PROPIEDADES MECÁNICAS DE LAS PILAS HELICOIDALES EN SUELOS RESIDUALES, ESPECÍFICAMENTE EN LOS SUELOS RESIDUALES DE LA EIA SEDE PALMAS

MIGUEL ARANGO SARMIENTO

Trabajo de grado para optar al título de ingeniero civil

MANUEL BUILES BRAND

Ingeniero civil

MASTER EN INGENIERÍA

UNIVERSIDAD EIA

INGENIERÍA CIVIL

ENVIGADO

2016
AGRACEDIMIENTOS

Especiales agradecimientos a mi padre, Roberto Arango Mejía, que sin importar la falta de tiempo colaboró en todas las circunstancias con la elaboración de la presente investigación, a Daniel Palau Flórez, Jhonatan Betancur Manco y Edwin, ya que sin ellos no hubiera sido posible la realización de los ensayos de campo.
TABLA DE CONTENIDO

1. **INTRODUCCIÓN**

2. **PRELIMINARES**
 - 2.1 Formulación del problema
 - 2.2 Justificación
 - 2.3 Objetivos del proyecto
 - 2.3.1 Objetivo general
 - 2.3.2 Objetivos específicos
 - 2.4 Marco de referencia
 - 2.4.1 Antecedentes
 - 2.5 Marco teórico
 - 2.5.1 Pilas helicoidales
 - 2.5.2 Ventajas
 - 2.5.3 Suelos residuales en el Valle de Aburrá
 - 2.5.4 Capacidad de carga de una pila helicoidal
 - 2.5.5 Capacidad portante del suelo
 - 2.5.6 Pruebas de carga
3. **METODOLOGÍA**

13
14
14
15
16
16
16
17
17
19
19
23
25
26
26
27
30
3.1 Etapa 1: determinación del método de diseño .. 30
 3.1.1 Metodologías ... 30
 3.1.2 Muestras de suelo .. 35
3.2 Etapa 2: diseño del prototipo ... 36
 3.2.1 Capacidad de carga teórica .. 37
 3.2.2 Construcción del prototipo ... 37
3.3 Etapa 3: capacidad de soporte ... 38
 3.3.1 Pruebas de carga ... 38
3.4 Etapa 4: Comparación de resultados .. 40
 3.4.1 Validación de resultados ... 40
 3.4.2 Comparación de cargas ... 41
4 PILAS HELICOIDALES EN SUELOS RESIDUALES ... 41
 4.1 Metodología de diseño .. 41
 4.2 Parámetros del suelo y capacidad de carga ... 41
 4.2.1 Ensayo de humedad ... 41
 4.2.2 Ensayo de corte UU ... 42
 4.2.3 Límites de Atterberg ... 46
 4.2.4 Clasificación del suelo ... 48
 4.2.5 Capacidad portante .. 50
 4.3 Capacidad de carga y diseño del modelo ... 51
LISTA DE TABLAS

Tabla 1. Capacidad de carga Tomado de .. 20
Tabla 2. Número de viajes necesarios para instalar 50 pilas helicoidales ... 24
Tabla 3. Esfuerzo normal máximo y esfuerzo cortante máximo ... 44
Tabla 4. Ángulo de fricción y cohesión .. 45
Tabla 5. Límite líquido .. 47
Tabla 7. Resultados de carga máxima para ensayo de tracción .. 72
Tabla 8. Resultados de carga máxima para ensayo de compresión ... 72
Tabla 9. Variación de α .. 76
Tabla 10. Variación de Δ respecto a la profundidad .. 78
Tabla 11. Pila pre-excavada vs pila helicoidal teniendo en cuenta la capacidad por fuste (compresión) .. ¡Error! Marcador no definido.
Tabla 12. Pila pre-excavada vs pila helicoidal sin tener en cuenta la capacidad por fuste (compresión) .. ¡Error! Marcador no definido.
Tabla 13. Pila pre-excavada vs pila helicoidal al ser sometidas a tracción ¡Error! Marcador no definido.
Tabla 14. Factores de carga según Terzaghi ... ¡Error! Marcador no definido.
Tabla 15. Factor de carga N_σ según Vesic .. ¡Error! Marcador no definido.
Tabla 16. Variación de N_c según Vesic .. ¡Error! Marcador no definido.
LISTA DE FIGURAS

Figura 1. Patente de T.W.H. Moseley ... 18

Figura 2. Ejemplo pila helicoidal ... 20

Figura 3. Diagrama de esfuerzos por una carga de compresión 21

Figura 4. Bulbo de presiones ... 22

Figura 5. Estrés caudado por fuerzas horizontales .. 23

Figura 6. Equipo para la instalación de pilas helicoidales 25

Figura 7. Equipo para la prueba de compresión ... 28

Figura 8. Dispositivo para aplicación de cargas .. 29

Figura 9. Equipo para prueba de tensión ... 30

Figura 10. Individual bearing method y Cylindrical shear method 34

Figura 11. Muestra de suelo en tubo Shelby .. 36

Figura 12. Prueba de tracción ... 39

Figura 13. Prueba de compresión ... 39

Figura 14. Cono de influencia .. 40

Figura 15. Dispositivo para la realización de un ensayo de corte 43

Figura 16. Curva de esfuerzo cortante Vs Deformación unitaria 44

Figura 17. Esfuerzo cortante máximo vs esfuerzo normal máximo 45

Figura 18. Gráfico de plasticidad ... 49
Figura 19. Gráfico de plasticidad realizado en Excel

Figura 20. Vista en planta del eje de la pila (medidas en metros)

Figura 21. Vista en planta de la hélice y el eje (medidas en metros)

Figura 22. Diagrama de cuerpo libre y deformación esperada

Figura 23. Diagrama de momentos

Figura 24. Plano de detalle del prototipo

Figura 25. Prototipo entregado por CONSTRUCCIONES METALICAS BECERRA S.A.S.

Figura 26. Sitio de instalación de la pila

Figura 27. Esquema para aplicación de carga a tracción

Figura 28. Detalle para la instalación de deformímetro y celda de carga a tracción

Figura 29. Pila instalada

Figura 30. Montaje para ensayo a tracción

Figura 31. Esquema para montaje a compresión

Figura 32. Detalle para instalación de deformímetro y celda de carga a compresión

Figura 33. Montaje para ensayo a compresión

Figura 34. Acople para instalación

Figura 35. Acople para aplicación de carga

Figura 36. Esfuerzo vs deformación para ensayos de carga a tracción

Figura 37. Cuerva esfuerzo deformación para ensayo de carga a compresión
Figura 38. Módulo de recolección de datos... 70
LISTA DE ANEXOS

Anexo 1. Factores de carga según Terzagui ... 86

Anexo 2. Factor de carga Nσ según Vesic .. 87

Anexo 3. Factord de carga Nc según Vesic .. 87

Anexo 4. Hoja de calibración para celda de carga ... 88

Anexo 5. Hoja de calibración para deformímetro .. 89
RESUMEN

En la presente investigación se pretende determinar la validez de los diferentes métodos de cálculo de las pilas helicoidales en los suelos residuales de anfibolita presentes en la Universidad EIA sede Palmas. Lo anterior se determinó realizando un modelo a escala el cual fue sometido a diferentes ensayos de tracción y compresión los cuales permitieron determinar la capacidad última de carga de este tipo de pila en un suelo residual, logrando realizar una comparación frente a las pilas tradicionales pre-excavadas. Los resultados experimentales indicaron preliminarmente que las pilas helicoidales pueden alcanzar una capacidad a tracción y a compresión superior a la estimada, sin embargo, se juzga necesario realizar un mayor número de ensayos para obtener resultados más concluyentes.

Palabras clave: capacidad de carga, arrancamiento, pruebas de carga, pila helicoidal
ABSTRACT

The objective of the present research is to determine the validity of different design methods for helical piles in residual soils of amphibolite present in the University EIA located in Palmas, Envigado. This is accomplished by subjecting a scale model to tensile and compressive forces which will determine the ultimate load capacity of this type pile in a residual soil, obtaining a comparison against traditional pre-dug piles, however, it was determined that the number of test conducted were not sufficient to reach an adequate prediction of the behavior of these piles. It is interesting then, to continue with future investigations in this type of piles due to the good results it seems to have.

Key words: bearing capacity, avulsion, load testing, helical piles
1 Introducción

Debido a la constante demanda por reducir tiempos en la construcción, la comunidad científica ha dedicado gran esfuerzo a reducir los tiempos de construcción en cualquiera de sus fases.

Las pilas helicoidales, utilizadas hoy como formas confiables para la transmisión de cargas al suelo, tanto a tracción como a compresión, son comúnmente utilizadas en Estados Unidos y Europa en arenas y arcillas (Howard a Perko & Wiley, 2009), sin embargo, los métodos de cálculo aún no han sido corroborados para ser aplicados a suelos residuales, los cuales se encuentran presentes en algunas zonas del territorio Colombiano (Amva, 2006).

Para determinar si este tipo de pilas son aplicables a los suelos presentes en nuestro territorio, esta investigación pretende generar valores de carga última utilizando un prototipo a escala, este permitirá determinar qué tan certeros son los métodos de cálculo ya utilizados; de ser así, se deberá fomentar la continuación de las investigaciones, permitiendo la realización de distribuciones de probabilidad que hagan que el diseño de una pila helicoidal en suelos residuales tenga porcentajes de confiabilidad altos, llevando a la reducción de los factores de seguridad establecidos en la NSR 10 para cimentaciones profundas (Factor de seguridad igual a 3 (Ministerio de Ambiente Vivienda y Desarrollo Territorial, 2010)) y por ende una reducción importante en el costo de construcción. Además se reduciría de manera importante el tiempo de construcción, debido a la fácil y rápida instalación de una pila de este tipo (Howard a Perko & Wiley, 2009).
2 Preliminares

2.1 Formulación del problema

Los cimientos de una edificación son la forma por medio de la cual las estructuras transmiten las cargas que les son aplicadas al suelo y a su vez representa una de las mayores inversiones a la hora de construir una obra civil, por lo anterior, se debe ser riguroso a la hora de diseñar y construir las fundaciones y esto se puede lograr conociendo muy bien las propiedades del suelo y la pila.

Colombia cuenta con una gran variedad de suelos, lo que hace difícil utilizar solo un método para la construcción de las fundaciones y hace a Colombia objetivo atractivo para las empresas que brindan soluciones para dicho problema.

En el departamento de Antioquia se ha hecho muy común la construcción de pilas pre excavadas, este método consiste en realizar una excavación hasta el suelo ideal para apoyar la estructura y luego de esto vaciarla en concreto reforzado para así transmitir las cargas al suelo. Sin embargo, en la parte oriental del municipio de Envigado y el municipio de Rionegro, se tiene una alta concentración de suelos residuales blandos (Amva, 2006) lo cual hace que la construcción de las pilas pre excavadas se vuelva una actividad de alto riesgo y en algunos casos imposibles, dado que las propiedades del suelo hacen que la excavación que se realiza sea susceptible al colapso. Por lo anterior se ha optado por implementar métodos alternativos para la construcción de cimentaciones en este tipo de suelos como lo son los pilotes hincados y micro pilotes, los cuales se utilizan como apoyos puntuales para cimentaciones de edificaciones sobre terreno con poca capacidad portante y se hincan en el terreno con maquinaria pesada hasta alcanzar una capa con suficiente capacidad portante (Weckenmann, 2015).

María Piedad Arcila, interventora del proyecto City Médica que actualmente se desarrolla en el municipio de Rionegro por la constructora Arquitectura y Concreto, cuenta que los suelos en ese proyecto son de baja capacidad portante lo que aumenta el número de pilas para soportar la estructura y además hace difícil su construcción. Es por esto que se optó por utilizar pilotes hincados y micro pilotes para soportar las cargas de la estructura, esto
facilitó drásticamente la construcción de la fundación y además redujo de manera significativa el tiempo de ejecución de la obra (Arcila, 2015). Sin embargo los métodos anteriormente mencionado representan altos costos dado que un pilote cuesta aproximadamente $1.142.400 sin incluir el equipo necesario, el cual tiene un valor aproximado de $24.500.000, para esta obra, la construcción de la fundación tiene un valor de $1.283.878.760 incluyendo IVA lo cual se convierte esta actividad en una actividad realmente significativa en términos de costos (Arcila, 2015).

En la actualidad se puede contar con métodos alternativos de pilas como lo son las pilas helicoidales. Una pila helicoidal es: “Una base de acero fabricado que consta de una o más placas de soporte en forma de hélice fijadas a un eje central que se hace girar en el suelo para apoyar las estructuras” (Howard a Perko & Wiley, 2009). Este tipo de fundación es de fácil y rápida instalación ya que sólo necesita de una adaptación en una excavadora o un motor con la capacidad de generar un torque constante para poder rotar la pila y que ésta sea introducida en el suelo, este tipo de pilas es utilizado en Estados Unidos para apoyar estructuras livianas como muelles pequeños, faros y torres de energía (Howard a Perko & Wiley, 2009), además este tipo de pilas es muy utilizado en suelos blandos (Perforaciones Jocal, 2011).

Como se demostró anteriormente, los cimientos de una estructura generan grandes costos de construcción (Arcila, 2015), es por lo anterior que las pilas helicoidales tienen un gran potencial de reducción de costos debido al corto tiempo de instalación, lo cual reduce el tiempo de construcción de todo un proyecto y también reduce el tiempo de mano de obra necesario para la construcción de una fundación, es por lo anterior que en esta investigación se pretende determinar la viabilidad técnica de estas pilas en los suelos residuales de la EIA sede Las Palmas, con el fin de llegar a una primera aproximación del comportamiento de las mismas en este tipo de suelo.

2.2 Justificación

De acuerdo con lo mencionado anteriormente, cualquier reducción en el tiempo de construcción de la fundación de una obra puede representar un aumento en la rentabilidad del proyecto, es por esto que es de vital importancia encontrar la forma de
reducir tiempos y las pilas helicoidales representan una alternativa atractiva para lograr este objetivo. Además no sólo se puede reducir el tiempo de instalación sino también la cantidad de personal necesario para la ejecución de la obra lo que se traduce en menores costos de mano de obra. Es por lo anterior que esta investigación pretende determinar una viabilidad técnica de las pilas helicoidales en suelos residuales, para así en un futuro poder aumentar la rentabilidad de las obras civiles en suelos de poca capacidad portante (suelos blandos).

2.3 Objetivos del proyecto

2.3.1 Objetivo general

Determinar el comportamiento mecánico de las pilas helicoidales en los suelos residuales de anfibolita ubicados en la sede de Las Palmas de la Universidad EIA, utilizando un prototipo a escala de una pila helicoidal para la aplicación de cargas y una teoría de diseño ya establecida.

2.3.2 Objetivos específicos

- Determinar el método de diseño y variables a calcular que permitan la determinación de las dimensiones necesarias que debe tener el prototipo para soportar la carga de diseño.

- Diseñar un prototipo de pila helicoidal que permita la medición de la capacidad de carga de las pilas helicoidales en los suelos residuales de la Universidad EIA en la sede de Las Palmas.

- Medir la capacidad de soporte del prototipo de pila helicoidal en los suelos residuales de la Universidad EIA.

- Comparar el comportamiento de una pila helicoidal frente al de una pila tradicional (pre-excavada) en los suelos residuales utilizando resultados de estudios anteriormente realizados.
2.4 Marco de referencia

2.4.1 Antecedentes

Las pilas helicoidales fueron inventadas en 1836 por el ingeniero civil Alexander Mitchell, durante su vida de ingeniero siempre tuvo problemas con las fundaciones que realizaba en el mar ya que en estos lugares se encuentran suelos débiles como las arenas. Mitchell a los 52 años, encontró la solución al problema de las fundaciones en los suelos mencionados, esta surgió de la idea de enterrar en el suelo la hélice de un barco como si fuera un tornillo. En 1833, Mitchell patentó en Londres su invento bajo el nombre de “screw pile” (pila de tornillo)(Pack, 2000).

En la actualidad existen 160 patentes en los Estados Unidos para dispositivos y métodos relacionados con pilas helicoidales (Howard a Perko & Wiley, 2009). Las patentes varían desde el diseño geométrico hasta el método de instalación, generalmente se encuentran diferencias sustanciales en la geometría y distribución de las aspas de la pila.

Una de las primeras patentes fue realizada poco después de que el primer faro fue construido utilizando pilas helicoidales, esta patente fue realizada por T.W.H. Moseley, su patente describe secciones de tubos unidas que termina en la punta con una espiral (Howard a Perko & Wiley, 2009) como se muestra en la Figura 1. Patente de T.W.H. Moseley, Tomado de:
En la actualidad las pilas helicoidales ya se encuentran aceptadas por el Código Internacional De Construcción desde el año 2009 (ICC, 2015); por otro lado, las pilas helicoidales son utilizadas en diferentes tipos de estructuras generalmente pequeñas, unas de las estructuras más comunes para su utilización son los muelles y faros, ya que las pilas presentan una gran facilidad de instalación en el mar y fácil transporte, varios ejemplos de faros construidos con pilas helicoidales son: Roanoke River (1867), Harbor Island Bar (1867), South west Point Royal Shoal (1867), Long Point Shoal (1867), Brant Island (1867), Hooper Strait(1867), Upper Cedar Point (1867), Lower Cedar Point (1867), Janes Island (1867), entre otros. (Howard a Perko & Wiley, 2009).

Sin embargo, Estados Unidos no es el único lugar en el que las pilas helicoidales están adquiriendo popularidad, en México la empresa GSC Cimentaciones también se ha interesado en esta novedosa forma de hacer una cimentación debido a su gran cantidad de aplicaciones (GBC Cimentaciones, 2015).
En Estados Unidos se encuentran alrededor de 50 empresas productoras de pilas helicoidales (Howard a Perko & Wiley, 2009) de las cuales cada una de ellas cuenta con un diseño diferente al igual que diferentes materiales, diámetros, entre otras características que pueden hacer variar las propiedades de cada pila. La empresa HUBBELL, ubicada en Canadá, México y el Reino Unido, es una de las empresas que desarrolla estas pilas (Hubbell, 2015), la capacidad de carga a la compresión de su producto varía entre 178 kN y 890 kN, dependiendo de las propiedades del suelo, por otro lado HUBBELL también ofrece adaptaciones para las pilas helicoidales, como apoyos, conexiones, extensiones, entre otras, que permiten dar otros usos a este tipo de cimentación como lo es la reparación de zapatas que han fallado (Hubbell, 2010).

2.5 Marco teórico

2.5.1 Pilas helicoidales

Las pilas helicoidales son usualmente utilizadas debido a su facilidad y rapidez de instalación, además también cuentan con características que las hacen llamativas como la baja vibración y ruido a la hora de instalarlas lo cual evita incomodidad para los habitantes de las construcciones vecinas (GBC Cimentaciones, 2015).

La resistencia a compresión es una de las propiedades principales que una pila debe destacar; las pilas helicoidales cuentan con una gran capacidad de carga tanto a compresión como a tracción, la cual las hace útiles en diferentes estructuras como torres de energía (Howard a Perko & Wiley, 2009), estas propiedades pueden variar dependiendo del material utilizado, dimensiones de las hélices, espaciamiento de las hélices y diámetro de la pila; sin embargo esto varía según el fabricante, HUBBELL INCORPORATED es una empresa que se ha dedicado a la implementación de pilas helicoidales, en la Tabla 1. Capacidad de carga Tomado de: (Hubbell, 2010) se pueden ver algunas de las referencias que maneja con su resistencia a compresión y tracción.
Por otro lado, las pilas helicoidales han sufrido cambios en su diseño, esto se debe a estudios realizados que han encontrado que no es necesario utilizar hélices a lo largo de toda la pila, ya que si se ponen cada determinada distancia estas desarrollan la misma resistencia (Howard a Perko & Wiley, 2009). En la Figura 2, Ejemplo pila helicoidal, Tomada de: se puede ver cómo se ven hoy las pilas helicoidales.

<table>
<thead>
<tr>
<th>Numero de serie</th>
<th>Torque para instalación ft-lbs (Nm)</th>
<th>Máxima tensión kip (kN)</th>
<th>Máxima compresión kip (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS125</td>
<td>4000 (4500)</td>
<td>60 (267)</td>
<td>40 (178)</td>
</tr>
<tr>
<td>SS5</td>
<td>5500 (7500)</td>
<td>70 (312)</td>
<td>55 (254)</td>
</tr>
<tr>
<td>SS150</td>
<td>7000 (9500)</td>
<td>70 (312)</td>
<td>70 (312)</td>
</tr>
<tr>
<td>SS175</td>
<td>11000 (14900)</td>
<td>100 (445)</td>
<td>110 (489)</td>
</tr>
<tr>
<td>SS200</td>
<td>16000 (21700)</td>
<td>150 (668)</td>
<td>150 (668)</td>
</tr>
<tr>
<td>SS225</td>
<td>23000 (31200)</td>
<td>200 (890)</td>
<td>200 (890)</td>
</tr>
</tbody>
</table>

Figura 2, Ejemplo pila helicoidal, Tomada de: (Magnum Piering, 2015)
Las hélices de una pila helicoidal son las encargadas de transmitir las cargas aplicadas por tracción y compresión al suelo, por lo que el ancho de estas afecta directamente la capacidad de soporte. En la Figura 3 Diagrama de esfuerzos por una carga de compresión, Tomada de: se puede ver cómo se distribuyen las fuerzas aplicadas en las hélices, además estas fuerzas también generan bulbos de presión, los cuales representan el espacio del suelo que siente las fuerzas aplicadas, esto quiere decir que una partícula que se encuentre dentro del bulbo sentirá un porcentaje de la fuerza aplicada mientras que una que este por fuera no va a sentir nada de la carga, como se puede ver en la Figura 4: Bulbo de presiones, Tomado de: cada hélice genera un bulbo de presión el cual es proporcional al área en contacto de la hélice con el suelo, entre menor es el área de contacto mayor es el esfuerzo sobre el suelo y la carga que soporta la pila (BAIRD, 2015) (H Perko & Rupiper, 2002).

Figura 3 Diagrama de esfuerzos por una carga de compresión, Tomada de: (Howard a Perko & Wiley, 2009)
Aunque las fuerzas axiales que someten las pilas a compresión o tracción son las más comunes en una estructura, también hay fuerzas horizontales las cuales hacen que las pilas tengan que estar preparadas para soportar momentos. Como las hélices de una pila helicoidal son diseñadas únicamente para soportar las fuerzas axiales que se le impone, las fuerzas que generan los momentos deben ser disipadas por el eje de la pila, en la Figura 5: Esfuerzo causado por fuerzas horizontales, Tomado de, se puede ver cómo se desarrollan las fuerzas en el eje, además se puede ver el diagrama de momento y cortante, el cual permite determinar cómo se deformará la pila ante estas cargas.
2.5.2 Ventajas

Aunque las ventajas más evidentes de las pilas helicoidales son su rápida instalación y facilidad de transporte, también son ambientalmente sostenibles, lo cual quiere decir que en su construcción se puede reducir el impacto ambiental respecto al que se genera al construir una pila por el método tradicional (excavada a mano y vaciada en concreto), esto se debe a que la instalación de una pila requiere de poca maquinaria y reduce la huella de carbono. En la Tabla 2, se puede ver el equipo necesario para trasportar los implementos para construir una pila helicoidal los cuales son menores que los necesarios para construir una pila tradicional, esto se debe a que para la construcción de una pila tradicional hay que contar con el transporte del concreto, refuerzo de acero y transporte del material que sale debido a la excavación.
Tabla 2. Número de viajes necesarios para instalar 50 pilas helicoidales. Tomado de: (Howard a Perko & Wiley, 2009)

<table>
<thead>
<tr>
<th>Tipo de fundación</th>
<th>Número de viajes</th>
<th>Descripción del viaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 pilas helicoidales</td>
<td>1</td>
<td>camión para transporte de maquinaria para instalación</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>camión para transporte de pilas helicoidales</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>camiones de concreto</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>bomba de concreto</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>camión para transporte de acero de refuerzo</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>maquinaria para perforación</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>grúas</td>
</tr>
<tr>
<td>50 pilotes pre-excavados</td>
<td>2</td>
<td>camión para transporte de pilotes</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>maquinaria para hincar los pilotes</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>maquinaria para hincar los pilotes</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Las pilas helicoidales son instaladas por medio de torsión la cual permite introducir la pila en el terreno, esto se logra mediante un motor capaz de producir un torque constante, en la Figura 6, se puede ver con mayor claridad el equipo del que se está hablando. El principal componente del equipo es el motor hidráulico, este es utilizado para aplicar torque en la pila helicoidal. Las pilas helicoidales deben ser instaladas con un torque muy grande y a una baja velocidad la cual permita al personal estar atento y tener gran capacidad de reacción ante algún imprevisto, se recomienda tener una velocidad no mayor a 30 rpm. Los motores utilizados para la instalación generan un torque aproximado de 6.000 a 100.000 N-m o más. Los motores utilizados deben tener la capacidad de rotar en sentido de las manecillas del reloj y en contra, además deben ser capaces de ajustar las revoluciones de giro (Howard a Perko & Wiley, 2009).
2.5.3 Suelos residuales en el Valle de Aburrá

La zona oriental del Valle de Aburrá cuenta con suelos residuales (Amva, 2006), estos se deriva de la meteorización y descomposición de la roca, la cual no ha sido transportada de su ubicación original (Suarez, 2007). La meteorización es la descomposición que sufren los minerales y las rocas al entrar en contacto con el ambiente (Blight & Leong, 2012), este tipo de suelos se encuentran en los trópicos (Suarez, 2007), y ya que la mayoría de empresas que desarrollan tecnología para la producción de pilas helicoidales no cuentan con estos tipos de suelos en su territorio, sus tecnologías no son aplicables para estas condiciones de suelo.

En el Valle de Aburrá se utilizan diferentes métodos para la construcción de pilas, uno de estos métodos es el método tradicional (excavación a mano y vaciado en concreto); las pilas helicoidales podrían ser otra alternativa, sin embargo, debido a la falta de información no se sabe a ciencia cierta cómo puede ser su comportamiento en este tipo de suelos.
2.5.4 Capacidad de carga de una pila helicoidal

Para el diseño de las pilas helicoidales se utilizan dos teorías reconocidas mundialmente: “Cylindrical shear method” e “Individual bearing method”. Estas teorías tratan de simular lo que pasa al aplicarle fuerza a una pila helicoidal en un tipo de suelo determinado.

En la sección 3.1.1 se explica cada una de estas teorías en detalle y se explica cómo es el cálculo de una pila por cada uno de los métodos.

2.5.5 Capacidad portante del suelo

La capacidad portante se refiere a la magnitud de carga por metro cuadrado que es capaz de soportar el suelo, a continuación se explican dos teorías aceptadas en la actualidad que sirven para determinar la capacidad de carga última del suelo.

2.5.5.1 Terzaghi

La presión de carga última del suelo se puede determinar utilizando la ecuación propuesta por Terzaghi (1943) para cimentaciones profundas.

\[
Q_{ult} = c \cdot N_c + q \cdot N_q
\]

Ecuación 1. Capacidad de carga del suelo según Terzaghi

c: cohesión
q: esfuerzo efectivo del suelo
N_c, N_q: Factores de carga

Los factores de carga N_c, N_q pueden ser calculados por medio de tablas que tienen estos valores para distintos ángulos de fricción (ver anexos).

2.5.5.2 Vesic (1967)

\[
Q_{ult} = c \cdot N_c + \sigma' \cdot N_\sigma
\]

Ecuación 2. Capacidad de carga del suelo según Vesic, Tomado de (Das, 2012):
c: cohesión

\(\sigma^\prime\): esfuerzo efectivo normal medio del terreno a nivel de la punta de la pila

Nc, \(N\sigma\): Factores de carga

\[
N\sigma = f(I_{rr})
\]

\[
I_{rr} = \frac{I_r}{1 + I_r \Delta}
\]

\[
I_r = \frac{E_s}{2(1 + \mu)(c + q^\prime \tan \phi)}
\]

Es: módulo de elasticidad del suelo

\(\mu\): relación de Poisson del suelo

\(\Delta\): deformación unitaria promedio en la zona plástica de la punta del pilote

Los factores de carga Nc, \(N\sigma\) pueden ser calculados por medio de tablas que tienen estos valores para distintos ángulos de fricción (Das, 2012) (ver anexos).

2.5.6 Pruebas de carga

Para determinar si los cálculos realizados son correctos se realizan ensayos de carga tanto a compresión como a tracción los cuales se detallan a continuación.

2.5.6.1 Normatividad

Las normas que se deben cumplir para la realización de los ensayos son las ASTM, estas normas tratan de regular el estudio de materiales para así garantizar su calidad (ASTM, 2014)
Las normas que rigen los ensayos que se realizan en pilas helicoidales son la ASTM D1143-07 y la ASTM D3689, las cuales se encargan de regular los métodos de prueba estándar para fundaciones bajo carga axial.

2.5.6.2 Compresión

La prueba de carga a compresión de las pilas helicoidales normalmente se lleva a cabo según la norma ASTM D1143-07. Consiste en construir un marco de carga sobre la pila de prueba como se puede ver en la Figura 7, luego de construir el marco se procede a aplicar fuerzas axiales por medio de un gato hidráulico, este debe tener la capacidad de medir la fuerza aplicada a la pila. Se debe contar con un elemento (generalmente un deformímetro) que permita medir el asentamiento de la pila para así determinar el momento en que la pila ha superado la capacidad última del suelo y saber la capacidad real de soporte de la pila, en la Figura 8, se puede ver el equipo implementado para la aplicación de la carga (Pack, 2000).

![Figura 7. Equipo para la prueba de compresión, Tomada de: (Howard a Perko & Wiley, 2009)](image)
2.5.6.3 Tracción

Las pruebas de tracción o anclaje, son necesarias cuando la estructura a cimentar exige este comportamiento, los ejemplos más claros de estas estructuras son anclajes para taludes, anclajes para muros de contención, anclajes de cables, entre otros. Las pruebas a tensión en las pilas helicoidales se pueden dividir en dos categorías: pruebas de carga y pruebas de rendimiento. Las pruebas de carga se utilizan para dar garantía de calidad en la construcción de los sistemas de retracción de tierra. El número de pruebas que se realiza depende del constructor, diseños, tipo de construcción, condiciones del subsuelo y si el sistema es temporal o permanente. Estos ensayos se hacen bajo la norma ASTM D3689 (Howard a Perko & Wiley, 2009).

Las pruebas de rendimiento son más rigurosas y generalmente se utilizan para verificar el rendimiento de anclaje contra la hipótesis de diseño, generalmente no se aplican en todos los casos ya que pueden ser costosas lo que hace más económico sobredimensionar la cimentación que realizar las pruebas. Esta decisión varía según la importancia de la estructura, diseñador, y la normatividad que rige la construcción. Estas pruebas consisten en aplicar ya sea 150 0 200 por ciento de la carga de diseño de la pila en incrementos de 10 a 25 (Howard a Perko & Wiley, 2009).
En la Figura 9, se puede apreciar el montaje necesario para realizar las pruebas anteriormente mencionadas, además es necesario contar con un gato hidráulico con las mismas características del utilizado en las pruebas a compresión y de un deformímetro.

![Figura 9, Equipo para prueba de tensión, Tomada de: (Howard a Perko & Wiley, 2009)](image)

3 Metodología

3.1 Etapa 1: determinación del método de diseño

3.1.1 Metodologías

Para el cálculo de pilas helicoidales se utilizan dos métodos: “Individual bearing method” y el “Cylindrical shear method”, ambos métodos permiten el cálculo de la capacidad de soporte de las pilas helicoidales según el tipo de suelo en el que se encuentre. A continuación se expone con mayor detalle cada uno de los métodos.

Es de resaltar que los dos métodos a presentar son totalmente válidos por lo tanto las dimensiones ideales son por medio las cuales los dos métodos convergen (Howard a Perko & Wiley, 2009).
3.1.1.1 Individual bearing method (método de soporte individual)

El Individual bearing method, parte del supuesto de que cada uno de los platos que componen la pila helicoidal funciona de manera individual, esto hace que la capacidad de soporte de la pila sea directamente proporcional al número de platos que ésta tiene (Engineered Foundation solutions, 2010). Este método también tiene en consideración el aporte que genera la fricción del suelo con el eje de la pila (Foundation Supportworks, 2014).

Para que las hélices se puedan considerar independientes la separación entre estas debe ser de 2 a 3 veces el diámetro medio de las hélices (Pack, 2000).

En la Figura 10 se puede ver en mayor detalle lo anteriormente descrito.

Para determinar la capacidad de carga de la pila teniendo en cuenta el aporte de los platos y el eje se utiliza la ecuación que se presenta a continuación:

\[
Pu = \sum_{n} q_{ult} * A_n + \alpha * H * \pi * d
\]

Ecuación 3. Capacidad última por el Individual Shear Method. Tomado de: (Engineered Foundation solutions, 2010)

Donde

\(n \) es el número de platos que tiene la pila,

\(q_{ult} \) es la capacidad última del suelo,

\(A_n \) es el área del plato,

\(\alpha \) es la adhesión entre el suelo y el eje,

\(H \) es la longitud de la pila por encima del plato superior, y

\(d \) es el diámetro de un círculo circunscrito alrededor del eje.
La capacidad última del suelo \((q_{ult})\) se puede determinar utilizando diferentes métodos como Terzaghi y Vesic los cuales se explicaron anteriormente en el título 2.5.5.

3.1.1.2 Cylindrical shear method (método de corte cilíndrico)

Este método considera que todas los platos de la pila trabajan en grupo, para esto se supone que se moviliza suelo entre los platos al momento de instalar la pila y se produce una fricción entre el suelo que queda entre los platos y el terreno natural (Engineered Foundation solutions, 2010).

En la Figura 10 se puede ver en mayor detalle lo anteriormente descrito.

Para el cálculo de la capacidad de carga por medio de este método es necesario aplicar la siguiente ecuación:

\[
Pu = q_{ult} * A_1 + \tau * (n - 1)_s * \pi * D_{avg} + \alpha * H * \pi * d
\]

Donde

- \(A_1\) es el área del plato inferior,
- \(\tau\) es la resistencia al corte del suelo,
- \(D_{avg}\) es el diámetro medio de la hélice,
- \(H\) es la longitud del eje por encima de la última hélice,
- \(d\) es el diámetro del eje de la pila,
- \(q_{ult}\) es la capacidad última del suelo, y
- \((n - 1)_s\) es la longitud del suelo entre las hélices.
3.1.1.3 Adherencia al eje

La adhesión al eje no siempre es tenido en cuenta para el cálculo de la capacidad de carga de una pila, sin embargo, se ha demostrado que en pilas con ejes muy largos la capacidad de la pila se aumenta debido a la fricción generada entre el suelo y el eje de la pila (Lambe, 2004).

Para el cálculo de la adhesión al eje basta con aplicar la siguiente ecuación:

$$\alpha = \frac{2}{3} * \tau$$

Ecuación 5. Adhesión del suelo y el eje. Tomado de: Howard a Perko & Wiley, 2009

Donde

$\frac{2}{3}$ es la reducción de la fricción según el material en este caso es acero galvanizado pero para ejes en lechada se puede utilizar un factor de 1, y

τ es la resistencia al corte del suelo.

Para el cálculo de la resistencia al corte del suelo es necesario conocer el ángulo de fricción del suelo y la cohesión, luego de conocer estos dos parámetros basta con aplicar la siguiente ecuación (Lambe, 2004):

$$\tau = c + \sigma` * \tan(\phi)$$

Donde

c es la cohesión del suelo,

ϕ es el ángulo de fricción del suelo, y

$\sigma`$ es el esfuerzo efectivo.
El esfuerzo efectivo se puede determinar calculando la diferencia que hay entre el esfuerzo total del suelo y el esfuerzo que genera el agua a una profundidad determinada.

Figura 10. Individual bearing method y Cylindrical shear method. Tomado de: (Howard a Perko & Wiley, 2009)

3.1.1.4 Software

Gracias al desarrollo que se vive actualmente en la tecnología, se han podido desarrollar diferentes softwares para el cálculo de la capacidad última de las pilas helicoidales, dichos softwares utilizan los métodos de cálculo anteriormente mencionados.
HeliCAP es producido por HUBBEL Incorporated y es uno de los software que se encuentran disponibles en la actualidad en el mercado, este software utiliza el cylindrical shear method para la determinación de la capacidad última de carga (Howard a Perko & Wiley, 2009). Por otro lado RAM JACK es producido por RAM JACK Fundation Solutions Software y también se encuentra disponible en el mercado actualmente, este software utiliza el Individual bearing method y la teoría de Terzaghi para conocer la capacidad portante del suelo (RAM JACK Fundation Solutions, 2013).

Los softwares anteriormente mencionados permiten al usuario a medida que diseña ir visualizando las dimensiones de cada pila y permite editar sus dimensiones si el diseñador lo considera necesario.

3.1.2 Muestras de suelo

Para la determinación de la capacidad portante del suelo es necesario obtener muestras de suelo para realizar ensayos de laboratorio o realizar pruebas de campo como lo es el SPT (Standard Penetration Test) o el CPT (Cone Penetration Test) (Lambe, 2004).

Los ensayos de laboratorio más comunes son: triaxial, corte, granulometría, humedad, compresión inconfinada y límites de Atterberg. Los ensayos anteriormente mencionados permiten determinar el tipo de suelo del lugar y conocer la capacidad portante del suelo.

Para poder realizar las pruebas de laboratorio mencionadas, es necesario tomar muestras del suelo por lo que se necesita de equipo especializado para tomar dichas muestras y evitar la alteración de las propiedades del suelo. Para la toma de muestras se utiliza un tubo Shelby el cual a medida que entra en el terreno captura en su interior la muestra de suelo como se muestra en la Figura 11 (Cruz Velasco, n.d.).
Dado que a mayor profundidad es más difícil de introducir el tubo, es necesario contar con la ayuda de un equipo que permita introducir el tubo con mayor facilidad, este equipo consta básicamente de un martillo que “clava” el tubo en el terreno.

Luego de extraer la muestra, es necesario cubrirla con una capa de cera para evitar que esta se contamine y pierda propiedades como lo es la humedad, sin embargo es difícil garantizar que la muestra al realizar los ensayos no haya sufrido ninguna alteración por lo que siempre habrá un margen de error en los cálculos, aun así el porcentaje de error es relativamente bajo y permite una buena aproximación de las propiedades del suelo.

3.2 Etapa 2: diseño del prototipo

De acuerdo con estudios estadísticos es necesario realizar más de 30 ensayos para determinar que los resultados son confiables, sin embargo debido a la falta de recursos económicos y tiempo solo se realizaron 3 ensayos (Roland E, Myers, & Myers, 1999).
3.2.1 Capacidad de carga teórica

Mediante el método “Individual bearing method” se determina la capacidad de carga del prototipo, esto nos permitirá tener una idea de la carga que se espera que soporte una pila en los suelos de la EIA, con base en esta información y a la que se obtenga en las pruebas de capacidad de carga se podrá concluir a cerca de qué tan certero es este método en los suelos residuales.

Para poder determinar la capacidad teórica por el método anteriormente mencionado es necesario utilizar las ecuaciones que se presentan en el capítulo 3.1.1.1.

Para la capacidad de carga a tracción se puede utilizar la misma ecuación que se utiliza para la capacidad a compresión, para ambos métodos de cálculo, sin embargo es de resaltar que la profundidad no se toma desde las hélices inferiores sino desde las superiores. (Howard a Perko & Wiley, 2009). Es posible realizar una simplificación del “individual bearing method” asumiendo que la adhesión al eje es cero, en la Ecuación 7 se observa la forma de calcular la capacidad a tracción sin tener en cuenta la adhesión.

\[P_{u \text{ tracción}} = q_{ult} \frac{\pi}{4} D^2 \]

Ecuación 7. Capacidad de carga a tracción abreviada

Donde \(D \) es el diámetro de la hélice superior y \(q_{ult} \) la capacidad última del suelo.

3.2.2 Construcción del prototipo

Debido a la falta de conocimiento y recursos la construcción del prototipo será realizada por un agente externo, sin embargo el prototipo será construido con las dimensiones especificadas las cuales se determinaron en el título 4.3 al escalar el prototipo y determinar su capacidad de carga (se mandará a construir 1 prototipos).
3.3 Etapa 3: capacidad de soporte

3.3.1 Pruebas de carga

Para realizar las pruebas de carga tanto a tracción como a compresión es necesario contar con un montaje especial el cual permita ejercer fuerzas sobre la pila a probar y generar resultados confiables.

El montaje necesario para realizar las pruebas consta básicamente de una serie de elementos que transmitan la carga aplicada en la pila a una serie de apoyos auxiliares los cuales también pueden ser pilas helicoidales (Howard a Perko & Wiley, 2009). Para aplicar la carga y recopilar los datos es necesario contar con un gato hidráulico y un deformímetro.

En la Figura 7 y en la Figura 8 se observa la estructura y equipo necesario para las pruebas de compresión. Para las pruebas de tracción el montaje no varía drásticamente, sin embargo es de vital importancia tener en cuenta que la separación de las pilas de apoyo y la pila de prueba debe ser mayor al ancho máximo del cono de falla, esto para evitar que la pila de transmisión de cargas quede en medio de la superficie de falla (Howard a Perko & Wiley, 2009).

Los métodos anteriormente descritos no son las únicas formas que existen para probar las pilas helicoidales, en Brasil se utilizaron armazones en forma de pirámide para pruebas de tensión y una estructura con una viga de acero y pilas de concreto para las pruebas a compresión (Hubbell, 2012). En la Figura 122 y la Figura 133 que se presentan a continuación se puede ver claramente las estructuras anteriormente descritas.
Figura 12. Prueba de tracción. Tomada de: (Hubbell, 2012)

Figura 13. Prueba de compresión. Tomada de: (Hubbell, 2012)
Los métodos anteriormente descritos son regulados por las normas ASTM, especialmente las normas ASTM D1143-07 y la ASTM D3689, las cuales se centran específicamente en la carga axial de las pilas helicoidales como se describió anteriormente en el capítulo 2.5.6.1.

3.4 Etapa 4: Comparación de resultados

3.4.1 Validación de resultados

Para validar los resultados de los ensayos y determinar si las pilas pueden ser utilizadas con seguridad en una construcción civil se utiliza la metodología del estado límite la cual también es muy utilizada en análisis estructural (Howard a Perko & Wiley, 2009). Este método consiste en comparar los resultados obtenidos en las pruebas con los resultados esperados después de implementar los factores de seguridad, si la carga soportada por la pila es mayor a la que se esperaba se puede decir que la pila es confiable. Este mismo método se utiliza en todo tipo de estructura y ayuda a determinar la confiabilidad de esta (Rodríguez Val, 2010).
3.4.2 Comparación de cargas

Comprar los resultados de las pruebas realizadas con los de una pila tradicional.

4 Pilas helicoidales en suelos residuales

En este capítulo se desarrollarán los pasos mencionados en el Capítulo 3 y se expondrán los resultados obtenidos al realizar pruebas de carga en un modelo a escala de pila helicoidal.

4.1 Metodología de diseño

Para facilitar la construcción del prototipo se ha optado por realizar este con una sola hélice, por lo anterior es válido realizar el cálculo por cualquiera de los dos métodos ya que si sólo se tiene una hélice ambos métodos obtienen el mismo resultado.

4.2 Parámetros del suelo y capacidad de carga

A continuación se presenta el procedimiento realizado para determinar las capacidad portante del suelo, no se entrara en detalle ya que este no es el objetivo del trabajo.

Se tomaron 3 muestras de suelo del punto de estudio a 2 metros de profundidad aproximadamente, a estas se le realizaron diferentes ensayos: corte UU, humedad, límites de Atterberg. Estos ensayos son regulados por las normas INVIAS (INVE 154-07, INVE 122-07, INVE 125-07 e INVE 126-07 respectivamente, las dos últimas corresponden a los límites de Atterberg)

4.2.1 Ensayo de humedad

Este ensayo permite determinar el porcentaje de agua que tiene una muestra de suelo, el contenido de agua se expresa como la relación que hay entre la masa de agua llena los poros y la de las partículas sólidas (Invías, 2007b).
Este ensayo se encuentra regulado por la norma INVE 122-07, la cual es fundamentada en la norma NTC 1495.

Para calcular la humedad se utiliza la siguiente ecuación

\[
\frac{w}{W_2 - W_c} = \frac{W_w}{W_s} \times 100
\]

Ecuación 8. Porcentaje de humedad. Tomada de: (Invías, 2007b)

Donde:

\(w \): contenido de agua %

\(W_1 \): masa del recipiente y el espécimen húmedo, g,

\(W_2 \): masa del recipiente y del espécimen seco, g,

\(W_c \): masa del recipiente, g,

\(W_w \): masa del agua, g, y

\(W_s \): masa de las partículas sólidas, g.

Al realizar el procedimiento para el caso de estudio se obtuvo el siguiente resultado:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5</td>
<td>33.7</td>
<td>27.2</td>
<td>56%</td>
</tr>
</tbody>
</table>

4.2.2 Ensayo de corte UU

Este ensayo sirve para determinar la capacidad cortante de una muestra no consolidada no drenada.
Consiste en la colocación de una muestra en un dispositivo de corte directo, este dispositivo permite aplicar una fuerza normal y una cortante como se muestra en la Figura 15. Al aplicar estas fuerzas es posible determinar una curva de esfuerzo deformación la cual permite determinar las propiedades del suelo (ángulo de fricción y cohesión).

![Dispositivo para la realización de un ensayo de corte](image)

Generalmente tres o más muestras son ensayadas aplicándole a cada una fuerza normal diferente con el fin de determinar los efectos sobre la resistencia al corte y las deformaciones (Invías, 2007a).

A continuación se presentan los resultados obtenidos y las propiedades del suelo a partir del ensayo de corte:

Con los datos tomados por el ensayo de corte se puede determinar la curva esfuerzo cortante vs deformación presentado en la Figura 16. Curva de esfuerzo cortante Vs Deformación unitaria6, esta curva permite determinar los esfuerzos máximos a distintas cargas normales y así determinar la cohesión y el ángulo de fricción.
Figura 16. Curva de esfuerzo cortante Vs Deformación unitaria. Elaboración propia

Tabla 3. Esfuerzo normal máximo y esfuerzo cortante máximo. Elaboración propia

<table>
<thead>
<tr>
<th>Cargas [kg]</th>
<th>Esfuerzo normal máximo [kPa]</th>
<th>Esfuerzo cortante máximo [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>42.53</td>
<td>32.21</td>
</tr>
<tr>
<td>20</td>
<td>72.06</td>
<td>48.95</td>
</tr>
<tr>
<td>40</td>
<td>131.13</td>
<td>78.72</td>
</tr>
</tbody>
</table>

Graficando los valores máximos de esfuerzo normal vs cortante se obtiene el siguiente gráfico.
Figura 17. Esfuerzo cortante máximo vs esfuerzo normal máximo. Elaboración propia

Para el cálculo de la cohesión y el ángulo de fricción se procede a determinar el valor del esfuerzo cortante cuando el esfuerzo normal es cero y la inclinación de la recta respecto a la horizontal en grados respectivamente.

<table>
<thead>
<tr>
<th>Ángulo de Fricción [grados]</th>
<th>Cohesión [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>10.5</td>
</tr>
</tbody>
</table>

Además de lo anterior también es posible utilizar el ensayo de corte para conocer el módulo de elasticidad (Es) del suelo, para esto es necesario conocer el módulo de cizalla y el módulo de Poisson (v) para luego utilizar una correlación entre estos y encontrar el módulo de elasticidad.

Utilizando la clasificación del suelo obtenida por medio de los límites de Atterberg (título 4.2.3) y basado en valores típicos del módulo de Poisson es posible obtener un valor para el suelo en estudio de 0.4 (Das, 2012).

El módulo de cizalla es la pendiente de la gráfica (se mide en la parte inicial, desde 0% a 0.01% de deformación) esfuerzo vs deformación al ser sometido el suelo a carga cortante, basado en lo anterior y en la Figura 166 es posible determinar este módulo de la siguiente manera:
\[m = \frac{Y_2 - Y_1}{X_2 - X_1} \]

Donde:

- \(m \) es la pendiente
- \(Y_2 \) y \(Y_1 \) son el máximo y el mínimo del esfuerzo cortante respectivamente
- \(X_2 \) y \(X_1 \) son la deformación unitaria máxima y mínima respectivamente

Reemplazando los valores en la ecuación anterior obtenemos lo siguiente

\[G = m = \frac{30 - 0}{0.04 - 0} = 750 \, kPa \]

Utilizando los valores anteriores (\(G = 750 \, kPa \) y \(v = 0.4 \)) se procede a utilizar una relación para conocer el módulo de elasticidad del material (\(E_s \)) (Badillo & Rodríguez, 2004).

\[E_s = 2G(1 - v) \]

\[E_s = 2 \times 750 \, kPa \times (1 + 0.4) = 2100 \, kPa \]

Además de lo anterior se pudo determinar que la densidad del suelo es de 16.6 kN/m3.

4.2.3 Límites de Atterberg

El límite líquido se define como el porcentaje de humedad en el cual el suelo cambia de estado líquido a plástico, de manera similar, el límite plástico es el punto donde el suelo pasa de un estado plástico a uno semisólido (Das, 2012).

Para determinar el límite líquido se sigue la normatividad INVE 125-07, del mismo modo para el límite plástico e índice de plasticidad se debe cumplir la norma INVE 126-07.
4.2.3.1 Límite líquido

El límite líquido se determina como el porcentaje de humedad a 25 golpes (Invias, 2013a).

Para la muestra en estudio se determinó el límite líquido para 3 muestras, de esta manera fue posible generar un gráfico con una línea de tendencia la cual permitió conocer el valor del porcentaje de humedad a 25 golpes. A continuación se presentan los resultados de lo anteriormente descrito.

Tabla 5. Límite líquido. Elaboración propia

<table>
<thead>
<tr>
<th>Límite Líquido</th>
<th>Peso recipiente (g)</th>
<th># de golpes</th>
<th>Masa húmeda (g)</th>
<th>Masa seca (g)</th>
<th>Humedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra 1</td>
<td>10.4</td>
<td>30</td>
<td>22.5</td>
<td>18.2</td>
<td>55.0%</td>
</tr>
<tr>
<td>Muestra 2</td>
<td>15.5</td>
<td>18</td>
<td>33.7</td>
<td>27.2</td>
<td>56.0%</td>
</tr>
<tr>
<td>Muestra 3</td>
<td>10.7</td>
<td>8</td>
<td>28.5</td>
<td>22</td>
<td>58.0%</td>
</tr>
</tbody>
</table>

Figura 18. Número de golpes vs % de humedad. Elaboración propia

Reemplazando x como 25 golpes obtenemos que el límite líquido es de 56.6%, como se debe aproximar el valor al entero más cercano el límite líquido es igual a 57%.
4.2.3.2 Límite plástico

El límite plástico está determinado como el contenido de agua en porcentaje de la masa de suelo seca al horno, lo anterior se puede expresar con la siguiente ecuación (Invias, 2013b).

\[
L.P = \frac{\text{Masa de agua}}{\text{Masa de suelo seco al horno}} * 100
\]

Se registra el límite plástico, aproximado al número entero más cercano.

A continuación se presentan los resultados para el caso de estudio

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Masa húmeda (g)</th>
<th>Masa seca (g)</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra 1</td>
<td>1.60</td>
<td>1.25</td>
<td>28%</td>
</tr>
<tr>
<td>Muestra 2</td>
<td>2.80</td>
<td>2.20</td>
<td>27%</td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
<td></td>
<td>28%</td>
</tr>
</tbody>
</table>

4.2.3.3 Índice de plasticidad

El índice de plasticidad es la diferencia entre el límite líquido y el límite plástico (Invias, 2013b). Para el caso en estudio se tiene lo siguiente:

\[
I.P = \text{Límite líquido} - \text{Límite plástico}
\]

\[
I.P = 57\% - 28\% = 28\%
\]

4.2.4 Clasificación del suelo

El Sistema unificado de clasificación de suelos Casagrande en 1942. En la actualidad el sistema se utiliza prácticamente en todo el trabajo geotécnico (Das, 2012).
El sistema unificado utiliza los siguientes símbolos para la clasificación.

Tabla 7. Notación para la clasificación del suelo. Tomado de: (Das, 2012)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>G</th>
<th>S</th>
<th>M</th>
<th>C</th>
<th>O</th>
<th>Pt</th>
<th>H</th>
<th>L</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td>Grava</td>
<td>Arena</td>
<td>Limo</td>
<td>Arcilla</td>
<td>Límos orgánicos y arcilla</td>
<td>Turba y suelos altamente orgánicos</td>
<td>Alta plasticidad</td>
<td>Baja plasticidad</td>
<td>Bien graduado</td>
<td>Mal graduado</td>
</tr>
</tbody>
</table>

Utilizando los límites de Atterberg, la Tabla 7 y la Figura 19 se puede llegar a una aproximación del tipo de suelo en el cual se está trabajando. Para el caso en estudio se realizó la gráfica anterior en Excel y se determinó en el punto donde se encontraba el suelo, luego se procedió a determinar los posibles tipos de suelo del lugar.
Como se puede observar en la Figura 19 y la Figura 20, la muestra en estudio se encuentra en la zona donde el suelo es CH u OH, observando estas notaciones se puede determinar que el suelo del lugar es una arcilla de alta plasticidad o limos orgánicos y arcilla de alta plasticidad.

4.2.5 Capacidad portante

Como se menciona en el Título 2.5.5.5 existen diferentes métodos para determinar la capacidad portante del suelo, para este caso se utilizó la metodología de Terzagui.

Utilizando la Ecuación 1 y los diferentes parámetros del suelo se obtiene la capacidad de carga del suelo como se muestra a continuación.

\[Q_{ult} = c \times Nc + q \times Nq \]

q es el esfuerzo efectivo del suelo, este se determina de la siguiente manera

\[q = Esfuerzo\ vertical – Presión\ del\ agua \]
Como en el sitio de estudio el nivel freático se encuentra por debajo de la profundidad a la cual se encuentra la pila (20 cm) la presión del agua es cero, por lo tanto el esfuerzo efectivo es igual al esfuerzo vertical.

\[q = \text{Esfuerzo vertical} \]

\[q = \text{Densidad del suelo} \times \text{Profundidad} \]

\[q = 16.6 \frac{kN}{m^3} \times 0.2 \text{ m} \]

\[q = 3.32 \frac{kN}{m^2} \]

Utilizando las tablas para determinar los valores de \(N_c \) y \(N_q \) según Terzaghi adjuntas en los anexos, obtenemos que, para el ángulo de fricción de 27.59°, \(N_c \) y \(N_q \) tienen un valor de 30.61 y 16.99 respectivamente.

Reemplazando en la Ecuación 1 obtenemos lo siguiente:

\[Qult = 10.54 \frac{kN}{m^2} \times 30.61 + 3.32 \frac{kN}{m^2} \times 16.99 \]

\[Qult = 379.04 \frac{kN}{m^2} \]

4.3 Capacidad de carga y diseño del modelo

Como se mencionó anteriormente el método de cálculo a utilizar en este estudio es el “Individual bearing method”; por otra parte, para poder determinar la capacidad de carga de la pila es necesario primero conocer las dimensiones de esta.

4.3.1 Dimensiones de la pila

Las dimisiones de la pila se realizaron teniendo en cuenta la facilidad de manejo de ésta y la capacidad de carga de los gatos hidráulicos. Se encontró que la mejor forma de determinar las dimensiones del prototipo es utilizando una pila real y
multiplicando sus dimensiones por un escalar, esto garantiza que la relación entre el área del eje y el área de la hélice sean las mismas que las de una pila real; además de la consideración anterior, también se consideró que a mayores dimensiones del modelo mayor debe ser el torque aplicado para la instalación lo cual limita la geometría debido a la falta de equipo para realizar este procedimiento.

Basados en lo anterior se planteó la siguiente geometría

\[\text{Diametro del eje (d)} = 3 \text{ cm} \]

\[\text{Diametro de la helice (D)} = 7 \text{ cm} \]

\[\text{Largo del eje (L)} = 40 \text{ cm} \]

\[\text{Profundidad a la helice superior (H)} = 20 \text{ cm} \]

\[\text{Espesor de la helice (e)} = 5 \text{ mm} \]

\[\text{Separación de la helice (s)} = 3 \text{ cm} \]

Aunque la longitud del eje que en realidad estará bajo tierra es de 20 cm, para poder realizar las pruebas e instalar la pila es necesario contar con un eje más largo, es por esto que la longitud del eje para los cálculos de capacidad de la pila se toma como 20 cm y no la altura real, además bajo la hélice queda una longitud de eje (punta) que se asume no aporta capacidad de carga a la pila.

4.3.2 Capacidad teórica

Como se explica en el título 4.2.5, la capacidad ultima de carga del suelo \(q_{ult} \) es 379 kPa; basado en lo anterior se procede a calcular la capacidad de carga de la pila con la geometría descrita en el título 4.3.1 por medio del "Individual bearing method".

Para calcular la capacidad de carga de la pila (a compresión) se reemplazan los diferentes valores en la Ecuación 3 y en la Ecuación 5.
De acuerdo con lo anterior el modelo de la pila helicoidal soportara 1.61 kN según el “individual bearing method” (para una carga a compresión), utilizando este valor es posible determinar las esfuerzos que la pila puede sentir y de este modo determinar el mejor material para el proyecto.

Es preciso anotar que el método de cálculo utilizado no es el único y que fue utilizado ya que el modelo cumple el requisito principal de este método, solo tiene una hélice, sin embargo el cálculo también puede ser realizado por el “Cylindrical shear method” y su resultado es el mismo. Para proyectos en los cuales se necesite optimizar el diseño es posible utilizar los dos métodos y encontrar la geometría para que ambos métodos converjan optimizando así la geometría de la pila.

Para determinar la capacidad a tracción de la pila se utiliza la Ecuación 7.

\[Pu_{tracción} = qult \frac{\pi}{4} * Dt^2 \]

\[Pu_{tracción} = 379.04 \frac{\pi}{4} * 0.07^2 \]
Pu tracción = 1.46 kN

4.3.3 Materiales, diseño y construcción del modelo a escala

4.3.3.1 Carga aplicada

Dado que este estudio parte del supuesto de que la pila como elemento estructural no fallará sino que lo que se busca es que el suelo falle, es importante determinar los esfuerzos presentes en la pila a la hora de aplicar la carga determinada en el título anterior.

Para tener una mayor seguridad en el diseño se procederá a mayorar la carga para el cálculo de los esfuerzos de la pila.

\[F = F.S. \times Pu \]

Donde:

Pu es la capacidad de carga de la pila

F.S. es el factor de seguridad el cual aumentara la capacidad de carga.

En la práctica es común encontrar que los factores de mayoración para este tipo de pilas son de 3 (Howard a Perko & Wiley, 2009), basado en lo anterior el factor de seguridad utilizado para el cálculo de la fuerza es de 3.

\[F = 3 \times 1.61 \, kN = 4.83 \, kN \]

4.3.3.2 Materiales

Dado que las cargas aplicadas en este modelo son relativamente pequeñas, la capacidad de carga de los materiales no debe ser muy grande, sin embargo se debe realizar los cálculos para garantizar que los esfuerzos máximos que el material es capaz de soportar no sean excedidos.
Para facilitar la adquisición de los materiales se consideraron 3 tipos de aceros comerciales de los cuales se escogería el que cumpla con los esfuerzos demandados y se encuentre con mayor facilidad en el mercado.

Los aceros seleccionados son:

Acero A36: límite elástico de 152 MPa (MatWeb, 2016).

Acero 1020: límite elástico de 350 MPa (MatWeb, 2016).

Acero 1040: límite elástico de 290 MPa (MatWeb, 2016).

4.3.3.3 Diseño del prototipo

Para facilidad de los cálculos se realizaron un análisis básico utilizado ecuaciones de mecánica de materiales.

Para realizar un análisis completo de la pila se asumirá la pila como dos elementos independientes: la hélice y el eje.

El eje al ser un elemento cilíndrico no presenta mayores inconvenientes, a continuación se presentan los cálculos para este elemento

![Figura 21. Vista en planta del eje de la pila (medidas en metros). Elaboración propia](image)

$$\sigma = \frac{F}{A}$$

Donde:
\[\sigma = \frac{4.83 \text{ kN}}{\pi \left(\frac{3 \text{ cm}}{2} \right)^2} = \frac{4.83 \text{ kN}}{7.07 \text{ cm}^2} \times \left(\frac{100 \text{ cm}}{1 \text{ m}^2} \right)^2 = 6.83 \text{ MPa} \]

Para el cálculo de los esfuerzos en la hélice se debe proceder de una manera diferente debido a que la hélice transmitirá la carga aplicada al suelo lo que generará una concentración de esfuerzos diferente que el eje.

Figura 22. Vista en planta de la hélice y el eje (medidas en metros). Elaboración propia

\[\sigma = \frac{M \cdot c}{l} \]

Donde:

\[\sigma \] es esfuerzo

\[M \] es el momento máximo

\[c \] es la distancia más grande desde el eje neutro
I es la inercia del elemento

Para determinar los momentos que se producen en la hélice se utilizó una aplicación llamada BeamDesign la cual ayuda a determinar los momentos máximos que se producen en la hélice además de la forma en cómo se deformaría esta al sentir estas fuerzas, es necesario resaltar que para la simulación y determinación de las fuerzas se asume la hélice como una viga en voladizo con un apoyo en el centro

\[
I = \frac{\pi}{4} \cdot (R^4)
\]

Luego de conocer el cortante y momento máximo se procede a conocer la inercia del elemento
Donde

R es el radio de la hélice

\[I = \frac{\pi}{4} \cdot (0.035^4) = 0.000001 \, m^4 \]

Como la hélice es una circunferencia hueca c es la diferencia entre radios

\[\sigma = \frac{M \cdot c}{I} = \frac{0.042 \, kN \cdot m \cdot (0.035 \, m - 0.015 \, m)}{0.000001 \, m^4} = 0.84 \, MPa \]

Basados en los resultados de los análisis de esfuerzo se puede determinar que los aceros seleccionados soportan fácilmente el esfuerzo inducido por la carga aplicada en la pila el cual es de 0.84 MPa.

4.3.3.4 Construcción del modelo

Dado que la finalidad de este estudio no es la construcción de pilas helicoidales, su producción fue realizada por la empresa CONSTRUCCIONES METALICAS BECERRA S.A.S, empresa dedicada a la construcción de elementos metálicos en la ciudad de Medellín y la cual brindó todo su apoyo y donó el prototipo utilizado en el estudio. Por otro lado, el material utilizado en la pila fue acero A36 debido a que es fácil de conseguir en el mercado y como se demostró en el título 4.3.3.2 el material cumplía las características demandadas según la fuerza a ser aplicada.

Para construir el prototipo se elaboró un plano de la pieza para así conocer todas las dimensiones y realizar una prototipo con las dimensiones estipuladas anteriormente, en la Figura 255 se puede observar el plano de detalle entregado y en la Figura 266 se puede ver el prototipo que construyó CONSTRUCCIONES METALICAS BECERRA S.A.S.
Figura 25. Plano de detalle del prototipo. Elaboración propia
4.4 Pruebas de carga

Se realizaron 6 pruebas de carga en total, 3 a tracción y 3 a compresión; ambas pruebas se realizaron con los mismos equipos los cuales se mencionan a continuación, además se hará una breve explicación del proceso de montaje y de carga.

El equipo utilizado para las pruebas de carga es el siguiente:
a. Módulo de adquisición de datos
b. Celda de carga
c. Deformímetro
d. Gato hidráulico

Adicionalmente fue necesario utilizar 3 vigas metálicas para apoyar el gato y aplicar la carga en la pila.

El procedimiento para realizar los ensayos es muy sencillo y consta básicamente de 3 pasos: limpieza del sitio, instalación de pila y montaje, y por último la aplicación de carga. Los tres pasos anteriores son los mismos para pruebas de compresión y tracción, la única variación que se tiene son los tipos de montaje para la aplicación de la carga.

En los anexos se pueden encontrar los certificados de calibración de la celda de carga y el deformímetro utilizado, esto corrobora la validez de los datos medidos al realizar los ensayos.

4.4.1 Limpieza del sitio

Básicamente es retirar la capa orgánica que hay en el sitio, en la imagen presentada a continuación se puede ver claramente cómo se retiró la materia orgánica, este procedimiento se realizó para las 6 pruebas.
4.4.2 Instalación de pila y montaje

Después de tener el lugar limpio se procede a instalar la pila, esto se hace aplicándole un torque a esta de tal manera que se atornilla en el suelo, luego de instalarla se procede a realizar el montaje para la aplicación de carga. Vale recordar que el montaje para la tracción y compresión varía ya que la reacción al aplicar la carga es diferente.
Figura 28. Esquema para aplicación de carga a tracción. Elaboración propia

Figura 29. Detalle para la instalación de deformímetro y celda de carga a tracción. Elaboración propia
Figura 30. Pila instalada. Elaboración propia
Figura 31. Montaje para ensayo a tracción. Elaboración propia
Figura 32. Esquema para montaje a compresión. Elaboración propia

Figura 33. Detalle para instalación de deformímetro y celda de carga a compresión. Elaboración propia
Es importante resaltar, que para poder aplicar la carga en la pila, tanto a tracción y a compresión, fue necesario diseñar dos acoples que permitieran la instalación de esta en el sitio, así como la adecuada aplicación de las cargas.

El acople para la instalación de la pila, consta básicamente de un cilindro tipo hembra el cual se introduce en la pila y se fija a ella por medio de un pasador, este cilindro tiene en la parte superior la posibilidad de introducir en él una palanca permitiendo así generar la torsión necesaria para que la pila gire en el terreno y pueda ser instalada. El segundo acople también consta de un cilindro tipo hembra que se fija a la pila por medio de un pasador, la diferencia de este con el anterior es que en la parte superior tiene la posibilidad de introducir un tornillo, lo cual permite aplicar la carga a tracción, además de fijar una platina para poder tomar este punto como referencia para el deformímetro. A continuación se presentan los planos de ambos acoples utilizados.
Figura 35. Acople para instalación. Elaboración propia

Figura 36. Acople para aplicación de carga. Elaboración propia
4.4.3 Aplicación de carga

Consiste básicamente en aplicar la carga lentamente (aproximadamente 1 mm/seg) en la pila hasta que esta falle, de esta aplicación de carga es que, por medio del deformímetro y la celda de carga, se puede obtener la gráfica esfuerzo vs deformación.

Dado que la celda de carga mide la fuerza en kilogramos (kg) es necesario dividir este valor por un área fija (área de la hélice), estos valores se recopilan utilizando el módulo de recolección de datos el cual se puede ver en la Figura 399, de esta manera se obtiene el esfuerzo para cada uno de los cambios en la deformación, generando así una curva esfuerzo deformación como se puede ver a continuación.

![Diagrama de Esfuerzo vs Deformación](image.png)

Figura 37. Esfuerzo vs deformación para ensayos de carga a tracción. Elaboración propia

El gráfico anterior corresponde a los tres ensayos realizado para tracción.

A continuación se presentan las curvas esfuerzo vs deformación para los tres ensayos de compresión.
Luego de realizar las pruebas de carga a tracción la pila fue retirada en su totalidad del suelo, en la siguiente imagen se muestra el resultado de esto.
Ilustración 1. Adhesión del suelo a la pila después de un ensayo a tracción. Elaboración propia
5 Análisis de resultados

5.1 Carga última

Luego de realizar las pruebas de carga y obtener las curvas esfuerzo vs deformación como se mostró en el título 4.4.3 es posible determinar la carga última soportada por la pila tanto a tracción como a compresión. Para obtener el valor de carga máxima de cualesquiera de los ensayos es necesario multiplicar el esfuerzo máximo, que se puede determinar fácilmente utilizando las gráficas esfuerzo vs deformación presentadas anteriormente, y el área proyectada de la hélice de la pila, esta se calcula utilizando el diámetro de la hélice.

En la tabla presentada a continuación, se observa la carga máxima soportada, tanto a tracción como a compresión que el modelo soportó en cada uno de los ensayos propuestos, además se presenta la capacidad de carga que se esperaba (título 4.3.2).

<table>
<thead>
<tr>
<th>Número de ensayo</th>
<th>Carga máx. (kN)</th>
<th>Esfuerzo (kPa)</th>
<th>Diseño (kN)</th>
<th>Esfuerzo diseño (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.833</td>
<td>476.265</td>
<td>1.459</td>
<td>379.037</td>
</tr>
<tr>
<td>2</td>
<td>1.601</td>
<td>415.921</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.836</td>
<td>476.984</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 8. Resultados de carga máxima para ensayo de tracción. Elaboración propia

<table>
<thead>
<tr>
<th>Número de ensayo</th>
<th>Carga máx. (kN)</th>
<th>Esfuerzo (kPa)</th>
<th>Diseño (kN)</th>
<th>Esfuerzo diseño (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.557</td>
<td>664.399</td>
<td>1.613</td>
<td>419.119</td>
</tr>
<tr>
<td>2</td>
<td>3.237</td>
<td>841.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.961</td>
<td>509.432</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 9. Resultados de carga máxima para ensayo de compresión. Elaboración propia

Es notorio que en los ensayos de tracción, los resultados obtenidos son relativamente similares, además, los tres ensayos presentaron resultados mayores al esperado (1.459 kN) sin embargo no estuvieron muy alejados del esperado. Por otro lado, en los ensayos de compresión se puede ver una diferencia clara en los
resultados obtenidos, estas variaciones pueden ser explicadas por diferentes causas de error presentadas en el título 5.2, sin embargo, ninguno de los ensayos realizados presentó cargas últimas menores a las calculadas en el título 4.3.2.

Es notorio que, en las curvas esfuerzo vs deformación para la carga a compresión, la gráfica presenta saltos en su recorrido (3 saltos en cada ensayo); este fenómeno en las lecturas, puede ser atribuido a la terminación de un ciclo de aplicación de carga, ya que el gato es mecánico y para poder aplicar la carga se debe bombear, con una bomba hidráulica, aceite para aplicar la fuerza.

5.2 Causas de error

Durante el desarrollo de esta investigación, se ha determinado posibles causas de error que pueden llevar a variaciones en las diferentes mediciones. Una de las incertidumbres más grandes que se tiene es que, como no se tiene un gato automático para la aplicación de la carga en la pila, esta no se cargó de manera uniforme, lo anterior puede explicar la presencia de baches y picos en las gráficas de esfuerzo deformación.

Por otro lado, la longitud del vástago del gato hidráulico y la capacidad de lectura máxima del deformímetro (40 mm), fueron fuertes limitantes a la hora de realizar las pruebas, ya que, aunque claramente en las curvas esfuerzo deformación se veía una estabilización del esfuerzo, no se puede ver un decaimiento de la capacidad de carga por lo que se puede inferir que solo se tiene un tramo de la curva esfuerzo deformación, lo anterior conlleva a tener en los datos algo de incertidumbre.

Para finalizar, es importante recordar que, aunque todos los equipos se encuentran calibrados, siempre habrá un margen de error implícito en toda medida, además del incorregible error humano presente en todo tipo de práctica. Adicionalmente, se observa que las gráficas presentadas en el título 4.4.3 no inician en cero, esto se debe a que por cuestiones del montaje la pila, antes de comenzar con la prueba de carga, ya contaba con una carga inicial como lo era en
el caso de compresión el peso del gato o en el caso de tracción una tensión inicial para evitar que la celda de carga se desplazara.

5.3 **Pila helicoidal vs pila pre-excavada**

Dado que actualmente en la construcción colombiana no se tiene ningún proyecto en el que se haya utilizado una cimentación con pilas helicoidales, es bueno tener una base que permita comparar las capacidades de este tipo de pilas con un método normalmente utilizado en el medio como lo son pilas pre-excavadas.

Las pilas pre-excavadas son populares en Colombia debido a su facilidad de construcción con poca maquinaria, estas transmiten la carga al suelo, ya sea por punta o por fuste (fricción a lo largo del eje). En la actualidad se pueden encontrar una gran variedad de métodos aceptados por la comunidad científica para calcular la capacidad, tanto por punta o fuste, de las pilas pre-excavadas; unos de los más reconocidos son: Vesic, Terzaghi, Jambu, Alfa, Beta y Landa (Das, 2012).

Para realizar las comparaciones necesarias, se calcularon pilas pre-excavadas utilizando los métodos de Vesic y Terzaghi para capacidad por punta y alfa para capacidad por fuste, las cuales se explican a continuación. Para ambos métodos se varió el diámetro y la profundidad para así poder determinar las dimensiones que una cimentación de este tipo debe tener para soportar la misma carga que una pila helicoidal.

5.3.1 **Capacidad por punta según Terzaghi**

La ecuación utilizada para determinar la capacidad de carga por punta según Terzaghi es la siguiente:

\[Q_p = A_p q_p = A_p \ast (c \ast N_c + q' N_q) \]

Ecuación 9. Capacidad por punta según Terzaghi. Tomado de: (Das, 2012)

Donde:

- \(A_p \) es el área de la punta del pilote
C es la cohesión del suelo

q’ es el esfuerzo vertical efectivo a nivel de la punta del pilote

N_c y N_q son factores de capacidad de carga los cuales se pueden determinar utilizando las tablas adjuntas en los anexos, es de resaltar que estos parámetros son los mismos utilizados para calcular la capacidad portante del suelo según Terzaghi.

5.3.2 **Capacidad por punta según Vesic**

Para determinar la capacidad por punta de un pilote según Vesic se utiliza la siguiente ecuación

\[Q_p = A_p q_p = A_p (c N_c + \sigma_0 N_q) \]

Ecuación 10. Capacidad por punta según Vesic. Tomado de (Das, 2012)

\[\sigma_0 = \frac{1 + 2 K}{3} q' \]

\[K = 1 - sen(\phi) \]

Donde:

Ap es el área de la punta del pilote

C es la cohesión del suelo

q’ es el esfuerzo vertical efectivo a nivel de la punta del pilote

K es el coeficiente de presión de tierra

N_c y N_q son factores de capacidad de carga los cuales se pueden determinar utilizando las tablas adjuntas en los anexos
Para determinar los factores de capacidad de carga se debe calcular lo siguiente para así poder entrar en la tabla adjunta en los anexos

\[I_r = \frac{E_s}{2 \ast (1 + \mu) \ast (c + q' \ast \tan(\phi))} \]

\[I_{rr} = \frac{I_r}{1 + I_r \ast \Delta} \]

Donde:

Es el módulo de elasticidad del suelo

\(\mu \) es el coeficiente de poisson del suelo

\(c \) es la cohesión

\(\Delta \) es la deformación unitaria promedio en la zona plástica debajo del pilote

\(q' \) es el esfuerzo vertical efectivo a la altura del pilote y

\(\phi \) es el ángulo de fricción del suelo

5.3.3 Capacidad por fuste (método \(\alpha \))

\[Q_s = \sum \alpha \ast C \ast p \ast \Delta L \]

Ecguación 11. Capacidad por fuste según el método \(\alpha \). Tomado de: (Das, 2012)

\(\alpha \) se puede calcular utilizando la siguiente tabla

Tabla 10. Variación de \(\alpha \). Tomada de: (Das, 2012)
Donde:

\(p \) es el perímetro de la pila

\(c \) es la cohesión del suelo y

\(\Delta L \) es el cambio en la profundidad

5.3.4 Capacidad por fuste (método \(\lambda \))

\[
Q_s = p \times L \times f
\]

\[
f = \lambda \times (\sigma + 2 \times c)
\]

Donde:

\(L \) es la longitud de empotramiento

\(P \) es el perímetro de la pila

\(\sigma \) es el esfuerzo vertical efectivo medio y
C es la cohesión no drenada del suelo

El valor de landa (λ) se puede determinar utilizando la Tabla 1111 presentada a continuación.

Tabla 11. Variación de landa respecto a la profundidad. Tomada de: (Das, 2012)

<table>
<thead>
<tr>
<th>Longitud de empotramiento, L (m)</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>0.336</td>
</tr>
<tr>
<td>10</td>
<td>0.245</td>
</tr>
<tr>
<td>15</td>
<td>0.200</td>
</tr>
<tr>
<td>20</td>
<td>0.173</td>
</tr>
<tr>
<td>25</td>
<td>0.150</td>
</tr>
<tr>
<td>30</td>
<td>0.136</td>
</tr>
<tr>
<td>35</td>
<td>0.132</td>
</tr>
<tr>
<td>40</td>
<td>0.127</td>
</tr>
<tr>
<td>50</td>
<td>0.118</td>
</tr>
<tr>
<td>60</td>
<td>0.113</td>
</tr>
<tr>
<td>70</td>
<td>0.110</td>
</tr>
<tr>
<td>80</td>
<td>0.110</td>
</tr>
<tr>
<td>90</td>
<td>0.110</td>
</tr>
</tbody>
</table>

5.3.5 Resistencia al arrancamiento

Dado que los pilotes pre-excavados también se pueden ver sometidos a cargas de arrancamiento o levantamiento, es necesario realizar una estimación de la capacidad que tiene de resistir este tipo de fuerza. Basados en diferentes tipos de ensayos se ha podido llegar a una estimación rápida de la capacidad de arrancamiento de un pilote, la cual considera que la resistencia de arrancamiento es aproximadamente el 70% de la resistencia por fuste a la compresión (Oficina de Vivienda, 2007).

Utilizando los métodos anteriormente presentados, se determinó la profundidad necesaria para que una pila pre-excavada con un diámetro de 3 cm soportara la misma carga teórica que una pila helicoidal, del mismo modo se determinó la
capacidad teórica de carga para la misma pila a una profundidad fija (20 cm) pero variando el diámetro. Realizando el ejercicio anterior se puede comparar fácilmente una pila tradicional y una helicoidal.

Tabla 12. Pila pre-excavada vs pila helicoidal teniendo en cuenta la capacidad por punta y fuste (compresión). Elaboración propia

<table>
<thead>
<tr>
<th>Profundidad (cm)</th>
<th>Terzaghi</th>
<th>Vesic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variando profundidad</td>
<td>Variando diámetro</td>
</tr>
<tr>
<td>120</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Carga (kN)</td>
<td>1.66</td>
<td>1.73</td>
</tr>
</tbody>
</table>

Es importante resaltar que para los casos de pilas pre-excavadas, la capacidad de carga que aporta la adhesión al eje (carga por fuste) es significativa, en la ¡Error! No se encuentra el origen de la referencia.3 ajunta a continuación, se presenta el mismo análisis anterior sin tener en cuenta la capacidad por fuste de la pila.

Tabla 13. Pila pre-excavada vs pila helicoidal sin tener en cuenta la capacidad por fuste (compresión). Elaboración propia

<table>
<thead>
<tr>
<th>Profundidad (cm)</th>
<th>Terzaghi</th>
<th>Vesic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variando profundidad</td>
<td>Variando diámetro</td>
</tr>
<tr>
<td>620</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Carga (kN)</td>
<td>1.46</td>
<td>1.46</td>
</tr>
</tbody>
</table>

Del mismo modo, se realizó el análisis anterior para cargas a tracción en pilas pre-excavadas y helicoidales, los resultados obtenidos se presentan a continuación.
<table>
<thead>
<tr>
<th></th>
<th>Método α</th>
<th>Método λ</th>
<th>Pila helicoidal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variando profundidad</td>
<td>Variando diámetro</td>
<td>Variando profundidad</td>
</tr>
<tr>
<td>Profundidad (cm)</td>
<td>210</td>
<td>20</td>
<td>120</td>
</tr>
<tr>
<td>Diámetro eje (cm)</td>
<td>3</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Diámetro hélice (cm)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Carga (kN)</td>
<td>1.46</td>
<td>1.51</td>
<td>1.47</td>
</tr>
</tbody>
</table>

6 Conclusiones

- Se encontró que para pilas de una hélice los métodos estudiados (individual bearing method y cylindrical shear method) siempre convergen, por lo tanto para facilitar el proceso de cálculo se puede utilizar el “individual bearing method” debido a que su matemática es mucho más sencilla que la de los demás métodos. Al realizar pilas de más de una hélice, es criterio del diseñador tomar la decisión de la separación que desea utilizar en las hélices, con base en esta determinación se debe elegir el método de cálculo.

- Dado que las pilas helicoidales tienen una geometría particular, estas experimentan diferentes concentraciones de esfuerzos, es por lo anterior que es recomendable a la hora de diseñar un prototipo, determinar los esfuerzos que esta sufrirá al ser sometida a una carga determinada (carga de diseño). Además se recomienda realizar los cálculos de estos esfuerzos mayorando las cargas, esto garantiza que los materiales seleccionados a partir de estos esfuerzos, soportaran fácilmente las condiciones a las cuales serán sometidos. Por último es recomendable el uso de aceros capaces de soportar grandes esfuerzos, garantizar una buena unión entre el eje y la hélice y controlar la corrosión por medio de baños de zinc, aplicación de pinturas anticorrosivas, entre otros.
- De acuerdo con los ensayos realizados, se encontró que la capacidad de carga de una pila helicoidal a tracción y a compresión es de 1.76 kN y 2.56 kN respectivamente, estos valores son mayores a calculados y podrían llevar a creer que los métodos de cálculo funcionan en suelos residuales. Sin embargo los resultados anteriores no son concluyentes debido a los pocos ensayos que se ejecutaron lo cual lleva a que un análisis estadístico sea poco acertado e irrelevante. Se recomienda continuar con investigaciones que permitan realizar un análisis estadístico para de este modo determinar la confiabilidad de los métodos de cálculo para las pilas helicoidales en los suelos residuales.

- Basado en el título anterior, se puede entender que las pilas helicoidales poseen una gran ventaja al ser sometidas a cargas de arrancamiento frente a las pilas pre-excavadas. Además, su comportamiento al someterse a cargas de compresión tampoco es desfavorable y representa una solución viable para las construcciones civiles. Debido a lo anterior, es importante continuar recopilando datos acerca de las pilas helicoidales, ya que, por medio de esta primera aproximación en suelos residuales, es posible decir que las pilas helicoidales tienen un gran futuro en este tipo de suelo, permitiendo al constructor reducir tiempos y facilitar el proceso de construcción de una cimentación.

- Debido a los pocos datos obtenidos, es precipitado afirmar si los métodos implementados en el diseño son una buena aproximación de la realidad, sin embargo, con base a las pruebas realizadas, se puede inferir que posiblemente este tipo de pilas sean una buena opción para la cimentación de estructuras, por lo tanto, deberían ser objeto de más investigaciones.
7 Referencias

Das, B. M. (2012). *Fundamentos de ingeniería de cimentaciones* (7th ed.).

Hubbell. (2010). CIVIL CONSTRUCTION PRODUCT CATALOG VOL . I Table of Contents Section Description, I, 70.

8 Anexos

<table>
<thead>
<tr>
<th>(\phi')</th>
<th>(N_e)</th>
<th>(N_q)</th>
<th>(N_{q^*})</th>
<th>(\phi')</th>
<th>(N_e)</th>
<th>(N_q)</th>
<th>(N_{q^*})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.70</td>
<td>1.00</td>
<td>0.00</td>
<td>26</td>
<td>27.09</td>
<td>14.21</td>
<td>9.84</td>
</tr>
<tr>
<td>1</td>
<td>6.00</td>
<td>1.10</td>
<td>0.01</td>
<td>27</td>
<td>29.24</td>
<td>15.90</td>
<td>11.60</td>
</tr>
<tr>
<td>2</td>
<td>6.30</td>
<td>1.22</td>
<td>0.04</td>
<td>28</td>
<td>31.61</td>
<td>17.81</td>
<td>13.70</td>
</tr>
<tr>
<td>3</td>
<td>6.62</td>
<td>1.35</td>
<td>0.06</td>
<td>29</td>
<td>34.24</td>
<td>19.98</td>
<td>16.18</td>
</tr>
<tr>
<td>4</td>
<td>6.97</td>
<td>1.49</td>
<td>0.10</td>
<td>30</td>
<td>37.16</td>
<td>22.46</td>
<td>19.13</td>
</tr>
<tr>
<td>5</td>
<td>7.34</td>
<td>1.54</td>
<td>0.14</td>
<td>31</td>
<td>40.41</td>
<td>25.28</td>
<td>22.65</td>
</tr>
<tr>
<td>6</td>
<td>7.73</td>
<td>1.81</td>
<td>0.20</td>
<td>32</td>
<td>44.04</td>
<td>28.52</td>
<td>26.87</td>
</tr>
<tr>
<td>7</td>
<td>8.15</td>
<td>2.00</td>
<td>0.27</td>
<td>33</td>
<td>48.09</td>
<td>32.23</td>
<td>31.94</td>
</tr>
<tr>
<td>8</td>
<td>8.60</td>
<td>2.21</td>
<td>0.35</td>
<td>34</td>
<td>52.64</td>
<td>36.50</td>
<td>38.04</td>
</tr>
<tr>
<td>9</td>
<td>9.09</td>
<td>2.44</td>
<td>0.44</td>
<td>35</td>
<td>57.75</td>
<td>41.44</td>
<td>45.41</td>
</tr>
<tr>
<td>10</td>
<td>9.61</td>
<td>2.69</td>
<td>0.56</td>
<td>36</td>
<td>63.53</td>
<td>47.16</td>
<td>54.36</td>
</tr>
<tr>
<td>11</td>
<td>10.16</td>
<td>2.98</td>
<td>0.69</td>
<td>37</td>
<td>70.01</td>
<td>53.80</td>
<td>65.27</td>
</tr>
<tr>
<td>12</td>
<td>10.76</td>
<td>3.29</td>
<td>0.85</td>
<td>38</td>
<td>77.50</td>
<td>61.55</td>
<td>78.61</td>
</tr>
<tr>
<td>13</td>
<td>11.41</td>
<td>3.63</td>
<td>1.04</td>
<td>39</td>
<td>85.97</td>
<td>70.61</td>
<td>93.03</td>
</tr>
<tr>
<td>14</td>
<td>12.11</td>
<td>4.02</td>
<td>1.26</td>
<td>40</td>
<td>95.66</td>
<td>81.27</td>
<td>115.31</td>
</tr>
<tr>
<td>15</td>
<td>12.86</td>
<td>4.45</td>
<td>1.52</td>
<td>41</td>
<td>106.81</td>
<td>93.85</td>
<td>140.51</td>
</tr>
<tr>
<td>16</td>
<td>13.68</td>
<td>4.92</td>
<td>1.82</td>
<td>42</td>
<td>119.67</td>
<td>108.75</td>
<td>171.99</td>
</tr>
<tr>
<td>17</td>
<td>14.60</td>
<td>5.45</td>
<td>2.18</td>
<td>43</td>
<td>134.58</td>
<td>126.50</td>
<td>211.56</td>
</tr>
<tr>
<td>18</td>
<td>15.12</td>
<td>6.04</td>
<td>2.59</td>
<td>44</td>
<td>151.95</td>
<td>147.74</td>
<td>261.60</td>
</tr>
<tr>
<td>19</td>
<td>16.56</td>
<td>6.70</td>
<td>3.07</td>
<td>45</td>
<td>172.28</td>
<td>173.28</td>
<td>325.34</td>
</tr>
<tr>
<td>20</td>
<td>17.69</td>
<td>7.44</td>
<td>3.64</td>
<td>46</td>
<td>196.22</td>
<td>204.19</td>
<td>407.11</td>
</tr>
<tr>
<td>21</td>
<td>18.92</td>
<td>8.26</td>
<td>4.31</td>
<td>47</td>
<td>224.55</td>
<td>241.80</td>
<td>512.84</td>
</tr>
<tr>
<td>22</td>
<td>20.27</td>
<td>9.19</td>
<td>5.09</td>
<td>48</td>
<td>258.28</td>
<td>287.85</td>
<td>650.67</td>
</tr>
<tr>
<td>23</td>
<td>21.75</td>
<td>10.23</td>
<td>6.00</td>
<td>49</td>
<td>298.71</td>
<td>344.63</td>
<td>831.99</td>
</tr>
<tr>
<td>24</td>
<td>23.36</td>
<td>11.40</td>
<td>7.08</td>
<td>50</td>
<td>347.50</td>
<td>415.14</td>
<td>1072.80</td>
</tr>
<tr>
<td>25</td>
<td>25.13</td>
<td>12.72</td>
<td>8.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo 1. Factores de carga según Terzagui. Tomado de: (Das, 2012)
Anexo 2. Factor de carga N_a según Vesic. Tomado de: (Das, 2012)

<table>
<thead>
<tr>
<th>p'</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12.12</td>
<td>15.95</td>
<td>20.98</td>
<td>24.64</td>
<td>27.61</td>
<td>30.16</td>
<td>39.70</td>
<td>46.61</td>
<td>52.24</td>
</tr>
<tr>
<td>6</td>
<td>13.18</td>
<td>17.47</td>
<td>23.15</td>
<td>27.30</td>
<td>30.69</td>
<td>33.60</td>
<td>44.53</td>
<td>52.51</td>
<td>59.02</td>
</tr>
<tr>
<td>7</td>
<td>14.33</td>
<td>19.12</td>
<td>25.52</td>
<td>30.21</td>
<td>34.06</td>
<td>37.37</td>
<td>49.88</td>
<td>59.05</td>
<td>66.56</td>
</tr>
<tr>
<td>8</td>
<td>15.57</td>
<td>20.91</td>
<td>28.10</td>
<td>33.40</td>
<td>37.75</td>
<td>41.51</td>
<td>55.77</td>
<td>66.29</td>
<td>74.93</td>
</tr>
<tr>
<td>9</td>
<td>16.90</td>
<td>22.85</td>
<td>30.90</td>
<td>36.87</td>
<td>41.79</td>
<td>46.05</td>
<td>62.27</td>
<td>74.30</td>
<td>84.21</td>
</tr>
<tr>
<td>10</td>
<td>18.24</td>
<td>24.95</td>
<td>33.95</td>
<td>40.66</td>
<td>46.21</td>
<td>51.02</td>
<td>69.43</td>
<td>83.14</td>
<td>94.48</td>
</tr>
<tr>
<td>11</td>
<td>19.88</td>
<td>27.22</td>
<td>37.27</td>
<td>44.79</td>
<td>51.03</td>
<td>56.46</td>
<td>77.31</td>
<td>92.90</td>
<td>105.84</td>
</tr>
<tr>
<td>12</td>
<td>21.55</td>
<td>29.68</td>
<td>40.88</td>
<td>49.30</td>
<td>56.30</td>
<td>62.41</td>
<td>85.96</td>
<td>103.66</td>
<td>118.39</td>
</tr>
<tr>
<td>13</td>
<td>23.34</td>
<td>32.34</td>
<td>44.80</td>
<td>54.20</td>
<td>62.05</td>
<td>68.92</td>
<td>95.46</td>
<td>115.51</td>
<td>132.24</td>
</tr>
<tr>
<td>14</td>
<td>25.28</td>
<td>35.21</td>
<td>49.05</td>
<td>59.54</td>
<td>68.33</td>
<td>76.02</td>
<td>105.90</td>
<td>128.55</td>
<td>147.51</td>
</tr>
<tr>
<td>15</td>
<td>27.36</td>
<td>38.32</td>
<td>53.67</td>
<td>65.36</td>
<td>75.17</td>
<td>83.78</td>
<td>117.33</td>
<td>142.89</td>
<td>164.33</td>
</tr>
<tr>
<td>16</td>
<td>29.60</td>
<td>41.68</td>
<td>58.68</td>
<td>71.69</td>
<td>82.62</td>
<td>92.24</td>
<td>129.87</td>
<td>158.65</td>
<td>182.85</td>
</tr>
<tr>
<td>17</td>
<td>32.02</td>
<td>45.31</td>
<td>64.13</td>
<td>78.57</td>
<td>90.75</td>
<td>101.48</td>
<td>143.61</td>
<td>175.95</td>
<td>203.23</td>
</tr>
<tr>
<td>18</td>
<td>34.63</td>
<td>49.24</td>
<td>70.03</td>
<td>86.05</td>
<td>99.60</td>
<td>111.56</td>
<td>158.65</td>
<td>194.94</td>
<td>225.62</td>
</tr>
<tr>
<td>19</td>
<td>37.44</td>
<td>53.50</td>
<td>76.45</td>
<td>94.20</td>
<td>109.24</td>
<td>122.54</td>
<td>175.11</td>
<td>215.78</td>
<td>250.23</td>
</tr>
<tr>
<td>20</td>
<td>40.47</td>
<td>58.10</td>
<td>83.40</td>
<td>103.05</td>
<td>119.74</td>
<td>134.52</td>
<td>193.13</td>
<td>238.62</td>
<td>277.26</td>
</tr>
<tr>
<td>21</td>
<td>43.74</td>
<td>63.07</td>
<td>90.96</td>
<td>112.68</td>
<td>131.18</td>
<td>147.59</td>
<td>212.84</td>
<td>263.67</td>
<td>306.94</td>
</tr>
<tr>
<td>22</td>
<td>47.27</td>
<td>68.46</td>
<td>99.16</td>
<td>123.16</td>
<td>143.64</td>
<td>161.83</td>
<td>234.40</td>
<td>291.13</td>
<td>339.52</td>
</tr>
<tr>
<td>23</td>
<td>51.08</td>
<td>74.30</td>
<td>108.08</td>
<td>134.56</td>
<td>157.21</td>
<td>177.36</td>
<td>257.99</td>
<td>321.22</td>
<td>375.28</td>
</tr>
<tr>
<td>24</td>
<td>55.20</td>
<td>80.62</td>
<td>117.76</td>
<td>146.97</td>
<td>172.00</td>
<td>194.31</td>
<td>283.80</td>
<td>354.20</td>
<td>414.51</td>
</tr>
<tr>
<td>25</td>
<td>59.66</td>
<td>87.48</td>
<td>128.28</td>
<td>160.48</td>
<td>188.12</td>
<td>212.79</td>
<td>312.03</td>
<td>390.35</td>
<td>457.57</td>
</tr>
</tbody>
</table>

Anexo 3. Factor de carga N_c según Vesic. Tomado de: (Das, 2012)

<table>
<thead>
<tr>
<th>I_r</th>
<th>N_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6.97</td>
</tr>
<tr>
<td>20</td>
<td>7.90</td>
</tr>
<tr>
<td>40</td>
<td>8.82</td>
</tr>
<tr>
<td>60</td>
<td>9.36</td>
</tr>
<tr>
<td>80</td>
<td>9.75</td>
</tr>
<tr>
<td>100</td>
<td>10.04</td>
</tr>
<tr>
<td>200</td>
<td>10.97</td>
</tr>
<tr>
<td>300</td>
<td>11.51</td>
</tr>
<tr>
<td>400</td>
<td>11.89</td>
</tr>
<tr>
<td>500</td>
<td>12.19</td>
</tr>
</tbody>
</table>
Hoja de calibración

Fecha: 3/10/2016 5:56 PM

Encargado del procedimiento: Jose Rave

Nombre del sensor: Celda Arepa
Unidades de calibración: kN
Pendiente de calibración: 107.130111
Intercepto de calibración: 0.219304
Residuo: 0.247751
R: 0.752249

Tabla de calibración:

<table>
<thead>
<tr>
<th>Punto</th>
<th>Patrón</th>
<th>Lectura</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000</td>
<td>0.000000</td>
<td>-0.005253</td>
</tr>
<tr>
<td>1.00000</td>
<td>25.000000</td>
<td>0.229662</td>
</tr>
<tr>
<td>2.00000</td>
<td>50.000000</td>
<td>0.459262</td>
</tr>
<tr>
<td>3.00000</td>
<td>80.000000</td>
<td>0.751142</td>
</tr>
<tr>
<td>4.00000</td>
<td>100.000000</td>
<td>0.938332</td>
</tr>
<tr>
<td>5.00000</td>
<td>125.000000</td>
<td>1.167381</td>
</tr>
<tr>
<td>6.00000</td>
<td>150.000000</td>
<td>1.400775</td>
</tr>
<tr>
<td>7.00000</td>
<td>180.000000</td>
<td>1.676564</td>
</tr>
<tr>
<td>8.00000</td>
<td>200.000000</td>
<td>1.858056</td>
</tr>
</tbody>
</table>

Anexo 4. Hoja de calibración para celda de carga. Tomado de: (Rave, 2016)
Hoja de calibración

Fecha: 3/8/2016 4:44 PM

Encargado del procedimiento: Mauricio Ramírez

Nombre del sensor: SEN12
Unidades de calibración: V/V/mm
Pendiente de calibración: 0.026280
Intercepto de calibración: -0.035705
Residuo: 0.000007
R: 0.999993

Tabla de calibración:

<table>
<thead>
<tr>
<th>Punto</th>
<th>Patrón</th>
<th>Lectura</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000000</td>
<td>5.320000</td>
<td>0.105846</td>
</tr>
<tr>
<td>1.000000</td>
<td>10.720000</td>
<td>0.248281</td>
</tr>
<tr>
<td>2.000000</td>
<td>15.150000</td>
<td>0.357878</td>
</tr>
<tr>
<td>3.000000</td>
<td>20.200000</td>
<td>0.497130</td>
</tr>
<tr>
<td>4.000000</td>
<td>25.140000</td>
<td>0.622928</td>
</tr>
<tr>
<td>5.000000</td>
<td>30.170000</td>
<td>0.754196</td>
</tr>
<tr>
<td>6.000000</td>
<td>35.210000</td>
<td>0.889777</td>
</tr>
<tr>
<td>7.000000</td>
<td>38.230000</td>
<td>0.972392</td>
</tr>
</tbody>
</table>

Anexo 5. Hoja de calibración para deformímetro. Tomado de: (Ramírez, 2016)