selección adecuada de cuál es aquel proceso constructivo en el cuál se va a trabajar, presupuesto, recursos disponibles y entregables basados en las necesidades y requerimientos que tienen los clientes. Además de esto, se definen a su vez todos los aspectos relacionados con la organización del proceso, tales como la seguridad, gestión contractual, recursos humanos, logística, etc. (Brioso Lescano, 2015)

También, según el *Lean Construction Institute* en el documento de Tommelein & Ballard, (2007), en esta etapa se incorpora la lógica del CPM (*Critical Path Method* ó Método de la ruta crítica), donde se determina cuál va a ser la duración completa de todo el proceso. En esta etapa se definen las fechas límite de entrega de cada actividad y que actividad depende de cual para su realización.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
• **Phase Scheduling or phase planning (Fase de planeación):** Esta es una etapa de planeación colaborativa donde se enlazan la estructura de trabajo con el control de la producción para poder así determinar qué metas se tienen y se deben seguir. En ésta se integran y se coordinan varios especialistas de operaciones, para así poder llevar a un nivel de mayor detalle estas metas, donde se realizan subdivisiones de actividades para poder que el producto sea construido, que ahí en donde entra la palabra Fase; pues debido a que es un proceso muy largo y complejo, las actividades definidas en el plan maestro suelen ser muy superficiales, razón por la cual se ve en la necesidad de dividirlas en pequeñas actividades que deben ser terminadas en definidos periodos de tiempo, y que probablemente deban ser realizadas en ciclos de tiempo cercanas una con la otra. (Tommelein & Ballard, 2007)

• **Programación de mediano plazo o Look-ahead:** consiste en una planificación a mediano plazo, en general en edificaciones es entre 2 y 8 semanas y se busca tener un control sobre el flujo de trabajo y que se conserve el orden de las actividades. Además se le da especial importancia a los posibles problemas o restricciones que se puedan dar en el desarrollo de las tareas, buscando una forma efectiva de trabajar sobre ellos. (Brioso Lescano, 2015)
• **Análisis de restricciones:** se miran las actividades que se definieron en la fase de look-ahead y se hace un análisis para liberarlas, es decir, eliminar la posibilidad de que se paralicen por culpa de una restricción. (Brioso Lescano, 2015)

• **Programación Semanal:** se destaca la primera semana del look-ahead y se trabaja sobre esta. Es fundamental que la obra cuente con un plan de contingencia en caso tal de que una actividad se retrasase para no desaprovechar los recursos que se tienen. (Brioso Lescano, 2015)

• **Programación diaria:** se contemplan las actividades a realizar en el día a día en un alto nivel de detalle. Es importante hacer mediciones de rendimiento, evaluar si el personal está siendo productivo y los factores que influyen en esto. (Brioso Lescano, 2015).

• **Análisis de fiabilidad:** consiste en hacer un contraste entre las actividades asignadas y las actividades realmente ejecutadas haciendo una división entre estas y expresado en términos porcentuales. Ya que el escenario ideal es en el que el PAC (Porcentaje de actividades completadas) sea igual al 100% pero esto no siempre se logra, lo que se hace es analizar las situaciones específicas que hicieron que no se lograra la meta para evitar caer en los mismos errores. (Brioso Lescano, 2015).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
2. ENFOQUE Y METODOLOGÍA

2.1 RECOLECCIÓN DE INFORMACIÓN

2.1.1 MEDICIONES ANTERIORES

Actualmente, Concreto hace uso de las siguientes metodologías para la medición de su productividad:

Lean Construction: En la empresa constructora Conconcreto S.A se realiza la construcción sin pérdidas tomando tiempos contributivos (tiempo que contribuye a que se le agregue valor al producto), tiempos productivos (tiempo que le agrega valor al producto) y tiempos no contributivos (tiempo perdido en actividades que no le agregan valor al producto), donde se determinan cuáles son las causas en las pérdidas de éstos (Conconcreto, 2015). La forma en la que se aplica este principio consta de 5 pasos, los cuales se presentan a continuación:

I. **Medición indirecta de la productividad**

Las medidas se hacen a los tiempos mencionados anteriormente en rangos de 3 a 5 minutos. Se busca que las mediciones sean lo más aleatorias posibles y que se realice la mayor cantidad (sin estipular una cantidad estándar), para generar un mayor nivel de confianza en los datos. La empresa clasifica los tiempos de la siguiente manera:

- **Tiempo con valor agregado.**
- **Tiempo de soporte.**
• Instrucciones.
• Limpieza.
• Mediciones.
• Protecciones.
• Preparación

• **Tiempo sin valor agregado:**
 - Desplazamientos (Buscado equipo, material o solicitud de instrucciones).
 - Reprocesos (Actividad mal ejecutada, cambio en los planos, daño por parte de otra cuadrilla, etc.)
 - Tiempo ocioso (Actitud del trabajador, tiempo conversando, otras detenciones).
 - Detenciones autorizadas (Descanso, necesidades fisiológicas, etc).

II. Tabulación de datos

El formato utilizado para la toma de mediciones es el siguiente:
Las medidas, como se mencionó anteriormente, eran realizadas durante 3-5 minutos y se realizaban con un cronómetro denotando cuánto tiempo equivalía a cada una de las categorías, se cuenta con una aplicación llamada GICO, la cual anteriormente facilitaba al operario o persona encargada de tomar los tiempos la tarea a realizar, pero actualmente se está utilizando con el fin de notificar alguna novedad y otros aspectos. Estas mediciones se hacían de forma aleatoria.

III. Identificación de la magnitud del tiempo dedicado a actividades que no le agregan valor al producto final.

Aquí se procede a realizar y verificar cuáles fueron los porcentajes de cada uno de los tiempos medidos en diferentes actividades y por los diferentes operarios que realizaron las medidas, para así realizar gráficas y paretos y poder determinar cuáles eran las principales causas de estas actividades.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Por ejemplo, en el documento de Gestión de Productividad en Construcción Conconcreto S.A, (n.d.) para la actividad de mampostería en ladrillos se encontraron los siguientes resultados:

Figura 2. Pérdidas en la mampostería (Conconcreto S.A, n.d.).

Figura 3. Tiempos de soporte en la mampostería. (Conconcreto S.A, n.d.)

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
IV. Análisis de información y propuesta de alternativas para los tiempos no contributivos

Con base en los paretos realizados, se hace el análisis de cuáles son las razones por las cuales se están generando estas improductividades, y al encontrar aquellas que sean la razón más significativa, se tienen en cuenta para proponer mejoras, como en el caso de la obra “Entreparques” de (Conconcreto S.A, n.d.), donde se hicieron las siguientes propuestas:

- La lista de carga de elementos de manera ordenada.
- El almacenamiento en andamios.
- La inclusión de un camión grúa.

V. Aplicación de estas soluciones a obra

Después de estas propuestas ser aprobadas por la parte directiva del proyecto, son aplicadas en obra. Un ejemplo de esto, es el uso de andamios en el almacenamiento en la obra “Entreparques”, lo cual facilitó la disposición de piezas y su manipulación, y además de esto, se facilitó el control del inventario y se redujo el espacio utilizado para el almacenamiento de acero (Conconcreto S.A, n.d.).

Además de la medición de tiempos con Lean, en Constructora Concreto S.A también se realizan mediciones con Last Planner. Esta metodología, la cual fue descrita anteriormente, mejora la confiabilidad y exactitud de la planeación a partir de la inclusión de un plan general el cual se va detallando a medida que transcurre

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
la obra hasta las actividades diarias. Esta metodología en la actualidad en la compañía principalmente se está utilizando para medir la efectividad del proveedor, pero también para verificar cuáles son esas razones por las que no se completa una actividad.

Esta metodología consta en programar una cantidad de actividades por semana, donde cada semana se verifica cuántas actividades de las presupuestadas fueron cumplidas y cuántas no, además de esto, se documentan cuáles fueron las razones que causan el incumplimiento de estas. Por ejemplo, para la obra de Cámara de Comercio de la Constructora Conconcreto S.A, se tuvo la siguiente gráfica con respecto a las causas de incumplimiento de las actividades presupuestadas.

![Gráfica de causas de incumplimiento](image)

Figura 8. Causas de incumplimiento en las actividades. (Conconcreto S.A, 2016)
A partir de este, se toman decisiones con respecto a las causas y como se mencionó anteriormente, con la medición de los proveedores, se toman decisiones de negociación con éste.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
2.2 PROCEDIMIENTOS Y METODOLOGÍAS

2.2.1 METODOLOGÍA DE DIAGNÓSTICO

Una manera de medir la gestión de un proceso es a través de la respuesta a tres simples preguntas: ¿Qué se hizo? ¿Cómo se hizo? y ¿Para qué se hizo?.

Con esto, se verifica el funcionamiento actual de la actividad misma y también, todo lo relacionado dentro de ésta con respecto a estrategias utilizadas, ciclo de la misma y metodologías de mejora.

Las respuestas a estas preguntas sugieren una clasificación de indicadores en tres tipos: la primera pregunta y cualquier indicador que mide el cumplimiento de metas, se denominan indicadores de eficacia; la segunda pregunta y los indicadores que miden que tan óptimo es el uso de los recursos, son indicadores de eficiencia, mientras que los de la tercera pregunta y los que miden el cumplimiento del propósito se denominan indicadores de efectividad. (Universidad de los Andes, 2007).

Se debe identificar a grandes rasgos el sistema (el procedimiento escogido) a evaluar, incluyendo cada uno de los factores involucrados. Se deben tener en cuenta aspectos como el transporte, la mano de obra, la materia prima, la maquinaria requerida, etc., y las interrelaciones que existen entre estos. Para esto, con ayuda del experto de productividad de la empresa, Camilo Salazar, se debe definir el tipo de proyecto más adecuado considerando temas como su cercanía, estado de la obra, y la clase de construcción (si es vivienda, puentes, vías, centrales hidroeléctricas, etc.), para poder obtener un análisis más acertado de la actividad elegida.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Para desarrollar el análisis del proceso a evaluar se procede a entrevistar a los encargados a cada uno de las áreas principales (diseño, compras, logística, jefe de obra, jefe de innovación, entre otras), analizando cuáles son las actividades que se realizan durante la construcción y en cuáles de estos está involucrado el acero.

Después de esto, se procede a diagramar el proceso. Esto se realiza por medio de un diagrama de flujo o de procesos, y con éste se analiza cuáles componentes de medición requieren ser analizados. Además se muestra de forma gráfica el proceso para así poder establecer las variables críticas, poder identificar oportunidades para simplificar el proceso, ya sea eliminando pasos y/o disminuyendo los cuellos de botella. (Gutiérrez Pulido & Salazar, 2009)

Después de realizar el mapeo, se busca hacer una retroalimentación con los involucrados en el proceso para verificar que todas las actividades relevantes se encuentren en el proceso y que además de esto se siga el orden lógico de éste.

2.2.2 METODOLOGÍA DE Detección de actividades e indicadores críticos

A. ENCUESTA

Se realiza una encuesta enfocada a la calificación de la importancia de las actividades y KPIs, donde se verifica la opinión de expertos dentro de la compañía y en el tema (Encuentre todas las preguntas en el Anexo “Encuesta Realizada”). Por medio de ésta, se logra establecer las actividades que son percibidas como menos productivas, los indicadores que son más importantes para tomar decisiones en obra y el nivel de...
conocimiento y aplicación que se tiene de las técnicas de *Lean Construction, Last Planner* y toma de tiempos contributivos, productivos y no contributivo.

B. MÉTODO GRÁFICO DE CAUSA – EFECTO

Metodología de diagrama de Ishikawa de tipo flujo de proceso: según Gutiérrez Pulido & Salazar, (2009), consiste en un diagrama regular de Ishikawa, que es un método gráfico que relaciona un problema o efecto con los factores o causas que lo generan, pero en este caso la línea principal del diagrama sigue la secuencia del proceso de producción o de administración y los factores que pueden afectar la característica de calidad, se agregan en el orden en el que corresponde el proceso. Para encontrar cuáles son esas causas potenciales se realiza la pregunta: ¿Qué factores o situaciones en esta parte del proceso puede tener efecto sobre el problema especificado?

Ya teniendo los KPI's seleccionados (*Key Performance Indicators*), se procede a realizar el diseño de la forma de medición de estos, la cual variará según el KPI obtenido.

Para realizar la calificación de la importancia relativa de cada actividad y KPI dentro de la metodología del AHP, se tomarán en cuenta los datos obtenidos de la empresa Constructora Conconcreto S.A, el análisis del diagrama de Ishikawa y los resultados de la encuesta realizada.

C. AHP

Según la literatura, una de las actividades más importantes a la hora de realizar un sistema de medición es la priorización de actividades y KPIs a medir. Es por esto que después de haber verificado qué mediciones y actividades se pueden evidenciar en el proceso, se procede a realizar una selección de cuáles son aquellos los de mayor

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
relevancia y a los que se les dará más importancia a la hora de realizar la medición de productividad del proceso. Para definir esta importancia, se utiliza el método AHP ó “Analytic Hierarchy Process” por sus siglas en inglés, que según Haas & Meixner, (2014), es una metodología muy utilizada para la toma de decisiones, en la que el problema es descompuesto en una jerarquía de criterios y alternativas, donde principalmente se tiene que establecer un objetivo, definir unos criterios para éste y además de esto, determinar las alternativas para este criterio. Lo que hace AHP es sintetizar la información de manera tal que se determinen los puntajes relativos para cada criterio y alternativa, y así poder seleccionar cuáles son los de mayor puntaje, que en este caso serán los de mayor importancia. Para el caso de estudio se tomarán como criterios las actividades y como alternativas los KPI's.

2.2.3 METODOLOGÍA PARA EL DISEÑO DEL SISTEMA DE MEDICIÓN

El método de medición de Key Performance Indicators (KPI) se divide en 3 factores, el primero consiste en todo el desarrollo del sistema de medición en sí, el segundo en una herramienta de medición de datos, y el tercero, en la metodología de análisis de datos. Con base en el documento “Performance measurement system design: developing and testing a process-based approach” de Neely et al., (2000) se tomó el piloto del diseño del proceso del desarrollo del sistema de medición, este consiste en 12 fases, las cuales serán descritas a continuación:

• **Fase 1: ¿Qué Mediciones se requieren?:** En esta fase se debe identificar qué información se necesita por cada área en su parte del negocio, donde se realiza una lluvia de ideas y se saca un listado de las posibles áreas de medición.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
• **Fase 2: Análisis de costo - beneficio:** Se hace una identificación de aquellas mediciones y áreas que tienen un alto costo.

• **Fase 3: Propósito de la medición:** Se realiza un propósito claro del por qué de cada medición, haciendo énfasis en aquellas medidas que hagan parte de las áreas core y además de esto tengo un alto impacto económico.

• **Fase 4 : Chequeo de entendimiento:** Realizar un chequeo de que todas las áreas de medición estén siendo cubiertas, se realiza otra lluvia de ideas con facilitadores y se hace un listado de las áreas extra para la medición.

• **Fase 5: Diseño detallado (Función):** Determinar y estructurar cada medición de productividad, generando plantillas de toma de datos.

• **Fase 6: Integración (Función):** Verificar que aquellas mediciones identificadas puedan ser integradas.

• **Fase 7: Consideraciones ambientales (Función):** Verificar que las mediciones obtenidas sean apropiadas para la función de ambiente actual, definiendo aquellas que sean apropiadas y de fácil comprensión para la persona encargada.

• **Fase 8: Testeo inter-funcional:** Verificar que aquellas medidas identificadas por las personas encargadas puedan ser integradas, haciendo una evaluación de éstas en reuniones grupales y se define un set de mediciones para un área en específica.

• **Fase 9: Consideraciones ambientales (Inter-funcionales):** Verificar que las mediciones sean apropiadas para el ambiente actual de la organización, y a partir de este, se filtran y se genera una lista de mediciones apropiadas.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
• **Fase 10: Testeo destructivo (Inter-funcional):** Se determina cómo los números pueden ser utilizados para maximizar el rendimiento aparente actual, este último listado de medidas deben ser verificadas con su problemas potenciales en cada área.

• **Fase 11: Institucionalización:** Se institucionaliza el sistema de medición, donde se deben realizar entrenamiento e inducciones, realizando auditorias regulares, estableciendo que tipo de mediciones se tienen y de este sale la implementación de un set integrado de mediciones de productividad con sus metodologías establecidas. Para el caso de este trabajo, esta fase no será tenida en consideración debido a que se sale del alcance del mismo.

• **Fase 12: Mantenimiento:** Se realiza para verificar que se eliminen las mediciones que puedan llegar a ser redundantes y puedan introducir algunas nuevas, realizando un proceso sistemático donde se asegure que las mediciones sean actualizadas regularmente, preferiblemente por un grupo y no por un manager en especial. Para el caso de este trabajo, esta fase no será tenida en consideración debido a que se sale del alcance del mismo.

A esta metodología, se piensa implementar dos fases adicionales, la primera sería entre el chequeo del entendimiento del proceso y el diseño detallado, la cual será la priorización de las mediciones actividades y/o áreas obtenidas, debido a que según el documento mismo de Neely et al., (2000), determinar cuál KPI y/o actividad se debe tener como prioridad a la hora de realizar las mediciones, y la segunda, entre las consideraciones ambientales y el testeo destructivo, la cual será la definición de la forma de medición del

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
KPI obtenido. También, por cuestiones del alcance del proyecto solo se ejecutará o se tendrá como base hasta la fase 10.

2.2.4 METODOLOGÍA PARA LA VALIDACIÓN DEL SISTEMA DE MEDICIÓN

Para realizar el análisis de la información, se debe tener una cantidad específica de mediciones para que la muestra sea representativa, este será generada con base en la siguiente teoría muestreo aleatorio simple tomado de Herrera Castellanos, (n.d.):

\[
n = \frac{N \times Z^2 \times p \times q}{d^2 \times (N - 1) + Z^2 \times p \times q}
\]

Donde:

- \(n \) = Tamaño de la muestra
- \(N \) = Tamaño de la población
- \(Z \) = Nivel de confianza
- \(p \) = Probabilidad de éxito
- \(q \) = Probabilidad de fracaso
- \(d \) = Precisión

En este caso, el “tamaño de la población” será definido con base en la variable de entrada del KPI, dando un ejemplo de esto, un caso sería si se va a medir el tiempo de descargue del acero cuando llega un proveedor, el “tamaño de la población” \(N \) sería la cantidad de veces que llega el acero a obra y a partir de este, se definiría la cantidad de mediciones \(n \) que se deben realizar; y para la probabilidad \(p \) y \(q \) se tomará como éxito la actividad siendo eficiente y fracaso como ineficiente, para calcular su valor, se tomó como base las
mediciones realizadas anteriormente de tiempos contributivos, donde aproximadamente el 30% del tiempo de esta actividad no generaba valor, por lo tanto, se tomará éste como valor inicial.
3. PRODUCTOS, RESULTADOS Y ENTREGABLES OBTENIDOS

3.1 SITUACIÓN ACTUAL DE CONCONCRETO EN PRODUCTIVIDAD

3.1.1 MEDICIONES

Las mediciones de tiempo con Lean no se están realizando de forma frecuente debido a la falta de tiempo del personal encargado. A partir de la encuesta realizada a personas pertenecientes a diferentes áreas de la empresa, se pudo evidenciar que 1 de cada 8 personas no sabe qué son estas mediciones, y que 3 de cada 4 personas, utilizaban estas mediciones de tiempo contributivo y no contributivo para la toma de decisiones en obra.

Con respecto a Last Planner, 1 de cada 4 personas no sabe qué es el PAC o Porcentaje de Actividad Completada y aproximadamente el 30% de las personas, no utiliza esta medida para su toma de decisiones. Actualmente, esta metodología está siendo utilizada en algunas obras principalmente para realizar el seguimiento al cumplimiento de la entrega de los proveedores y la calificación de estos con respecto al tiempo de entrega, y este factor se tiene tan presente, debido a que en un análisis realizado donde se encontró que la principal causa de no cumplimiento eran los proveedores mismos (Conconcreto S.A, 2016).

En el caso particular de la obra Zanetti, las mediciones de Lean y de Last Planner no se están llevando debido a que la obra está recién comenzada y por esto las
actividades no han llegado a un punto de equilibrio, según el ingeniero logístico de este proyecto.

3.1.2 PROCESO DEL ACERO DE REFUERZO

Una vez se ha determinado que el retorno de la inversión del proyecto de edificación que se está analizando es satisfactorio para la empresa se empieza con el pre-dimensionamiento de la estructura hasta que se presentan los planos definitivos arquitectónicos, estructurales, eléctricos y del acueducto. Con esta información es posible establecer las cantidades de los materiales que se requieren para el desarrollo del proyecto además de todas las actividades involucradas.

Se debe realizar un cronograma general de actividades teniendo en cuenta la relación que existe entre ellas, el orden en el que deben ser llevadas a cabo e identificando la ruta crítica, que corresponde a todas aquellas actividades que no se pueden retrasar debido a que son primordiales para el desarrollo del proyecto. Al mismo tiempo se deben ir recibiendo y analizando cotizaciones para definir el proveedor que mejores beneficios otorgue en términos económicos, de calidad y de tiempo de entrega además de un sustituto en caso de que el principal incumpla, las cuales servirán para la elaboración del presupuesto.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Con las cantidades y los proveedores definidos, se procede a la ubicación espacial de la obra, es decir, se define el punto más conveniente para ubicar los sitios de almacenamiento, la maquinaria, etc. Esto es definido como el layout de la obra.

Posteriormente, y teniendo claro las actividades a realizar en la primera semana, se elaboran curvas de frecuencia con los materiales principales, entre los cuales se destaca el acero.

Se hace el pedido del material, se descarga en obra y se debe inspeccionar que todo haya llegado de forma correcta, con los diámetros solicitados y con los dobleces requeridos. Si el pedido está completo se debe hacer inventario y el posterior almacenamiento; en caso contrario se debe hacer la respectiva anotación o la no aceptación del mismo.

A medida que se van realizando las actividades semanales se debe ir solicitando el material el cual debe ser transportado internamente desde el lugar de almacenamiento hasta el lugar donde será instalado. Después se hace el armado de la canasta.

Terminadas las actividades se debe analizar si los residuos son aprovechables. En caso afirmativo, debe ingresar al inventario nuevamente para que se sepa que se tiene ese material disponible y en caso negativo, se deberá transportar y disponer de acuerdo a las regulaciones ambientales que apliquen.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Este proceso se resume en el siguiente diagrama de flujo:

Figura 9. Diagrama de Flujo de proceso del acero de refuerzo (Elaboración propia)

3.1.3 ACTIVIDADES QUE RELACIONAN EL ACERO DE REFUERZO

Para realizar esta actividad, como se mencionó anteriormente, se utilizó la

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
metodología AHP para priorizar tanto actividades como KPI's, para así poder encontrar cuál es el KPI más relevante dentro del proceso relacionado con el acero de refuerzo.

Esta metodología inicia con la priorización de actividades para las cuales se tuvieron en cuenta los siguientes aspectos principalmente:

- Las respuestas de la encuesta relacionada con la clasificación de las actividades por su nivel de eficiencia, dándole más importancia a aquellas actividades que tenían menor eficiencia.
- Los valores y las conclusiones obtenidas de las mediciones realizadas por la compañía Conconcreto S.A.
- Las visitas a obra donde se pudo evidenciar aquellas actividades que eran de alta importancia según nuestro criterio y el de los maestros de obra, y que, además de ésto, generaban improductividades durante su ejecución.

A continuación, se realiza un análisis de cada uno de los 3 ítems previamente mencionados:

I. Respuestas a la encuesta enviada a aquellas personas que tienen o han tenido contacto directo con el proceso de transporte, manejo y almacenamiento de acero de refuerzo, ó que tengan relación con las mediciones de productividad:
Entre los colaboradores de la encuesta se contó con personas de múltiples áreas, incluyendo personal de la Vicepresidencia de Edificaciones, Innovación, personas de obra y aquellos relacionados más con los procesos como los de producción, logística y productividad. Dentro de las respuestas obtenidas, se pudo evidenciar que las 3 actividades de mayor relevancia, teniendo en cuenta la menor calificación en eficiencia, siendo 1 la actividad poco eficiente y 10 la actividad muy eficiente, fueron:

- **Descargue de material**: El cual obtuvo la calificación más baja con un promedio de 4.3 sobre 10.
- **Almacenamiento**: Obtuvo un valor de 5.4 sobre 10, siendo la segunda calificación más baja.
- **Transporte interno**: Obtuvo un valor de 6.1 sobre 10, el cual se

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
encuentra en la tercera posición con respecto a las actividades menos eficientes.

A estos valores de la encuesta se les dio un grado de importancia medio a la hora de darle la calificación a las actividades, debido a la cantidad de respuestas obtenidas.

II. Valores y conclusiones obtenidas con mediciones realizadas anteriormente por Conconcreto S.A.

Como se mencionó anteriormente en el análisis de los datos que se le realizó a las mediciones históricas de Conconcreto S.A, se tuvieron en cuenta las mediciones realizadas con Lean y con Last Planner.

Se tomó en consideración que en Last Planner las 3 razones más relevantes de causa de no cumplimiento de las PAC fueron las actividades predecesoras, la mano de obra y la maquinaria o equipo; teniendo mucha más carga las actividades predecesoras y la mano de obra. Debido a que no se puede hacer una determinación de una actividad específica como actividad predecesora, se le aumentó el peso a aquellas actividades que estuvieran como predecesoras de las que se encontraron con la otra información como improductivas.

Con respecto a Lean, se encontró que las actividades que en la cuales se evidenció mayor improductividad fue en el tiempo de entrega de los proveedores,
la verificación de la llegada del material, el descargue del material, el espacio de almacenamiento, el transporte interno y la forma de realizar el inventario (Conconcreto S.A, n.d.).

Estas, al igual que las actividades encontradas anteriormente que fueron encontradas con Last Planner, obtuvieron alta importancia con respecto a las otras a la hora de realizar la calificación en AHP.

III. Visitas a obra

A partir de visitas realizadas a proyectos de construcción se observaron las actividades que se relacionaban el acero de refuerzo, permitiendo poder identificar aquellas con mayor potencial de mejora en términos de productividad, se consideró que el almacenamiento tenía varias falencias que se debían explorar. Por ejemplo, el hecho de que el patiero (persona encargada de recibir las órdenes de acero, de su despacho y del manejo del inventario) aún maneje el inventario a partir de un folder en mal estado con las hojas expuestas a la intemperie llamaba la atención. El transporte interno se consideró como una actividad primordial debido a que influye en la dinámica de las demás actividades; no es posible la instalación si no hay material. En conclusión, se pensó que el enfoque debía estar en las actividades de almacenamiento, transporte interno y todas aquellas actividades que fueran necesarias para la realización de estas, como la inspección y verificación de pedidos, y el cargue y descargue del material.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Con base en estos aspectos, se tomaron como actividades con mayor importancia:

- Transporte Interno.
- Almacenamiento.
- Descargue de material.
- Cumplimiento de Proveedor.
- Búsqueda de material.
- Almacenamiento e inventario.

Y de acuerdo a la relación e información que mencionada anteriormente, se le otorgaron valores a cada una de las actividades teniendo en cuenta la importancia relativa de una con respecto a la otra:

Tabla 2. Importancia relativa entre actividades.

<table>
<thead>
<tr>
<th></th>
<th>Transporte interno</th>
<th>Descargue de Material</th>
<th>Verificación de llegada del producto</th>
<th>Cumplimiento proveedor</th>
<th>Búsqueda de material</th>
<th>Almacenamiento e inventario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporte interno</td>
<td>1/1</td>
<td>2/1</td>
<td>2/1</td>
<td>3/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
<tr>
<td>Descargue de Material</td>
<td>1/2</td>
<td>1/1</td>
<td>2/1</td>
<td>3/1</td>
<td>2/1</td>
<td>1/1</td>
</tr>
<tr>
<td>Verificación de llegada del producto</td>
<td>1/2</td>
<td>1/2</td>
<td>1/1</td>
<td>3/1</td>
<td>1/2</td>
<td>1/3</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Más adelante explicaremos cómo se realiza esta importancia relativa, esto se realizará en una de la calificación de los KPI’s dentro de cada actividad.

Después de haber realizado la importancia relativa de cada una de las actividades, se procede a convertir a decimal los valores obtenidos, de la siguiente manera:

<table>
<thead>
<tr>
<th>Tabla 3. Valores de tabla anterior en decimales.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>T.I</td>
</tr>
<tr>
<td>D.M</td>
</tr>
<tr>
<td>V.P</td>
</tr>
<tr>
<td>C.P</td>
</tr>
<tr>
<td>B.M</td>
</tr>
<tr>
<td>A.I</td>
</tr>
</tbody>
</table>
Esta matriz será la base para realizar el Eigenvector, el cual es la forma matricial para poder obtener la calificación de los vectores.

Para poder lograrlo, se debe elevar la matriz al cuadrado y normalizar el vector obtenido. Después de esto, se repite el mismo paso elevando la matriz obtenida también al cuadrado.

Tabla 4: Matriz de actividades elevada al cuadrado (Elaboración propia)

<table>
<thead>
<tr>
<th></th>
<th>T.I</th>
<th>D.M</th>
<th>V.P</th>
<th>C.P</th>
<th>B.M</th>
<th>A.I</th>
<th>Normalizar</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.I</td>
<td>6.00</td>
<td>8.50</td>
<td>14.00</td>
<td>23.00</td>
<td>9.00</td>
<td>7.667</td>
<td>60.50</td>
</tr>
<tr>
<td>D.M</td>
<td>6.00</td>
<td>7.00</td>
<td>13.00</td>
<td>20.50</td>
<td>7.50</td>
<td>8.167</td>
<td>54.00</td>
</tr>
<tr>
<td>V.P</td>
<td>3.08</td>
<td>3.92</td>
<td>6.00</td>
<td>11.00</td>
<td>4.17</td>
<td>3.667</td>
<td>28.17</td>
</tr>
<tr>
<td>C.P</td>
<td>1.83</td>
<td>2.42</td>
<td>4.00</td>
<td>6.00</td>
<td>2.33</td>
<td>2.444</td>
<td>16.58</td>
</tr>
<tr>
<td>B.M</td>
<td>5.92</td>
<td>8.67</td>
<td>13.67</td>
<td>20.50</td>
<td>6.00</td>
<td>6.833</td>
<td>54.75</td>
</tr>
<tr>
<td>A.I</td>
<td>6.00</td>
<td>8.75</td>
<td>14.00</td>
<td>25.00</td>
<td>9.00</td>
<td>7</td>
<td>62.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>276.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>T.I</th>
<th>D.M</th>
<th>V.P</th>
<th>C.P</th>
<th>B.M</th>
<th>A.I</th>
<th>Normalizar</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.I</td>
<td>271.58</td>
<td>366.00</td>
<td>600.83</td>
<td>980.42</td>
<td>352.75</td>
<td>338.138</td>
<td>2571.58</td>
</tr>
<tr>
<td>D.M</td>
<td>249.04</td>
<td>336.92</td>
<td>551.83</td>
<td>905.42</td>
<td>327.00</td>
<td>309.36</td>
<td>2370.21</td>
</tr>
<tr>
<td>V.P</td>
<td>127.32</td>
<td>171.90</td>
<td>282.36</td>
<td>460.29</td>
<td>165.79</td>
<td>158.6527778</td>
<td>1207.67</td>
</tr>
<tr>
<td>C.P</td>
<td>77.31</td>
<td>104.28</td>
<td>171.19</td>
<td>280.65</td>
<td>101.29</td>
<td>96.1805556</td>
<td>734.72</td>
</tr>
<tr>
<td>B.M</td>
<td>243.72</td>
<td>325.82</td>
<td>537.17</td>
<td>880.92</td>
<td>320.53</td>
<td>305.1944444</td>
<td>2308.15</td>
</tr>
<tr>
<td>A.I</td>
<td>272.75</td>
<td>366.75</td>
<td>602.75</td>
<td>980.88</td>
<td>353.29</td>
<td>340.4027778</td>
<td>2576.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11768.75</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Para verificar que los valores obtenidos si correspondan a los valores de priorización, se toman los dos vectores obtenidos en la normalización y se restan, y se verifica que los valores obtenidos no tengan más de 2 cifras significativas para contar que el resultado del AHP es confiable.

Tabla 5: Valores de verificación del Eigenvector (elaboración propia).

<table>
<thead>
<tr>
<th>VERIFICACIÓN EIGENVECTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00010</td>
</tr>
<tr>
<td>-0,00628</td>
</tr>
<tr>
<td>-0,00084</td>
</tr>
<tr>
<td>-0,00251</td>
</tr>
<tr>
<td>0,00171</td>
</tr>
<tr>
<td>0,00782</td>
</tr>
</tbody>
</table>

Y al realizar el proceso de AHP para verificar la importancia relativa de cada actividad, se obtuvo lo siguiente:

Tabla 6: Resultado priorización actividades (Elaboración propia)

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporte interno</td>
<td>0,2185</td>
</tr>
<tr>
<td>Descargue de Material</td>
<td>0,2014</td>
</tr>
<tr>
<td>Verificación llegada del producto</td>
<td>0,1026</td>
</tr>
<tr>
<td>Cumplimiento proveedor</td>
<td>0,0624</td>
</tr>
<tr>
<td>Búsqueda de material</td>
<td>0,1961</td>
</tr>
<tr>
<td>Almacenamiento e inventario</td>
<td>0,2189</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Figura 11. Resultado del AHP de las actividades.

Los cálculos realizados por la metodología AHP para cada una de las actividades e indicadores los puede encontrar en el Anexo de Excel llamado: “AHP”

Como se puede apreciar en la gráfica anterior, las actividades con mayor importancia en el proceso del acero son el almacenamiento e inventario y el transporte interno.

3.1.4 KPI’S CRÍTICOS

Con respecto a los KPI’s la priorización también se basó en diferentes aspectos, en este caso fueron:

A. Diagrama de Ishikawa

Realizando un análisis del diagrama, se puede evidenciar que la mayor causa de
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Ineficiencia en las actividades es los tiempos que estas se toman para ser realizadas y otro factor muy presente es la falta de estandarización en los procesos. Es por esto que a estas razones, en especial al tiempo, se le otorgará mayor importancia dentro de aquellas actividades mencionado en la metodología del AHP.

Figura 12. Diagrama de Ishikawa (Elaboración propia).

B. Análisis del Estado del arte en la literatura

Con base en el estado del arte expuesto en la sección de marco teórico dentro de este documento, se encontraron las diferentes afirmaciones dentro de la eficiencia de los KPI’s:

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
• Hay una alta ineficiencia en aquellas mediciones que no son financieras, tal como lo decía (Ali et al., 2013), entre estas se encuentran la satisfacción del consumidor, la seguridad, la efectividad de planeación, entre otros. Y si se hace un enfoque hacia la rentabilidad se debe tener en cuenta la calidad, productividad, tiempo y costo.

• Las metodologías Lean según (Locatelli et al., 2013) debido a su ineficiencia, hacen frente a 4 factores: El costo, el tiempo, la calidad y el despilfarro, debido a que estos eran aquellos que más afectaban dentro de la construcción.

• La importancia de mediciones como el tiempo, el alcance y el costo durante la historia, con respecto al cumplimiento del alcance total del proyecto y la calidad del mismo.

• Se debe tomar en consideración que como dice Ault, (2013), que las medidas de producción y productividad se deben separar, y que se debe tener un valor base para poder realizarlas, y que aquellas que hay que tener con mayor consideración el costo y la programación y la variación dentro de estos a la hora de tomar decisiones.

C. Las respuestas de la encuesta relacionadas con los KPI’s

Para esta sección de la encuesta, se le solicitó a los encuestados que calificaran 8
KPI’s que según la literatura y el conocimiento de los expertos, se diagnosticaron como KPI’s de alta importancia en el proceso relacionado con el acero de refuerzo, calificando con un valor entre 1 y 10, siendo 1 poco importante y 10 muy importante, los KPI’s otorgados. A continuación podemos validar el valor de las respuestas obtenidas en esta encuesta:

![Diagrama de KPI's](image)

Figura 13. Valor promedio de los resultados obtenidos de la encuesta (Elaboración Propia)

Como se puede evidenciar, 3 KPI’s catalogados como los 3 más importantes fueron:

- Horas Hombre
- Tiempo ejecutado / Tiempo programado
- Tiempo entrega real / Tiempo entrega programado

Estos 3 valores, se ven muy reflejados a mediciones en tiempo y en cumplimiento y/o alcance, por lo tanto, con base en este numeral, la fuerza que tendrán estas 2 mediciones a la hora de realizar el AHP, será aún más elevado.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
D. Los KPI's visualizados en obra que se consideraron como relevantes.

Según las observaciones en obra y teniendo en cuenta los datos de entrada que se le piden a las personas encargadas del manejo de la aplicación móvil, se pueden sacar los siguientes indicadores que pueden ser relevantes para las personas encargadas de la toma de decisiones:

- Horas hombre por descarga de acero.
- Tiempo promedio de revisión del pedido / persona.
- Tiempo promedio de ubicación de un pedido / persona.
- kg descargados / min · persona.
- kg transportados (valor acumulado del día o semana).
- Pedidos completos / Pedidos totales.

De acuerdo a la información diligenciada anteriormente, estos fueron los valores de relevancia otorgados a cada KPI con respecto a cada actividad:

- **Transporte interno**

<table>
<thead>
<tr>
<th></th>
<th>COSTO</th>
<th>TIEMPO</th>
<th>CALIDAD</th>
<th>ALCANCE</th>
<th>RIESGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTO</td>
<td>1/1</td>
<td>1/3</td>
<td>2/1</td>
<td>2/1</td>
<td>3/1</td>
</tr>
<tr>
<td>TIEMPO</td>
<td>3/1</td>
<td>1/1</td>
<td>3/1</td>
<td>1/1</td>
<td>2/1</td>
</tr>
<tr>
<td>CALIDAD</td>
<td>1/2</td>
<td>1/3</td>
<td>1/1</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>ALCANCE</td>
<td>1/2</td>
<td>1/1</td>
<td>2/1</td>
<td>1/1</td>
<td>1/2</td>
</tr>
<tr>
<td>RIESGO</td>
<td>1/3</td>
<td>1/2</td>
<td>2/1</td>
<td>2/1</td>
<td>1/1</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
- **Descargue**

Tabla 8. Importancia relativa de los KPI's en el descargue (Elaboración propia).

<table>
<thead>
<tr>
<th></th>
<th>COSTO</th>
<th>TIEMPO</th>
<th>CALIDAD</th>
<th>ALCANCE</th>
<th>RIESGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTO</td>
<td>1/1</td>
<td>1/3</td>
<td>2/1</td>
<td>2/1</td>
<td>1/3</td>
</tr>
<tr>
<td>TIEMPO</td>
<td>3/1</td>
<td>1/1</td>
<td>2/1</td>
<td>3/1</td>
<td>2/1</td>
</tr>
<tr>
<td>CALIDAD</td>
<td>1/2</td>
<td>1/2</td>
<td>1/1</td>
<td>1/1</td>
<td>1/2</td>
</tr>
<tr>
<td>ALCANCE</td>
<td>1/2</td>
<td>1/3</td>
<td>1/1</td>
<td>1/1</td>
<td>1/2</td>
</tr>
<tr>
<td>RIESGO</td>
<td>1/1</td>
<td>1/2</td>
<td>2/1</td>
<td>2/1</td>
<td>1/1</td>
</tr>
</tbody>
</table>

- **Verificación de llegada del producto**

Tabla 9. Importancia relativa de los KPI's en la verificación de llegada del producto (Elaboración propia).

<table>
<thead>
<tr>
<th></th>
<th>COSTO</th>
<th>TIEMPO</th>
<th>CALIDAD</th>
<th>ALCANCE</th>
<th>RIESGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTO</td>
<td>1/1</td>
<td>1/3</td>
<td>1/2</td>
<td>2/1</td>
<td>2/1</td>
</tr>
<tr>
<td>TIEMPO</td>
<td>3/1</td>
<td>1/1</td>
<td>3/1</td>
<td>1/1</td>
<td>3/1</td>
</tr>
<tr>
<td>CALIDAD</td>
<td>2/1</td>
<td>1/3</td>
<td>1/1</td>
<td>3/1</td>
<td>2/1</td>
</tr>
<tr>
<td>ALCANCE</td>
<td>1/2</td>
<td>1/1</td>
<td>1/3</td>
<td>1/1</td>
<td>2/1</td>
</tr>
<tr>
<td>RIESGO</td>
<td>1/2</td>
<td>1/3</td>
<td>1/2</td>
<td>1/2</td>
<td>1/1</td>
</tr>
</tbody>
</table>

- **Proveedor**

Tabla 10. Importancia relativa de los KPI's en el proveedor (Elaboración propia).

<table>
<thead>
<tr>
<th></th>
<th>COSTO</th>
<th>TIEMPO</th>
<th>CALIDAD</th>
<th>ALCANCE</th>
<th>RIESGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTO</td>
<td>1/1</td>
<td>3/1</td>
<td>1/1</td>
<td>3/1</td>
<td>3/1</td>
</tr>
<tr>
<td>TIEMPO</td>
<td>1/3</td>
<td>1/1</td>
<td>1/3</td>
<td>1/1</td>
<td>3/1</td>
</tr>
<tr>
<td>CALIDAD</td>
<td>1/1</td>
<td>3/1</td>
<td>1/1</td>
<td>3/1</td>
<td>3/1</td>
</tr>
<tr>
<td>ALCANCE</td>
<td>1/3</td>
<td>1/1</td>
<td>1/3</td>
<td>1/1</td>
<td>2/1</td>
</tr>
<tr>
<td>RIESGO</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/2</td>
<td>1/1</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
- Búsqueda de material

Tabla 11. Importancia relativa de los KPI’s en la búsqueda de material (Elaboración propia).

<table>
<thead>
<tr>
<th></th>
<th>COSTO</th>
<th>TIEMPO</th>
<th>CALIDAD</th>
<th>ALCANCE</th>
<th>RIESGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTO</td>
<td>1/1</td>
<td>1/3</td>
<td>1/1</td>
<td>2/1</td>
<td>1/1</td>
</tr>
<tr>
<td>TIEMPO</td>
<td>3/1</td>
<td>1/1</td>
<td>3/1</td>
<td>2/1</td>
<td>1/1</td>
</tr>
<tr>
<td>CALIDAD</td>
<td>1/1</td>
<td>1/3</td>
<td>1/1</td>
<td>1/1</td>
<td>1/2</td>
</tr>
<tr>
<td>ALCANCE</td>
<td>1/2</td>
<td>1/2</td>
<td>1/1</td>
<td>1/1</td>
<td>2/1</td>
</tr>
<tr>
<td>RIESGO</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/2</td>
<td>1/1</td>
</tr>
</tbody>
</table>

- Almacenamiento e inventario

Tabla 12. Importancia relativa de los KPI’s en el almacenamiento e inventario (Elaboración propia).

<table>
<thead>
<tr>
<th></th>
<th>COSTO</th>
<th>TIEMPO</th>
<th>CALIDAD</th>
<th>ALCANCE</th>
<th>RIESGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTO</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>3/1</td>
<td>1/1</td>
</tr>
<tr>
<td>TIEMPO</td>
<td>1/1</td>
<td>1/1</td>
<td>2/1</td>
<td>1/1</td>
<td>2/1</td>
</tr>
<tr>
<td>CALIDAD</td>
<td>1/1</td>
<td>1/2</td>
<td>1/1</td>
<td>1/1</td>
<td>2/1</td>
</tr>
<tr>
<td>ALCANCE</td>
<td>1/3</td>
<td>1/2</td>
<td>1/1</td>
<td>1/1</td>
<td>2/1</td>
</tr>
<tr>
<td>RIESGO</td>
<td>1/1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/1</td>
</tr>
</tbody>
</table>

Para entender un poco estas gráficas tomaremos como base esta última que es la del almacenamiento e inventario.

Al situarnos en las casillas azules las cuales son complementarias la una con la otra entendemos lo siguiente:

La que se encuentra en la primera fila (donde el costo está en la fila y el alcance en la columna 4), la importancia del costo con respecto al alcance es 3 veces

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
mayor.

Por lo que su complemento (la casilla ubicada en la primera columna y cuarta fila), significa que el alcance es 3 veces menos importante que el costo.

Si nos situamos en las casillas subrayada de color rojo, entendemos de estas que el tiempo y el costo tienen la misma importancia relativa la una de la otra, y además de esto, que son complementarias la una con la otra.

Y por último en amarillo nos encontramos con la diagonal de la tabla, que esta siempre debe tener el valor de 1/1, debido a que la importancia relativa de la actividad con respecto a ella misma es igual.

Los valores obtenidos con cada una de las actividades, comparando la importancia interna de cada KPI, fue la siguiente

![Diagrama de pastel](image.png)

Figura 14. Importancia de KPI's en el transporte interno (Elaboración propia)

El transporte interno al ser una actividad que se realiza en múltiples ocasiones en

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
el día y que puede limitar la instalación del acero, tiene sentido que el tiempo sea el factor más importante. Por otra parte, al ser necesario usar la torre grúa para esta actividad y como ésta es tan costosa, es entendible que el costo haya quedado como el segundo factor más importante.

Figura 15. Importancia de KPI's en el descargue (Elaboración propia)

Se debe notar que el riesgo es considerado fundamental en el descargue debido a que el proceso, al ser manual, aumenta la probabilidad de que el personal se lastime.
Es importante destacar el hecho de que en comunicación con el patiero y demás personas del personal operativo se logró establecer que la verificación de los pedidos que llegaban de acero por parte del proveedor les implica un tiempo importante de verificación. Por lo tanto, lo que se aprecia en el resultado está acorde a lo que ocurre en obra.
Ocurre similarmente a lo mencionado para la verificación de la llegada del producto. En este caso, en lugar de sólo mirar que las cantidades estén bien, se

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
debe verificar la calidad del producto.

Al tener espacio limitado para el almacenamiento del acero o no tener suficientes andamios para hacer una buena clasificación de diámetros y longitudes, es normal que el material quede dispuesto de cualquier forma. Por lo tanto el tiempo de búsqueda aumenta de forma considerable.

![Diagrama de alimentación de inventario](image)

Figura 19. Importancia de KPI's en el almacenamiento del inventario (Elaboración propia).

El almacenamiento tiene asociado múltiples costos que pueden no ser muy evidentes. Por ejemplo, si el almacenamiento se hace en un lugar alejado esto implica mayores tiempos de desplazamiento de los trabajadores. A pesar de no haber quedado con tanta importancia como el costo y el tiempo, es importante mencionar que la calidad del almacenamiento no se puede dejar a un lado, debido a que es necesario que el acero no esté sometido a condiciones de intemperie.
para evitar un exceso de corrosión.

Con respecto a los valores obtenidos en cada una de las gráficas, podemos analizar que las 2 causas o KPI’s más representativos dentro de cada una de estas son el tiempo y el costo, lo cual es coherente con la información tomada, en especial con aspectos medidos por la empresa, el costo que tienen los tiempos perdidos en mano de obra y los retrasos además que genera éste debido a su ineficiencia. A continuación, con base a las actividades, se ponderó la importancia de cada KPI dentro de las actividades con la importancia de las mismas, haciendo una multiplicación matriz por vector de la siguiente manera:

Tabla 13. Ponderación de KPI dentro de las actividades con su importancia

(Elaboración propia).

<table>
<thead>
<tr>
<th></th>
<th>T.I</th>
<th>D.M</th>
<th>V.P</th>
<th>C.P</th>
<th>B.M</th>
<th>A.I</th>
<th>COSTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIEMPO</td>
<td>0.33512</td>
<td>0.38287</td>
<td>0.35778</td>
<td>0.14018</td>
<td>0.34146</td>
<td>0.25468</td>
<td>0.20140</td>
</tr>
<tr>
<td>CALIDAD</td>
<td>0.08907</td>
<td>0.12475</td>
<td>0.23927</td>
<td>0.32797</td>
<td>0.13041</td>
<td>0.19316</td>
<td>0.10262</td>
</tr>
<tr>
<td>ALCANCE</td>
<td>0.16106</td>
<td>0.11187</td>
<td>0.15442</td>
<td>0.12475</td>
<td>0.17409</td>
<td>0.16403</td>
<td>0.06243</td>
</tr>
<tr>
<td>RIESGO</td>
<td>0.16726</td>
<td>0.21086</td>
<td>0.08792</td>
<td>0.07913</td>
<td>0.17388</td>
<td>0.13325</td>
<td>0.19613</td>
</tr>
</tbody>
</table>

Tabla tomada de: Elaboración propia

<table>
<thead>
<tr>
<th></th>
<th>R.C</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTO</td>
<td>0.21892</td>
</tr>
<tr>
<td>TIEMPO</td>
<td>0.21851</td>
</tr>
<tr>
<td>CALIDAD</td>
<td>0.20140</td>
</tr>
<tr>
<td>ALCANCE</td>
<td>0.10262</td>
</tr>
<tr>
<td>RIESGO</td>
<td>0.06243</td>
</tr>
</tbody>
</table>

Con la cual se obtuvo el siguiente resultado:

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Tabla 14. Resultado AHP. (Elaboración propia)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTO</td>
<td>0.216335</td>
</tr>
<tr>
<td>TIEMPO</td>
<td>0.318526</td>
</tr>
<tr>
<td>CALIDAD</td>
<td>0.157478</td>
</tr>
<tr>
<td>ALCANCE</td>
<td>0.151411</td>
</tr>
<tr>
<td>RIESGO</td>
<td>0.156250</td>
</tr>
</tbody>
</table>

Figura 20. Resultado final AHP (Elaboración propia).

Al tomar la importancia relativa de cada una de las actividades ponderado con la de los KPI's dentro de ésta misma, lo que se puede concluir de este resultado es que, el tiempo resultó ser el KPI de mayor relevancia. Este resultado final es

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
consistente con lo que se obtuvo anteriormente, donde en todas las actividades el tiempo resultó siendo el primero o el segundo factor más relevante.

3.2 SISTEMA DE MEDICIÓN PROPUESTO

La metodología de medición se divide en 3 factores:

- El método de desarrollo del sistema de medición.
- La herramienta para medir los datos.
- La metodología de análisis de los datos.

3.2.1 MÉTODO DE DESARROLLO DEL SISTEMA DE MEDICIÓN

El método de desarrollo del sistema de medición, como se mencionó en la metodología a utilizar, se tomaron como base las fases mencionadas del documento “Performance measurement system design: developing and testing a process-based approach” de (Neely et al., 2000) y se procedieron de la siguiente manera:

Fases 1, 2 y 3: Para este caso, estas fases fueron realizadas previamente por la empresa, y es por esto que se tomó como enfoque el proceso relacionado con el acero de refuerzo.

Fase 4: Se realizaron reuniones con aquellos encargados del área verificando las necesidades que se tenían dentro del proceso, adicional a esto, se realizaron visitas a obra para verificar el funcionamiento interno del proceso para ver qué

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
áreas y actividades debían ser tomadas en consideración para las mediciones.

Fase 5: Se generó una plantilla base de datos en la aplicación, la cual será explicada más adelante en este documento.

Fase 6: Las mediciones tomadas como las más importantes se verificó que pudieran ser medidas con base en las medidas realizadas anteriormente por la compañía, y también, aquellas que no, en la literatura se confirma que pueden ser realizadas.

Fase 7 y Fase 8: Se verificó a la hora de hacer el demo y las mediciones en obra que quien las fuera a realizar entendiera el proceso y se tuviera una buena experiencia usuario - app - método de medición.

Fase 9: Consideraciones ambientales (Inter-funcionales): Verificar que las mediciones sean apropiadas para el ambiente actual de la organización, y a partir de este, se filtran y se genera una lista de mediciones apropiadas.

3.2.2 HERRAMIENTA DE MEDICIÓN Y ANÁLISIS DE DATOS

Uno de los principales problemas que se pudo detectar en las mediciones que hacía Conconcreto S.A era el hecho de que la información recopilada no llegaba a las personas encargadas de la toma de decisiones de forma oportuna, por lo que las acciones correctivas no se efectuaban de inmediato.
Con este panorama en mente y teniendo en cuenta la experiencia que se tuvo en la práctica universitaria en otra empresa del sector de la construcción, donde ocurría algo similar, se decide que no se puede seguir haciendo lo mismo, no tiene sentido seguir poniendo a alguien, independiente de su cargo a medir datos que pueden ser recopilados por las mismas personas que realizan la actividad, quienes tienen completo dominio de su trabajo por lo que la información que proporcionan puede ser más cercana a la realidad.

Debido a esto, como herramienta de medición de KPI’s se propone una aplicación móvil que pueda ser manejada por maestros de obra y otras personas importantes dentro de la obra, como el almacenista y el patiero, quienes se encargarían de ir midiendo ciertas actividades. Cabe aclarar que en este trabajo se proponen las relacionadas con el acero de refuerzo pero se puede implementar en las actividades que la empresa lo considere pertinente. El papel que desempeñarían las personas anteriormente mencionadas, se limitaría a ingresar ciertas variables que están dentro de su área de conocimiento, es la aplicación la encargada de realizar las operaciones matemáticas necesarias para convertir esos datos en indicadores que puedan ser relevantes para los ingenieros residentes, directores de obra y demás personas encargadas de la compañía, quienes recibirían esta información en tiempo real, por lo que se espera genere mayor confiabilidad a la hora de tomar mejores decisiones a la hora de aumentar la productividad, y en un
futuro, poder realizar presupuestos y estimaciones con base en el histórico de valores obtenidos.

La interfaz de la aplicación se muestra a continuación:

![Interfaz de la aplicación propuesta](image)

Figura 21. Interfaz de la aplicación propuesta (Elaboración propia).

Tras el ingreso con usuario y contraseña, se llega a la pantalla de la derecha de la imagen anterior. Para hacer las mediciones, se debe tocar el ícono del reloj, el cual desplegará las opciones:

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Figura 22. Medición de actividades en la app (Elaboración propia).
Al seleccionar esas actividades, se muestra:

Figura 23. Datos de entrada para las actividades de descargue y transporte interno

(Elaboración propia).

Nótese que toda la información que se pide como variables de entrada no tienen la mayor complejidad pero mediante matemática simple se puede llegar a indicadores que pueden resultar útiles para la toma de decisiones, como Horas Hombre por actividad. También se debe notar que una vez se finaliza el ingreso de datos se debe tocar el botón de “Ingresar medición” para que la app entienda que ya puede guardar dicha información, para ir acumulando o ir sacando promedios, en los casos que aplique.

Para verificar el avance de una actividad y de un indicador en particular, basta con

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Al escoger la actividad de transporte interno, se muestra el indicador macro del proceso, que en este caso es el tiempo total desde el recibimiento de una orden hasta que se hace el envío. Note que en términos generales, en la semana que se estaba cuando se hizo la medición, el tiempo total es mayor respecto a la semana anterior y el 9 y el 13 de octubre se tardó más que el tiempo promedio de la actividad.

Por lo tanto se debe analizar más a fondo para ver donde está la improductividad. Para ello, tomando sobre la imagen, se hace zoom sobre los demás indicadores importantes para la actividad, así:

![Gráficos de KPI's secundarios del transporte interno](image)

Figura 25. KPI'S secundarios del transporte interno (Elaboración propia).

Se puede apreciar que en el tiempo esperando la grúa en la semana actual de medición se tuvo que esperar en mayor medida para efectuar el transporte lo que llevó a que el tiempo total fuera mayor en esta semana. Se debe analizar si se debe priorizar el uso de la torre grúa para las actividades de acero.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Se puede ver que la forma en la que se muestran los resultados es gráfica, de fácil entendimiento y permite ver rápidamente los días en los que una actividad en específico ha sido más o menos productiva.

Considerando el hecho de que Conconcreto está intentando implementar para su producción el sistema UPD (Unidad productiva diaria), esto permitiría que se tuviera conocimiento de la cantidad en kg de acero que se debe mover diariamente, por lo que la actividad “Transporte Interno” y el indicador “kg transportados” puede servir para ver en cualquier momento del día qué tan lejos o qué tan cerca se está de llegar a lo deseado. En caso tal de estar lejos se puede priorizar el uso de la torre grúa para el transporte de acero y garantizar que...
quienes lo están instalando no se retrasen en su actividad por falta de material.

Finalmente, se muestra la utilidad que tienen los últimos dos botones inferiores de la app en las imágenes a continuación:

![Figura 27. Uso del botón de advertencia y de perfil (Elaboración propia).](image)

Básicamente lo que se busca con el tercer botón (triángulo de advertencia) es guardar toda esa información para que se tenga en cuenta para futuros proyectos. Por ejemplo, si en una obra específica se lleva el reporte de la cantidad de problemas que se tienen con un equipo en particular, esto podría ser incluido al rendimiento.

Con el último botón se permite que se cambie la obra de trabajo, en los casos de

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Para realizar el análisis de la información, los datos tomados serán graficados dentro de la aplicación, mostrando el comparativo con los valores anteriores y un valor base, que inicialmente será definido por la opinión de expertos, y después de realizar suficientes medidas, se procederá a asignarle el valor de la media de la medición con base en el histórico de la misma.

Cada KPI principal o macro KPI a analizar, estará compuesto por unos KPI's auxiliares que serán los componentes de la fórmula para calcular el macro KPI, y con base en estos, se podrá verificar qué componente del macro KPI estará causando la mayor improductividad dentro del KPI, esto se dará de la siguiente manera:

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
3.2.3 DISEÑO DE FORMA DE MEDICIÓN:

Estudio de tiempos y movimientos

 Debido a que el KPI definido como el más importante fue el tiempo se tomó como metodología para realizar la medición se tomó el estudio de tiempos y movimientos. Para entender esta metodología, se tomó como base el libro “Estudio de tiempos y movimientos para la manufactura ágil” de Meyers, F, (2000) donde resume el método en el estudio de macro-movimientos o vista panorámica y el estudio de micro-movimientos. El primero corresponde a todos aquellos aspectos generales del área en sí, en el caso de la construcción al igual que en el de la manufactura se tienen las operaciones internas, el transporte, las demoras,

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
las inspecciones, y todo aquello relacionado con todas estas funciones. En esta se hace un análisis general de la actividad en sí, donde se pueden encontrar aquellos aspectos que pueden ser mejorados en cuestión de costos y tiempos solo a simple vista.

Para lograr esto se utilizan herramientas como el diagrama de flujo del proceso y las hojas de operaciones, como se realizó al inicio de este documento.

Volviendo a (F. E. Meyers, 1999), el estudio de micro-movimientos, permite desglosar el trabajo en segmentos más pequeños de trabajo, en aspectos como, recibir, tomar, apilar, colocar, entre otros, los cuales se miden en valores más pequeños. En la manufactura debido a que son actividades más precisas y poco variables, estas mediciones se realizan en milésimas de minuto, pero en construcción esto no es posible debido a la variabilidad del proceso, por lo que proponemos tener las mediciones en minutos/segundos como precisión. Estas medidas permiten hacernos las siguientes preguntas según (F. E. Meyers, 1999):

- ¿Podemos eliminar este elemento? Si no,
- ¿Podemos combinar este elemento con algún otro para reducir su costo?
- ¿Se puede reorganizar este elemento para hacerlo más fácil? En caso de no ser posible,
- ¿Es posible volver más simple el trabajo acercando las cosas, reduciendo la complejidad o proporcionando asistencias mecánicas?

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Por parte de los autores, se recomienda para hacer el análisis de los movimientos tener en cuenta layout de la obra, donde se podrá analizar los movimientos realizados por el operario dentro de esta y también, se podrá realizar el análisis del lugar de trabajo del mismo, para verificar cómo se puede mejorar el proceso mismo.

Para el estudio de los tiempos como para cualquier medición, se debe tener un estándar, que en este caso inicialmente se definirá por la opinión de un experto, el cual sería el tiempo requerido para elaborar una “salida” o producto el cual en este documento se definió el tiempo de requerimiento de una orden, y para poder tenerlo presente se deben tener en cuenta los siguientes 3 factores a la hora de realizar la medición:

- El operador esté calificado y bien capacitado
- Debe estar trabajando a un ritmo normal
- Debe realizar una tarea específica, realizando la actividad con un método prescrito, y teniendo en cuenta requisitos como seguridad, calidad, entre otros.

Con esto se podría verificar la cantidad de “productos” obtenidos por cierta cantidad de tiempo. Con estas mediciones también podemos tener información como cuántas máquinas u operadores son necesarios para realizar una función.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
A la hora de realizar la medición es necesario hacerse las siguientes preguntas según Escalante A, Y González J (n.d), en su libro “Ingeniería Industrial Métodos y tiempos con manufactura”, se debe tener en cuenta

- Análisis de la información registrada, verificando si el método cómo se hace es correcto o se puede mejorar, dividiendo los elementos dentro de la operación, determinando el tamaño de la muestra.
- Medir el tiempo de la actividad (con la herramienta que en este caso sería la aplicación y un cronómetro)
- Calificar al operario, lo cual se realizaría en la aplicación.
- Verificar que observaciones se tienen, en caso de que el operario tenga baja calificación, verificar si el operario estaba fatigado, tenía necesidades personales, el proceso mismo u algún otro factor
- Verificar las mediciones con el tiempo estándar, lo cual sería realizado dentro de la App misma en este caso.

Y con base en esto, se realiza la medición del indicador tiempo, el cual fue determinado en este caso. En el caso que el indicador obtenido sea diferente, la empresa debe gestionar la forma de medir del mismo, pero los pasos anteriores a este diseño (La herramienta y la formación del sistema), aplican a casi todos los KPI’s, especialmente si son cualitativos.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
3.3 VERIFICACIÓN DEL SISTEMA DE MEDICIÓN

3.3.1 TAMAÑO DE LA MUESTRA

Como se mencionó en la metodología, la cantidad óptima de medidas depende de la actividad, KPI y n el caso particular del transporte interno, se definió con el patiero y con las visitas en obra que aproximadamente se realizan 20 solicitudes de acero a la semana y con la fórmula propuesta anteriormente de (Herrera Castellanos, n.d.):

\[
N = \frac{N \times Z^2 \times p \times q}{d^2 \times (N - 1) + Z^2 \times p \times q}
\]

Y los valores de cada uno de los parámetros fueron los siguientes:

N= 20
Z= Para una seguridad del del 90%, se toma el valor de Z de 1.645
p= 0,7 definido por las mediciones anteriores en la Constructora Conconcreto S.A
q= 0,3 con base en q
d= 0,1 precisión del 10%

Con base en esto, se puede encontrar que el valor de n es y por esto se realizaron n mediciones cada semana es de 16.18 mediciones, aproximándolo al valor de 17 mediciones, las cuales fueron realizadas de la siguiente manera.

3.3.2 PROCESO EN OBRA

Una vez definidas las actividades a medir y las variables a tener en cuenta en las
mediciones, se procedió a hacer trabajo de campo el cual consistió en la visita de las obras Mantía y Zanetti, las cuales son proyectos de vivienda, con apartamentos desde 64 m2 hasta 77 m2 ubicado en el sector Chimeneas del municipio de Itagüí, Antioquia.

Debido al enfoque que se quería para hacer las mediciones a través de una aplicación móvil se consideró que la mejor opción estaba en involucrar a aquellas personas que finalmente serán las encargadas de la toma de datos. Por lo tanto, se siguió el siguiente proceso:

- Hablar con las personas involucradas en la actividad que se estaba analizando e informándoles la finalidad del estudio, siendo claro en el hecho de que simplemente se iban a hacer observaciones y que no se estaba ejerciendo una tarea de control sobre ellos.
- Se hizo una observación del proceso como un todo y se empezaron a hacer anotaciones sobre posibles indicadores.
- Se le pide a la persona líder de la actividad que explique el proceso que sigue y se le acompaña.
- Una vez entendidos los procesos se pasa a una etapa netamente de observación, buscando que la gente tenga una actitud tranquila durante el desarrollo de sus actividades.
- Se analiza al detalle la actividad y se divide en micro movimientos.
- Se sacan unos primeros indicadores y se discute con la persona líder de la
actividad si es viable que se brinden los datos necesarios para el cálculo de estos.

- Al validar que es posible realizar las mediciones, se le enseña a la persona que se destinará para este fin cuáles son los datos importantes.

- Se deja a la persona encargada empezar a tomar los datos, supervisando que lo esté haciendo de forma correcta.

- Cuando se tiene claridad que la medición se hace correctamente, se le deja que siga haciéndolo.

Se debe mencionar que la capacitación que necesita la persona que tomará los datos es mínima debido a que lo que se le pide como variables de entrada se relaciona directamente con lo que él hace en su día a día por lo tanto es información que maneja a plenitud.

Para la actividad del transporte interno, se le pidió que llenara la siguiente tabla:

Tabla 16. Mediciones ejecutadas por el ayudante del patiero.
<table>
<thead>
<tr>
<th>Fecha</th>
<th>Nº Orden</th>
<th>Tiempo Preparación Orden (minutos)</th>
<th>Tiempo esperando Grúa (Minutos)</th>
<th>Kg totales Orden (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lunes, 02 de octubre de 2017</td>
<td>1</td>
<td>13</td>
<td>12</td>
<td>200</td>
</tr>
<tr>
<td>lunes, 02 de octubre de 2017</td>
<td>2</td>
<td>15</td>
<td>20</td>
<td>302.1</td>
</tr>
<tr>
<td>martes, 03 de octubre de 2017</td>
<td>1</td>
<td>14</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>martes, 03 de octubre de 2017</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>martes, 03 de octubre de 2017</td>
<td>3</td>
<td>20</td>
<td>10</td>
<td>223</td>
</tr>
<tr>
<td>martes, 03 de octubre de 2017</td>
<td>4</td>
<td>15</td>
<td>20</td>
<td>345.8</td>
</tr>
<tr>
<td>miércoles, 04 de octubre de 2017</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>miércoles, 04 de octubre de 2017</td>
<td>2</td>
<td>26</td>
<td>22</td>
<td>334.5</td>
</tr>
</tbody>
</table>
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
<table>
<thead>
<tr>
<th>Fecha</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
</tr>
</thead>
<tbody>
<tr>
<td>jueves, 12 de octubre de 2017</td>
<td>4</td>
<td>14</td>
<td>12</td>
<td>110</td>
</tr>
<tr>
<td>viernes, 13 de octubre de 2017</td>
<td>1</td>
<td>18</td>
<td>22</td>
<td>170</td>
</tr>
<tr>
<td>viernes, 13 de octubre de 2017</td>
<td>2</td>
<td>22</td>
<td>25</td>
<td>482</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
4. CONCLUSIONES Y RECOMENDACIONES

Si bien los tiempos productivos, contributivos y no contributivos son ampliamente usados por los directivos para la toma de decisiones, se pudo encontrar que la empresa no ha logrado que la mano de obra operativa domine estos conceptos, por lo que es posible afirmar que pueden no ser conscientes de los tiempos no contributivos o “muda” lo cual dificulta un cambio enfocado a la mejora continua de su productividad. Se sugiere que cualquier tipo de medición sea enseñada a la mano de obra operativa debido a que puede facilitar un cambio de actitud frente al tema. Por otra parte, el hecho de que las mediciones de estos indicadores sean realizadas en ocasiones por practicantes de ingeniería civil se cree que puede tener un efecto negativo sobre los datos, debido a que en general, estas personas tienen poca experiencia en obra por lo que es muy probable que omitan detalles importantes de las mediciones además del hecho de que se está utilizando un recurso que puede ser aprovechado de forma diferente. Además, estas mediciones no están siendo tomadas al inicio de los proyectos, como ocurre en el actual proyecto Zanetti.

Se pudo determinar con la metodología AHP que las actividades menos productivas que relacionan el acero de refuerzo son: el almacenamiento, el descargue y el transporte interno del mismo, donde los indicadores más
importantes a ser tenidos en cuenta son: el tiempo y el costo. Dentro del tiempo se destacan indicadores como horas hombre por descarga de material, tiempo promedio de descarga, kg descargados / min · hombre, etc.

El hecho de que sean los maestros de obra y demás trabajadores no administrativos los encargados de recopilar la información en la aplicación móvil implica para la Constructora Conconcreto S.A, un cambio de paradigma importante, en el cual se dejará de destinar recursos adicionales para la medición de productividad, se hará una mayor inclusión de los trabajadores que normalmente piensan que no son tenidos en cuenta y los datos recopilados serán un mejor reflejo de la realidad en obra por lo que se podría permitir una mejor toma de decisiones por parte de los directivos.

Se pudo verificar que la información que pide la aplicación móvil para poder mostrar indicadores en la actividad de transporte interno del acero de refuerzo son de fácil entendimiento para la mano de obra operativa, a quien se le explicó por no más de 10 minutos la finalidad de la medición y los datos que debían ingresar, por lo que se le ve potencial a la implementación de la aplicación en más actividades de las obras de Conconcreto.

Actualmente el principal problema de la Constructora Conconcreto S.A no es
precisamente la selección de los KPI’s a medir, debido a que los obtenidos con el AHP en general van acorde a las metodologías que utilizan actualmente; este radica en la falta de esfuerzos realizados para el cumplimiento de estas mediciones, la capacitación de las personas quienes deban realizar las mismas y los históricos obtenidos de estas para la toma de decisiones a corto y largo plazo.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Brioso Lescano, X. M. (2015). El análisis de la construcción sin pérdidas (Lean

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Construction y su relación con el project management: Propuesta de regulación en españa y su inclusión en la ley de la ordenación de la edificación, 383.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
ANEXOS

Anexo A. Documentos independientes en formato digital

Encuesta

- 1 documentos de Word con lo que se le preguntó al personal de Concreto S.A para identificar las actividades y los KPI'S más importantes.

Guía para realizar la medición de un indicador:

- 1 documento de Word en el que se resume la metodología empleada en el desarrollo de este proyecto de modo que la constructora tenga un documento base para las mediciones si decide emplear esta metodología.

Desarrollo de la aplicación móvil:

- 1 documento de Word en el que se hace un paso a paso y se detalla lo que se considera necesario para que un programador entienda de que se trata la aplicación móvil propuesta y la pueda desarrollar.

Realización de la metodología AHP

- 1 hoja de cálculo de Excel en la que se hizo la metodología AHP para cada una de las actividades y cada uno de los indicadores.