APÓSITO DE ALOE VERA PARA LA CICATRIZACIÓN DE HERIDAS DÉRMICAS

LAURA CÉSPEDES MARULANDA
SARITA CORREA CARDONA

Trabajo de grado para optar al título de
Ingeniería Biomédica

Martha Elena Londoño López PhD

ESCUELA DE INGENIERÍA DE ANTIOQUIA
UNIVERSIDAD CES
ENVIGADO
2014

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
AGRADECIMIENTOS

Agradecemos a la Escuela de Ingeniería de Antioquia por la formación integral en estos años, al CES Sabaneta, al ICMT y al personal del laboratorio de biomateriales por la ayuda con el manejo adecuado de materiales y equipos y por las asesorías necesarias para el desarrollo de nuestro trabajo de grado. A la estudiante de maestría Luisa Gómez Chabala por guiarnos en el proceso de obtención de las matrices.

A la SIU por permitirnos realizar las imágenes de microscopía electrónica de barrido (SEM). A la bióloga Valentina Vélez por su acompañamiento y asesoría en todo lo que respecta al área de biotecnología.

Por último, agradecemos a nuestras familias por el apoyo dado durante todo nuestro proceso de formación académica e integral, por sus esfuerzos y credibilidad en nosotras, y por aconsejarnos y escucharnos en todo momento.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
1.3.10.2 Peso Molecular .. 25
1.3.11 Aloe Vera ... 25
1.3.11.1 Composición del Aloe Vera ... 26
1.3.11.2 Acciones Farmacológicas y Terapéuticas del Aloe Vera .. 27
1.3.12 La Piel .. 27
1.3.12.1 Metabolismo de la Piel .. 28
1.3.12.2 Heridas Dérmicas .. 28
1.3.12.3 Tratamientos para las Heridas ... 29
1.3.12.4 Vías de Penetración de la Piel .. 29
1.3.12.4.1 Transepidérmica ... 30
1.3.12.4.2 Transapendicular .. 30
1.3.13 Estudios In Vitro ... 31
1.3.14 Cicatrización .. 31
1.3.15 Alginato .. 32
1.3.16 Quitosano .. 32
1.3.17 Fuerzas Electrostáticas ... 33
1.3.18 Entrecruzamiento físico y químico ... 33
1.3.18.1 Liofilización .. 33
1.3.18.2 Sonicación ... 33
2. ELABORACIÓN DEL APÓSITO CARGADO CON ALOE VERA ... 35
2.3 Hidrogeles Físicos ... 36
2.3.1 Preparación de la solución de alginato (1%) ... 38
2.3.2 Preparación de la soluciones de quitosano al 1% y 1.5% ... 38

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.4 Preparación matriz A1Q1B12L</td>
<td>39</td>
</tr>
<tr>
<td>2.3.5 Preparación matriz A1Q1L / A1Q1.5L</td>
<td>39</td>
</tr>
<tr>
<td>2.3.6 Preparación matriz A1Q1SL / A1Q1.5SL</td>
<td>40</td>
</tr>
<tr>
<td>2.4 Características estructurales de las matrices seleccionadas</td>
<td>41</td>
</tr>
<tr>
<td>2.5 Morfología de los tratamientos con SEM</td>
<td>42</td>
</tr>
<tr>
<td>2.6 Degradabilidad de las matrices cargadas con Aloe vera</td>
<td>43</td>
</tr>
<tr>
<td>2.7 Capacidad antibacterial de las matrices cargadas con Aloe vera</td>
<td>43</td>
</tr>
<tr>
<td>2.8 Citotoxicidad del apósito cargado con Aloe vera en células CHO.</td>
<td>45</td>
</tr>
<tr>
<td>2.9 Diseño del soporte del sistema liberador de Aloe vera</td>
<td>46</td>
</tr>
<tr>
<td>3. DESARROLLO DEL APÓSITO CARGADO CON ALOE VERA</td>
<td>49</td>
</tr>
<tr>
<td>3.1 Preparación de hidrogeles</td>
<td>49</td>
</tr>
<tr>
<td>3.1.1 Hidrogeles por proceso de sonicación</td>
<td>49</td>
</tr>
<tr>
<td>3.1.2 Hidrogeles con NaCl o NaHCO3</td>
<td>49</td>
</tr>
<tr>
<td>3.1.3 Hidrogeles liofilizados</td>
<td>50</td>
</tr>
<tr>
<td>3.2 Selección de matrices para el sistema liberador</td>
<td>50</td>
</tr>
<tr>
<td>3.3 Degradabilidad de las matrices</td>
<td>52</td>
</tr>
<tr>
<td>3.4 Capacidad antibacterial de las matrices cargadas con Aloe vera</td>
<td>54</td>
</tr>
<tr>
<td>3.5 Citotoxicidad del apósito cargado con Aloe vera en células CHO.</td>
<td>55</td>
</tr>
<tr>
<td>3.6 Desarrollo del diseño del soporte del sistema liberador de Aloe vera</td>
<td>58</td>
</tr>
<tr>
<td>3.6.1 Diseño de concepto</td>
<td>58</td>
</tr>
<tr>
<td>3.6.1.1 Identificación de necesidades del usuario</td>
<td>58</td>
</tr>
<tr>
<td>3.6.1.2 Identificación de especificaciones</td>
<td>59</td>
</tr>
<tr>
<td>3.6.1.3 Generación del concepto</td>
<td>62</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
LISTA DE TABLAS

Tabla 1. Fases del Proceso de Curación. ... 32
Tabla 2. Tratamientos para optimización de matrices .. 37
Tabla 3. Matrices seleccionadas .. 41
Tabla 4. Nomenclatura de las matrices cargadas y no cargadas en ensayo de degradabilidad ... 53
Tabla 5. Tratamientos sometidos a actividad bacteriana 54
Tabla 6. Diseño de experimentos: Tratamientos para ensayo MTT 55
Tabla 7. Diseño de experimentos: controles para ensayo MTT 55
Tabla 8. Lista de necesidades del usuario ... 59
Tabla 9. Lista de especificaciones ... 60
Tabla 10. Matriz necesidades - especificaciones ... 61
Tabla 11. Lista de criterios de selección ... 62
Tabla 12. Alternativas solución para extraer la matriz del empaque 64
Tabla 13. Alternativas solución para extraer Aloe vera del refrigerador 65
Tabla 14. Alternativas solución para cargar matriz con Aloe vera 66
Tabla 15. Alternativas solución para refrigerar matriz cargada 66
Tabla 16. Alternativas solución para posicionar paciente 67
Tabla 17. Alternativas solución para fijar matriz al paciente 68
Tabla 18. Alternativas solución para liberar Aloe vera 68
Tabla 19. Alternativas solución para retirar apósito ... 69
Tabla 20. Alternativas solución para cargar matriz con Aloe vera 69
Tabla 21. Alternativas solución para cargar matriz con Aloe vera 69

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
LISTA DE GRÁFICAS

Gráfica 1. Prueba de Hinchamiento de las Matrices .. 51
Gráfica 2. FT-IR del Alginato y del Quitosano (Abreu et al., 2008).............................. 52
Gráfica 3. Curva de calibración MTT.. 56
Gráfica 4. FT-IR de los 5 tratamientos. ... 77
Gráfica 5. Resultados porcentajes de pérdidas de peso en ensayo de degradabilidad con los cinco tratamientos. ... 81
Gráfica 6. Resultados ensayo kirby–Bauer evidencian los tratamientos con mejor capacidad antibacterial teniendo como referencia los controles de antibióticos y Aloe vera. .. 85
Gráfica 7. Resultados MTT a) Absorbancias de los Tratamientos y b) concentraciones celulares. .. 86
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
RESUMEN

La reparación y regeneración del tejido lesionado debido a diversos factores como el medio ambiente, quemaduras, alergias, agentes químicos y farmacéuticos ha sido desde la antigüedad un gran desafío para los seres humanos. El hombre ha venido tratando de devolver la morfología, apariencia y funcionalidad a los tejidos lesionados. Para esto, tratamientos como injertos, vendajes, cremas y otros métodos como son los andamios y apósitos han sido ampliamente utilizados.

Hoy en día, los apósitos para heridas han sido objeto de estudio para muchos investigadores. Estos, pueden obtenerse naturalmente de insectos, animales marinos y plantas que poseen propiedades antibacteriales, son biocompatibles, hidratantes y activadores de células. Algunos de ellos, como el alginato y el quitosano, cuentan con componentes que pueden ayudar en el proceso de curación.

El presente trabajo de investigación, se desarrolló para optimizar la composición del sistema de liberador de medicamentos de Aloe vera, que es ampliamente utilizado por sus propiedades terapéuticas, por lo cual, puede ser un material activo en apósitos para heridas. Este sistema ha sido estudiado desde hace unos años en el Laboratorio de Biomateriales, con el principal objetivo de contribuir a la cicatrización de irritaciones y lesiones dérmicas superficiales; buscando obtener un mejor tratamiento que sea biodegradable, no tóxico y antibacterial. También se realizaron estudios morfológicos por medio de la microscopia electrónica de barrido (SEM) y análisis estructural de la composición de cada matriz con microscopía infrarroja de la transformada de Fourier.

El desarrollo del sistema polimérico se realizó con alginato y quitosano. Se obtuvieron matrices que absorben Aloe vera y lo liberan de manera controlada. El proceso de obtención se mejoró utilizando diferentes concentraciones de las soluciones y empleando entrecruzantes físicos como el ultrasonido y el secado en frío con equipo de liofilización, entrecruzantes químicos, como el cloruro de sodio, y agente porogénico. Sin embargo, no todas las matrices presentaron las propiedades adecuadas, por lo cual, se seleccionaron cinco tratamientos para realizar los análisis. Además, se diseñó el soporte que llevaría la matriz para fácil manipulación por el usuario o paciente.

Los apósitos de alginato/quitosano y Aloe vera mostraron tasas de degradación satisfactorias, buena capacidad de hinchamiento, capacidad antibacterial con Staphylococcus aureus y compatibilidad. Se presentó potencial actividad antibacterial en las matrices cargadas con Aloe vera y ensayos in vitro demostraron buena biocompatibilidad.

Palabras clave: Alginato-Quitosano, Aloe vera, Antibacterial, Apósito Dérmico, Citotoxicidad.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
ABSTRACT

The repair and regeneration of injured tissue by different facts such environment, burns, allergies, chemicals and pharmaceuticals, has been since antiquity a great challenge for the human being. Men have been trying to restore the morphology, appearance and functionality of injured tissues. Treatments like skin implants, creams, cell scaffolds and wound dressings have been widely used.

Nowadays, wound dressings have been under research. They could be obtained from insects, marine animals and some kind of plants that have antibacterial properties and also are biocompatible, provide moisturizers environments and promote cell growth. Besides, some of them such as alginate and chitosan, have components that could initiate healing process.

Wound dressings are commonly used to provide an appropriate environment to restore injured tissue. They can hydrate the injury or absorb exudates, depending on the type of injury.

This work was developed to improved the composition of a drug delivery system of Aloe vera, wich is widely used for its therapeutic properties that can be an active material of wound dressings. This system have been studied for several years in the Biomaterials Laboratory with the principal aim of contribute to the scaring process of superficial skin lesions. In order to obtain a better treatment, properties like degradability, citotoxicity and antibacterial capacity were assessed. Morphological studies were also made using scanning electron microscopy (SEM) and structural analysis of the composition of each dressing with Fourier transform infrared spectroscopy (FT-IR).

The development of the drug delivery system was made with polymers as alginate and chitosan. We obtained a matrix wich absorbs and release Aloe vera in a controlled manner. The obtaining processes were improved using different concentrations of the solutions and crosslinking processes as sonication, freeze dryng and bicarbonate. However, not all supported the project aim, because the properties did not fit the requirements, so just five treatments were chosen and examine.

The alginate/chitosan – Aloe vera dressings displayed satisfactory rates of degradation, wettability, antibacterial activity and cellular biocompatibility. A higher antibacterial potency was displayed by the charged membranes with Aloe vera. In vitro assays demonstrated that these dressings have good cell compatibility. Also, the lead support matrix for easier manipulation by the user was designed. These membranes might be promising wound dressing materials.

Key words: Alginate/Chitosan, Aloe vera, Antibacterial activity, Citotoxicity, Wound Dressing

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
INTRODUCCIÓN

La exposición dérmica a factores climáticos, agentes químicos y alimentos, pueden producir irritaciones o lesiones cuando la piel se expone durante un tiempo prolongado y concentración suficiente a sensibilizantes o alérgenos causando enrojecimiento, decoloración e incluso hasta cáncer (Instituto Nacional de Seguridad e Higiene en el Trabajo, 2012).

En la actualidad, los apósitos, andamios y vendajes que están en el mercado son muy costosos y algunos no son naturales, sino sintéticos lo que puede causar que alguna de sus propiedades puedan ser tóxicas o no tan beneficiosas, como podría serlo el manejar sistemas totalmente hechos con elementos obtenidos de la naturaleza, como polímeros obtenidos de animales y plantas como medicamentos.

Los hidrogeles son biomateriales que han sido extensamente usados en ingeniería de tejidos, como andamios de soporte celular y sistemas liberadores de medicamentos. Ellos son hechos de polisacáridos, gelatina y fibrina, polímeros sintéticos y/o naturales (Baysal, Aroguz, Adiguzel, & Baysal, 2013). De éstos últimos, el alginato y quitosano han sido objeto de estudio por varios años por investigadores farmacéuticos y biomédicos (Abreu, Bianchini, Forte, & Kist, 2008). Al ser biocompatibles, biodegradables y registrar una interacción adecuada con medicamentos, los científicos se han encargado de incluirlos en la realización de sistemas de liberación de medicamentos para garantizar que todo el producto sea natural; por ello han incorporado especies de plantas medicinales como el Aloe vera. El interés de esta planta es asociada a los polisacáridos que presentan beneficios curativos como actividad anti-inflamatoria, anti-tumoral y actividad antibacterial (Silva, Caridade, Mano, & Reis, 2013).

El quitosano es un polisacárido con carga positiva, derivado de la quitina por procesos de desacetilación, que muestra excelentes propiedades como biomaterial por su biocompatibilidad en mamíferos, biodegradabilidad, mucoadhesión y la no toxicidad con células mamíferas (Kusrini, Arbianti, Sofyan, Abdullah, & Andriani, 2014). Por otro lado, el alginato es un polisácarido con carga negativa, derivado de algas que, como el quitosano, presenta propiedades no tóxicas, biodegradables y antibacteriales (Kaklamani, Cheneler, Grover, Adams, & Bowen, 2014). De acuerdo a esto, el desarrollo del apósito del proyecto empleó tres componentes, los polímeros descritos previamente y el Aloe vera incorporado en éstos como medicamento natural, muy usado para la regeneración de tejido lesionado. La función del hidrogel es actuar como sistema transportador del medicamento y liberarlo cuando esté en contacto con la piel. Para seleccionar cuál apósito era el apropiado para el propósito del estudio, se le hicieron diversas pruebas de propiedades como degradabilidad, citotoxicidad y actividad antibacterial. Además, se realizaron pruebas de microscopia electrónica de barrido y microscopía infrarroja de transformada de Fourier como soporte para determinar la mejor, dentro de los
tratamientos establecidos. Se elaboró el diseño del soporte que permitiría entregar este apósito a una persona para utilizarlo sobre algún tipo de lesión dérmica superficial.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
1. PRELIMINARES

1.1 PLANTEAMIENTO DEL PROBLEMA

1.1.1 Contexto y caracterización del problema

Para la curación de lesiones, en tejidos como la piel, que es el tejido más amplio expuesto a muchos agentes externos que la pueden dañar o causarle alguna lesión, es común que se haga uso de diversos medicamentos buscando alcanzar paso a paso la restauración total, tanto física como funcional, de la parte de tejido lesionado. En estos casos, es común que los tratamientos no lleguen a ser realmente efectivos, debido a que se suministran en dosis generalizadas a diferentes tipos de lesión y de piel, y no van a actuar de manera directa sobre la región afectada del tejido debido a la presencia de barreras biológicas, impidiendo que se obtenga la cantidad de medicamento necesaria en el lugar indicado, lo cual, puede provocar un proceso de recuperación mucho más lento, que incluso no alcance el resultado esperado que en este caso, sería una correcta cicatrización (Aristizábal & Nieto, 2011).

Actualmente se conoce que las dosis generalizadas para pacientes no actúan de igual manera en cada persona, ya que en cada una el fármaco actúa según responda el sistema inmune y, también según el estilo de vida que lleve el paciente. Por lo anterior, se ha observado en historias clínicas que hay pacientes que requieren de mayor tiempo de recuperación que otras tomando más tiempo para que el tratamiento sea efectivo.

En busca de una solución a este efecto, se han comenzado a desarrollar sistemas de transporte de medicamentos en el organismo en la industria farmacéutica, la cual ha mostrado un gran interés en desarrollar investigaciones enfocadas a estos sistemas, de manera que los medicamentos o sustancias puedan ponerse en contacto directo con el tejido lesionado (Lu & Chen, 2004). Con ayuda de proteínas, liposomas, nano partículas o diferentes andamios cargados con la dosis específica (Pensilvania, 2013) que necesita el paciente, de esta forma se busca mejorar la farmacocinética y farmacodinamia de los medicamentos, para obtener así una dosis determinada en el lugar afectado del tejido, aumentar la efectividad de los tratamientos y por consecuencia los procesos de cicatrización mejoren.

Para esto, debe tenerse en cuenta el área, el tipo de herida y los niveles de lesión que se presenten en la piel para identificar los momentos en los cuales se pueda comenzar a brindar un tratamiento con el sistema liberador, una vez se haya recuperado el tejido dérmico de las fases más críticas. Con los sistemas de transporte de medicamentos se logra una intervención que ayuda a recuperar el tejido perdido con la lesión, sin presentar reacción adversa que favorezca el proceso de cicatrización y brinde a la persona...

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Las investigaciones relacionadas con estos sistemas están ligadas a la evaluación de diferentes propiedades del material. Comúnmente se han venido utilizando sistemas con biomateriales basados en polímeros biodegradables, los cuales deben ser incompatibles con los diferentes tejidos corporales, de manera que no se generen respuestas de rechazo significativas. Además, dichos materiales deben biodegradarse en componentes no tóxicos luego de haber interactuado con el tejido, para lo cual será importante determinar potenciales citotóxicos de los diferentes componentes que conformen el sistema (Sáez, Hernáez, Sanz, & Katime, 2004).

La Aloe vera o sábila ha sido utilizada tradicionalmente, desde civilizaciones de la antigüedad, en la curación de heridas sobre la piel. Esto ha sido posible gracias a sus beneficios regeneradores de células, lo cual ha permitido utilizar el Aloe vera como un tratamiento cicatrizante de tejidos lesionados (Rodríguez Domínguez, Santana Gutiérrez, Recio López, & Fuentes Naranjo, n.d.)

Por lo tanto, deben tenerse en cuenta aspectos como citotoxicidad, propiedades antibacteriales, intervalo de dosis óptima, lesión dérmica en que es más efectivo y la degradabilidad del sistema liberador de medicamentos, para que pueda ser utilizado como parte del tratamiento en la cicatrización de lesiones dérmicas superficiales. Esto es importante para garantizar la compatibilidad de los sistemas liberadores con los tejidos con lo que entrarán en contacto en el cuerpo humano, evitando reacciones de rechazo que puedan resultar en complicaciones de la lesión, buscando por el contrario, que brinden una respuesta lo más efectiva posible en el tratamiento del tejido afectado.

En este proyecto se determinarán dichos aspectos considerando propiedades de heridas dérmicas superficiales que se encuentren finalizando la segunda etapa del proceso de cicatrización, de manera que no queden expuestos fluidos corporales, como la sangre, con el apósito, únicamente se consideran exudados propios de la herida que podrán ser absorbidos por los materiales que componen la matriz.

1.2 OBJETIVOS DEL PROYECTO

1.2.1 Objetivo General

Determinar las propiedades: citotoxicidad, poder antibacterial y biodegradabilidad in vitro, de un apósito cargado con Aloe vera para su potencial uso en heridas dérmicas superficiales.

1.2.2 Objetivos Específicos

- Optimizar el sistema de liberación controlada de Aloe Vera desarrollado en el laboratorio de biomateriales.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
• Determinar la citotoxicidad de la matriz polimérica y Aloe vera.
• Identificar la actividad antibacterial de la matriz polimérica cargada con Aloe vera.
• Evaluar la degradabilidad de la matriz polimérica y Aloe vera.
• Diseñar un sistema modelo que integre el apósito a un soporte para poder ser usado por el usuario.

1.3 MARCO DE REFERENCIA

1.3.1 Mecanismos de Liberación Transdermal

A fines de 1970 comienzan a aparecer los primeros diseños de sistemas terapéuticos transdermales, aprovechando la capacidad de permeabilidad selectiva de la piel a diferentes sustancias, siendo ampliamente utilizada para suministrar fármacos. Estos sistemas poseen mecanismos de liberación programada constante del fármaco (Allevato, 2007).

Normalmente las enfermedades que afectan la piel son tratadas por medio de cremas, que aunque brindan una forma de administración imprecisa, es una manera rápida de suministrar el tratamiento. También puede lograrse por medio de inyecciones, pero en este caso, las terapias son intermitentes, lo cual puede afectar la correcta regeneración del tejido lesionado (Roman et al., 2008).

En el caso de sistemas transdermales, lo que se busca es tener una adhesión externa con la piel, logrando efectos sistémicos y evitando el paso por el metabolismo hepático, que es una desventaja que se presenta con la administración de tratamientos por vía oral (Roman et al., 2008).

Los sistemas de liberación transdermales deben tener en consideración la farmacocinética y farmacodinamia en el paciente. El proceso transdermal depende de muchos factores, como la concentración del fármaco, el tipo de sistema, el área superficial de contacto, la oclusión, la región anatómica de aplicación, las condiciones de la piel, edad, metabolismo en la piel, grado de irrigación sanguínea en la misma, etc (Aguilera, 2005). La liberación transdermal, donde el sistema de liberación se adhiere externamente a la piel, es una de las rutas de administración de fármacos comercialmente aceptadas. Mediante estos sistemas es posible obtener efectos sistémicos, evitando el efecto de primer paso por el metabolismo hepático. Los sistemas transdermales necesitan poseer determinadas características para poder traspasar la epidermis, si se tiene en cuenta que la permeabilidad de la piel no es idéntica en toda su superficie y que varía de unos individuos a otros (Sáez, Hernández, & López, 2003).

Aunque esto parece una alternativa viable, acarrea consigo una serie de aspectos que deben tenerse en cuenta, ya que atravesar la piel es un proceso complejo y se requiere
que las sustancias tengan bajo peso molecular, adecuada liposolubilidad del fármaco que se vaya a utilizar para lograr difundir, un medicamento potente que actúe con bajas dosis y que además no lleguen a irritar la piel, tanto el fármaco como el sistema liberador. Además, influirá el área superficial de contacto, las condiciones del tejido como metabolismos e irrigación sanguínea y la región anatómica en la que se encuentre, para lograr una correcta absorción (Roman et al., 2008).

1.3.2 Hidrogeles

Un hidrogel está conformado por componentes poliméricos que se disponen en forma de red tridimensional macromolecular, de manera que permitan la absorción de cantidades considerables de agua. Los monómeros que los constituyen son cristales y al incorporar el agua aumentan de volumen, manteniendo la forma sin romperse (Rodríguez & Balibrea, 2008). Se caracterizan por ser hidrófilos, elásticos e insolubles en agua, ya que lo que hacen es hincharse cuando están en presencia de ella, cambiando su volumen hasta que alcanzan un equilibrio químico. Pueden llegar a presentar muy buena resistencia mecánica y son considerados como materiales aptos para aplicaciones médicas, ya que tienen buena interacción con tejidos vivos al presentar buenos niveles de biocompatibilidad (Arredondo & Londoño, 2009).

Los hidrogeles presentan una elevada biocompatibilidad; una vez hidratados se comportan como sistemas viscoelásticos, lo que los dota de una consistencia muy adecuada para su manipulación y evita que se produzca daño mecánico cuando entran en contacto con los tejidos biológicos (Sánchez & Carmen, 2004).

1.3.2.1 Propiedades de los Hidrogeles en Mecanismos de Liberación Controlada de Medicamentos

En los últimos años se han evidenciado avances sobre las facultades liberadoras que se obtienen en los hidrogeles, brindando una alternativa de tener un control preciso sobre la liberación de medicamentos, logrando los niveles óptimos terapéuticos que se requieran en un tratamiento. Para que esto sea posible, deben considerarse las propiedades de los hidrogeles como biomaterial y además, las especificaciones para poder utilizar los fármacos (Arredondo & Londoño, 2009).

Los hidrogeles han sido utilizados desde la biomédica para la liberación controlada de medicamentos, considerándolos como materiales inteligentes que sirven de medio para transportar sustancias activas. Sus propiedades físicas y químicas se han ido estudiando con el fin de optimizar su mecanismo (Arredondo & Londoño, 2009).

Los hidrogeles tienen ciertas limitaciones y una de estas es que presentan baja afinidad por fármacos insolubles en agua (Hidrofóbicos), que dificulta su incorporación a estos, y una escasa capacidad de control de liberación del fármaco cargado, especialmente si éste es hidróflico. Entre las soluciones a los inconvenientes mencionados se han investigado otras formas de incorporarlos por medio de sistemas vesiculares como liposomas, micelas o la impronta molecular (materiales sintéticos que presentan propiedades de

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
reconocimiento molecular específico hacia determinados compuestos. Estos materiales con “memoria selectiva” presentan un elevado potencial analítico como sustitutos de elementos de reconocimiento de origen biológico (Angulo Barrios et al., 2011).

La velocidad de liberación de un fármaco o molécula activa viene controlada principalmente por la velocidad de hidrólisis del enlace fármaco-soporte (hidrogel). El modelo más aceptado es el de Ringsdorf que considera que el enlace covalente que se produce entre el fármaco y el sistema polimérico debe establecerse a través de grupos funcionales que puedan ser hidrolizados en un medio fisiológico (Rojo Del Olmo, 2008).

En la actualidad existen diferentes apósitos que ayudan a cicatrizar las lesiones dérmicas ayudando a regenerar la piel, evitando la entrada de microorganismos y de agua que puedan eludir la recuperación y a la vez que ésta sea más lenta para el paciente. Por ellos los parches comerciales existentes están compuestos por diferentes polímeros de acuerdo a la zona a tratar y las condiciones en las que estará expuesto (Rojo Del Olmo, 2008).

Los principales factores que deben evaluarse en los hidrogeles para ser utilizados en la liberación controlada de medicamentos, son principalmente la capacidad de hinchamiento, cinética de liberación, respuesta antes las condiciones del ambiente y su degradabilidad (Arredondo & Londoño, 2009).

Los mecanismos de liberación controlada deben tener un diseño que sea sensible a cambios en el medio ambiente, de manera que la matriz que lleva el medicamento no libere ningún componente activo hasta que se encuentre en las condiciones biológicas apropiadas. De esta manera, el hidrogel polimérico se mantendrá intacto hasta que entre en contacto con los fluidos corporales, para comenzar a absorber o hidratar la herida, cambiando su volumen y tamaño, sin disolverse, permitiendo que el tratamiento logre difundirse al exterior (zona afectada). Otros factores que podrían activar la liberación del medicamento son variaciones de pH o temperatura, dependiendo del polímero del que esté hecho el hidrogel y del grado de la profundidad de la herida o lesión (Escobar, García, Zaldivar, & Katime, 2002).

1.3.3 Farmacocinética

La farmacocinética estudia la rapidez con la que cambian la cantidad y la concentración de un fármaco o sus metabolitos en los distintos comportamientos corporales, así como su relación con la respuesta farmacológica. La dosis óptima es fundamental para un exitoso tratamiento que constituye en la asimilación de éste por parte de la zona de acción para empezar con la recuperación. Para un buen tratamiento se debe tener la dosis, la frecuencia con la que se debe administrar, la duración del tratamiento y que éste fármaco llegue con la concentración debida al lugar (Sanchez Gutiérrez, 2011).
1.3.4 Cinética de Eliminación de Fármacos en el Organismo

Para conocer la velocidad con la que los fármacos se eliminan del organismo se deben tener dos constantes farmacocinéticas:

1. El aclaramiento o depuración que indica la capacidad que tiene un órgano para eliminar el fármaco expresado como la cantidad de mililitros que el órgano aclara por unidad de tiempo.

2. La constante de eliminación indica a probabilidad de que una molécula de un fármaco se elimine del organismo. La semivida de la eliminación es el tiempo que tarda la concentración plasmática de un fármaco en reducirse a la mitad y es la inversa de la constante de eliminación (Sanchez Gutiérrez, 2011).

1.3.5 Muerte Celular

Cuantificar la muerte celular causada por la rotura de la membrana plasmática al establecerse los cultivos directamente sobre la superficie de los materiales y por tanto evaluar un posible efecto negativo sobre las células por parte de éstos (Rojo Del Olmo, 2008).

1.3.6 Biocompatibilidad

La biocompatibilidad de materiales poliméricos es esencial a la hora de implantarlos in vivo en alguna lesión dérmica. Sin embargo, en muchos casos es imposible evitar ciertos procesos asociados a su implantación en el medio fisiológico como son las reacciones adversas de irritación, inflamación, entre otras, causando un fallo en el tratamiento (Rojo Del Olmo, 2008). Como ya sabemos la presencia de un cuerpo extraño en el cuerpo desencadena señalizaciones que hacen al cuerpo “defenderse” y luchar contra el componente exógeno.

1.3.7 Citotoxicidad

La citotoxicidad comprende las alteraciones en las funciones celulares, que pueden llegar a provocar daño. Por medio de pruebas in vitro, que utilizan cultivos primarios, puede detectarse los efectos tóxicos de diferentes medicamentos, sustancias o compuestos químicos. Para esto, se utilizan diferentes tipos de ensayos que determinan los niveles de citotoxicidad. Esto se ha convertido en una variable trascendental, debido a las diferentes sustancias químicas comercializadas y los efectos que pueden generar a la salud (Arencibia, Rosario, & Curveco, 2003).

Lo que se pretende detectar mediante ensayos de citotoxicidad es evaluar por medio de mecanismos celulares lo efectos adversos que puedan alterar las estructuras y propiedades fundamentales para la supervivencia celular, de manera que las células puedan desempeñar correctamente todas sus funciones esenciales. Debe protegerse la

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

La citotoxicidad es un mecanismo ejercido por determinadas poblaciones celulares del sistema inmunitario, por medio del cual se establece la capacidad de interacción con otras células. Este sistema actúa como defensa ante infecciones o destrucción de células alogénicas en el caso de trasplantes cuando representan un efecto tóxico para las células (Lozano, Tarazona, & Peña, n.d.).

1.3.8 Propiedades Antibacteriales de un Sistema Liberador de Medicamentos

Para evitar infecciones en las lesiones provocadas, es común el uso de productos antisépticos, estos son capaces de eliminar microorganismos patógenos e incluso inactivan virus. Entre los más comunes se encuentran el alcohol, la clorhexidina, el peróxido de hidrógeno, entre otros (Esteva, 2006).

La heridas se encuentran comúnmente rodeadas de bacterias propias del funcionamiento del cuerpo humano, que pueden volverse altamente peligrosas cuando se alteran sus condiciones normales, especialmente valores de pH, siendo una potencial fuente de infección. Esto ha resaltado la importancia de evaluar la capacidad antibacterial de los sistemas liberadores de medicamentos, incorporando agentes antimicrobianos que además, ayuden a prevenir posibles infecciones (Silva, Popa, et al., 2013).

1.3.9 Propiedades Biodegradables de un Sistema Liberador de Medicamentos

Los sistemas utilizados comúnmente para la liberación controlada de medicamento, son sistemas desarrollados a base de polímeros que, en el momento en que se libera el medicamento, no cambian en sí su estructura química sino que sufren un hinchamiento. Una propiedad importante que presentan estos sistemas de liberación, es la capacidad de ser degradados por el organismo por efecto de procesos biológicos, lo cual, elimina el sistema una vez haya cumplido con su función de entregar el medicamento. Para esto, son utilizados polímeros biodegradables, que logran degradarse por procesos de hidrolisis de cadenas poliméricas, obteniendo como resultados residuos que luego podrán ser excretados del organismo (Escobar et al., 2002; Winzenburg, Schmidt, Fuchs, & Kissel, 2004).

1.3.10 Propiedades Físico-Químicas de los Fármacos

Importante evaluar las propiedades físico-químicas de un fármaco que es un potencial candidato para su empleo en sistemas de liberación controlada. Esta evaluación se basa en las características del sistema liberador y en la fisiología y/o anatomía de la zona de aplicación en el organismo.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
El material debe presentar especificaciones estrictas respecto a los siguientes aspectos: propiedades organolépticas (color, sabor, olor), pureza, densidad (densidad verdadera, densidad de empaquetamiento, entre otras), forma cristalina (si la tiene), tamaño/distribución de partículas (tamaño, medio, homogeneidad, factor de forma, área superficial) (Rojo Del Olmo, 2008).

1.3.10.1 Solubilidad

Para que un fármaco sea absorbido debe presentarse en forma de disolución acuosa en el lugar de absorción. En los sistemas liberadores es necesario determinar también la solubilidad en agua y otros disolventes y varios valores de pH (Sáez et al., 2003).

La velocidad de disolución suele determinarse introduciendo una pastilla del fármaco en agua a 37 º C bajo agitación 50 rpm (Sáez et al., 2003).

1.3.10.2 Peso Molecular

Más del 95 % de los fármacos, son transportados a través de membranas, por difusión. El fármaco debe presentarse en forma de disolución acuosa fuera de la membrana, luego debe poder disolverse en el material de la membrana durante el proceso de transporte a través de ella, y después ser expulsado del otro lado de la membrana.

La velocidad del flujo depende de la constante de difusión del fármaco en el material, del área superficial de la membrana, del coeficiente de partición del fármaco entre la disolución acuosa y la membrana, del espesor de la membrana y de las concentraciones fuera y dentro de ésta (Sáez et al., 2003).

1.3.11 Aloe Vera

La Aloe vera, también conocida como sábila, pertenece a la familia de las liliáceas (Liliaceae). Ha sido utilizada tradicionalmente, desde la antigüedad, en la curación de enfermedades de la piel, heridas, picaduras, infecciones en los ojos y otras enfermedades. Son grandes regeneradoras de células, por lo cual, durante muchos años el ser humano ha sacado provecho de su interacción con la fisiología humana para utilizar sus hojas, donde se encuentra la parte carnosa con los cristales, como un tratamiento cicatrizante e inflamatorio para proteger la piel, realizando aplicaciones terapéuticas en regeneración de tejidos (Rodríguez Domínguez et al., n.d.; Schweizer, 1994).

La familia Liliaceae comprende más de 350 especies, es común encontrarlas en zonas semiáridas de regiones tropicales y subtropicales. Lo forman hojas puntiagudas y alargadas de consistencia pulposa además, con una cubierta dentada que le sirve como mecanismo de protección a la planta. Ha sido una planta ampliamente utilizada en la medicina tradicional desde civilizaciones antiguas, donde se evidenció la utilización de sus propiedades medicinales para elaborar productos a partir de estas. Actualmente, solo algunas especies continúan siendo utilizadas en el sector comercial para sacar provecho
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
aminoácidos, entre otros, permiten que la aplicación de dicho gel estimule la proliferación de colágeno y de la actividad de fibroblastos, permitiendo de esta forma obtener una mejor cicatrización y procesos de angiogénesis (Domínguez-Fernández et al., 2012).

1.3.11.2 Acciones Farmacológicas y Terapéuticas del Aloe Vera

La mayoría de los usos del gel Aloe que se reportan en la bibliografía, hacen referencia a sus propiedades como cicatrizante de heridas, antiinflamatorio e inmunomoduladora.

Ha sido utilizado como cicatrizante de heridas en tratamientos como cortes, quemaduras y diferentes afecciones, disminuyendo sensaciones de dolor y ayudando a una recuperación más rápida de la herida. Conforma uno de los ingredientes comúnmente utilizados para la fabricación de cosméticos porque además posee muy buenas propiedades hidratantes. Los diversos constituyentes del gel, han permitido obtener rápida mejoría en la cicatrización de heridas, ya que contribuye de alguna manera con la proliferación de fibroblastos y mejora procesos de angiogénesis. Esto se logra gracias a sus componentes activos como glicoproteínas, alantoína y otros compuestos. También gracias los azúcares, polisacáridos y compuestos fenólicos, pueden lograrse efectos antiinflamatorios y antimicrobianos (Vila Casanovas & Guinea López, 2001).

1.3.12 La Piel

La piel es el órgano más extenso del cuerpo y su función principal es la protección de todas las partes de nuestro organismo, ya que logra recubrirla en su totalidad. La piel se encuentra expuesta en su mayor parte al medio, por lo que es susceptible de sufrir fácilmente agresiones que pueden hacer que en esta se presenten diferentes formas de heridas como quemaduras, decoloraciones, infecciones, entre otros (Sánchez Umaña, Quesada González, & Cedeño Quesada, 2010).

Es una membrana con permeabilidad selectiva a sustancias químicas que pueden ser absorbidas por esta vía hasta alcanzar la circulación sistémica. La absorción transepidérmica es una de las principales funciones fisiológicas la cual se aprovecha para la administración de fármacos (Allevato, 2007). El paso a través de la piel es un proceso complejo, por lo que las sustancias capaces de atravesarla requieren cumplir una serie de características: deben tener un bajo peso molecular, adecuada liposolubilidad del fármaco, que difunda con facilidad a través de la piel, el medicamento deber ser potente, es decir, ejercer su acción terapéutica a dosis bajas, y no irritante para la piel (Sáez et al., 2003).

De vista histológica, este órgano se divide en tres capas. La epidermis, que es la capa más externa, se encarga de dar protección al cuerpo y la conforman principalmente queratinocitos, la dermis es un tejido conjuntivo compuesto de vasos y nervios y compuesto de fibroblastos y finalmente, la capa más externa conocida como hipodermis o tejido subcutáneo, compuesto principalmente por tejido adiposo conformado por adipocitos, actúa como aislante y reserva energética (Sánchez Umaña et al., 2010).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
1.3.12.1 Metabolismo de la Piel

En la piel puede haber fijación, degradación, y metabolismo de sustancias a distintos niveles, por ejemplo: degradación parcial en la superficie de la piel, formación de depósito a estructuras cutáneas y de degradación metabólica ocasionada por sistemas enzimáticos. Esto tiene una aplicación terapéutica importante, ya que se podrían administrar pro fármacos con características más adecuadas para atravesar la piel y una vez allí sufrir el proceso metabólico que le convierta en el fármaco deseado. Debido a esta función metabólica de la piel, existen actualmente importantes trabajos de investigación al objeto de poder conocer el papel de la piel como órgano metabólico dado el arsenal enzimático que posee (Rojo Del Olmo, 2008).

1.3.12.2 Heridas Dérmicas

Una herida hace referencia a la región anatómica donde ocurre una interrupción de la continuidad celular de las diferentes capas que conformen el tejido afectado. Esta afecta el organismo, provocando dolor y liberación de productos celulares. Las heridas además, representan una alteración metabólica que puede durar semanas o meses hasta que se recupera la integridad del tejido lesionado (Ramírez Hernández, 2010).

Cuando ocurren heridas que afectan la integridad de la piel, podríamos estar hablando de casos que conducen a discapacidades de acuerdo a la extensión de la lesión o a las complicaciones que pueden llegar a presentarse, afectando a cientos de personas en el mundo (Ramírez Hernández, 2010).

Cuando la piel es afectada por accidentes como quemadura, cortadas, resequedad, se provoca un deterioro de una o varias capas que conforman la piel. La heridas pueden clasificarse de acuerdo a la cantidad de órgano que afectan en localizadas, diseminadas o generalizadas y cada una de estas, a su vez, puede ser primaria o secundaria (Sánchez Umaña et al., 2010).
Las heridas localizadas son aquellas que se limitan únicamente a un segmento de piel, mientras que las diseminadas hacen referencia cuando se ven afectados dos o más segmentos. En el caso de las lesiones generalizadas, estaríamos hablando de aquellas que afectan cerca del 90% de la superficie dérmica (Sánchez Umaña et al., 2010).

Por otro lado, en el caso de las lesiones primarias, encontramos máculas, placas, pápula, nódulos, nudosidades, tumores, ampollas, quistes y ronchas. Las lesiones secundarias hacen alusión a heridas que comprometen en mayor medida la piel como úlceras, costras, escaras y escamas. Comúnmente, las lesiones secundarias se asientan sobre las primarias, es decir, pueden ser una evolución de una herida primaria que no ha sido tratada correctamente (Sánchez Umaña et al., 2010).

1.3.12.3 Tratamientos para las Heridas

Inicialmente, debe realizarse un examen físico para palpar la piel, evaluando la textura y consistencia de las lesiones y si estas resultan dolorosas o no. También, será importante determinar las partes que se ven afectadas para poder asignar un tratamiento que resulte efectivo para la curación de la lesión, bien sea a base de antibióticos, antisépticos, cicatrizantes, cremas o ungüentos (Rondón Lugo, 2006).

Una herida se presenta cuando se altera la integridad de los tejidos por causa de diferentes agentes bien sean externos o internos. Estas pueden generar diversos tipos de infección al generar un ambiente que ya no es estéril en el interior. Es por esto, que comúnmente se realizan procedimientos de limpieza sobre las heridas, con sustancias como suero fisiológico, agua y jabón y antisépticos, de manera que se limpien impurezas que puedan provocar infecciones más adelante (Esteva, 2006).

Luego de realizar una correcta desinfección, se recurre a utilizar apósitos húmedos, ya que ha sido demostrado que el ambiente húmedo mejora eficazmente el proceso de curación, ya que lo que se busca es evitar la desecación y maceración favoreciendo la cicatrización. Además, el uso de apósitos que proporcionen un ambiente húmedo ayuda a disminuir el dolor, previene infección y reduce el tiempo de cicatrización y las tasas de infección en comparación con curas secas que eran las más utilizadas años atrás (Esteva, 2006).

Los apósitos más comunes basados en sistemas húmedos son alginatos, hidrocoloides, hidrogeles, poliuretanos y apósitos de silicona (Esteva, 2006).

1.3.12.4 Vías de Penetración de la Piel

Cuando se administra una sustancia a través de la piel, puede alcanzar los capilares sanguíneos de la dermis a través de dos rutas fundamentales de acceso: la transepídémica y la transapendicular (Rojo Del Olmo, 2008).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
1.3.12.4.1 Transepidermica

Las moléculas polares y no polares difunden a través del estrato córneo por diferentes mecanismos dos microvías fundamentales existen para la absorción percutánea a través del estrato córneo: la ruta intercelular y la intracelular (Rojo Del Olmo, 2008).

a. **Intracelular**
 Las sustancias, ya sean polares o no polares, difunden a través del estrato córneo por mecanismos moleculares diferentes. El estrato córneo se hidrata, acumula agua cerca de la superficie de los filamentos de las proteínas, y es a través de esta agua inmovilizada por donde las moléculas polares pasar a través de la piel. Las moléculas no polares, por el contrario, probablemente, se disuelven y difunden a través de la matriz lipídica intracelular, no acuosa, que existe entre los filamentos de las proteínas, fundamentalmente, a través de los triglicéridos (Rojo Del Olmo, 2008).

b. **Intercelular**
 Se piensa que esta, aunque es la mayor barrera que se encuentran los fármacos en su paso a través de la piel, es la ruta de penetración que eligen la mayoría de los fármacos lipófilos para acceder a capas más profundas de la epidermis. Es una ruta tortuosa y la difusión del principio activo se realiza por los canales lipídicos que hay entre las células del estrato córneo, que es la membrana biológica más impermeable (Rojo Del Olmo, 2008).

1.3.12.4.2 Transapendicular

Si el fármaco utiliza esta vía de acceso lo hará a través de los anejos cutáneos: glándulas sudoríparas y sistema pilo-sebáceo. Ambas alternativas, tienen una contribución escasa a la cinética global de la penetración transdérmica (Rojo Del Olmo, 2008).

a. **Transfolicular**
 La penetración de las sustancias químicas por el aparato pilo-sebáceo (constituido por el pelo y la glándula sebácea está ligada a la presencia de un mayor o menor número de folículos pilosos en la piel. Cada folículo piloso lleva asociado una glándula sebácea, que segrega sebo, barrera de protección del estrato basal germinativo (Rojo Del Olmo, 2008).

b. **Transudorípara**
 Es la vía menos importante ya que proporciona una pequeña ruta de absorción; un centímetro cuadrado de piel humana puede contener 100 glándulas sudoríparas que pueden actuar como otra ruta difusional. Se cree que la difusión por esta vía sigue el modelo de “difusión por poros”. Los folículos pilosos y las glándulas sudoríparas (endocrinas y apocrinas) representan un camino potencial para superar la barrera epidérmica; su capacidad para la absorción percutánea es mínima, menos del 0,1%, pero a

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

1.3.13 Estudios In Vitro

Los estudios in vitro suponen la utilización de cultivos de células, tejidos u órganos y de muestras biológicas conexas para caracterizar el efecto del patógeno en el huésped (FAO/OMS, 2004).

1.3.14 Cicatrización

La cicatrización constituye el proceso que tiene como fin la reparación de tejidos dañados, que han sufrido una herida como consecuencia de algún tipo de agresión. Está regido por patrones fisiológicos y por una serie de etapas que transcurren una después de la otra. El conocimiento de los diferentes procesos biológicos que se llevan a cabo durante un proceso de cicatrización, permiten saber maneras de intervenir en dichas etapas para brindar soluciones que puedan ayudar a curar de manera más efectiva la herida obteniendo como resultado una cicatriz funcional y estéticamente satisfactoria (Ramírez Hernández, 2010).

En este proceso participan diferentes tipos celulares como mediadores para alcanzar la reparación de la herida, estos van actuando de manera secuencial. La etapas que ocurren dentro de un proceso de proliferación son: hemostasia, inflamatoria, proliferativa, epitelización y remodelación (Ramírez Hernández, 2010).

Es una respuesta biológica de los tejidos vivos ante una lesión (Hernández González, 2012), ésta se da por un proceso complejo que es la reparación tisular a partir de la regeneración del epitelio, que se lleva clásicamente en tres etapas: inflamatoria, fibroproliferativa y de remodelación.

<table>
<thead>
<tr>
<th>Inflamatoria</th>
<th>Coagulación por adhesión de plaquetas (Hernández González, 2012). Los tipos de inflamación son inflamación aguda e inflamación crónica. La primera es inmediata, de corto tiempo donde los leucocitos migran para fagocitar tejido dañado y la segunda no sigue un proceso ordenado de regeneración, se caracteriza por excesiva fibrosis y el cierre de la herida (Dr. Patricio Andrades 2005, Celada, 2003, Midwood, Williams, & Schwarzbauer, 2004).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con contracción de la herida y reepitelización</td>
<td>Se caracteriza por la angiogénesis, la deposición de colágeno, la formación de tejido granular, la epitelización y la contracción de la herida. Los fibroblastos migran a la herida y depositan colágeno para la formación de tejido granuloso para reemplazar la matriz, y</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
las células epiteliales migran para cubrir toda la zona dañada defendiéndola de cualquier infección (Takayama & Aoki, 2012).

| Remodelación o madurativa | La degradación de la matriz es un proceso normal para la remodelación del tejido dañado (Midwood et al., 2004). El colágeno tipo III contenido en la herida que se depositó durante la reparación (Lidia Inés Villalba, 2008), es remodelado por colágeno tipo I y realineado a lo largo del plano de las líneas de tensión para aumentar la fuerza (Greenhalgh, 1998). |

| Tabla 1. Fases del Proceso de Curación. |

1.3.15 Alginato

El alginato ha sido ampliamente utilizado por sus propiedades tanto físicas como químicas, ya que no presenta componentes tóxicos, es biodegradable, bajo en costo y puede encontrarse disponible a nivel comercial con facilidad. Además de esto, ha sido caracterizado y muestra buenas propiedades como adhesivo y citocompatible (Paques, van der Linden, van Rijn, & Sagis, 2014).

Es un polisacárido natural aniónico derivado de la alga café, está compuesto de ácido β-D-manurónico y ácido α-L-gulurónico (Kaklamani et al., 2014). El alginato de sodio es soluble en soluciones acuosas y forma hidrogeles con cationes multivalentes (Jang et al., 2014).

Éste polímero natural que ha sido ampliamente usado y estudiado en diversos tipos de heridas, debido a su biocompatibilidad, biodegradabilidad, propiedades de gelificación y habilidad para formar hidrogeles (Pereira, Mendes, & Bártolo, 2013; Pereira, Carvalho, et al., 2013). También éste polímero como hidroogel ayuda a la curación de heridas por su alto contenido de agua, capacidad de absorber exudado, por su permeabilidad y al crear un ambiente húmedo en el lecho de la herida permite el intercambio de iones con los fluidos del cuerpo que estimula a que plaquetas y eritrocitos migren a la zona activando la proliferación celular y producción de factores de crecimiento (Clark, 2012; Pereira, Carvalho, et al., 2013)

Éste hidrogel no es recomendado en heridas secas, ni en heridas con mínimo de exudado, ya que es un buen absorbente.

1.3.16 Quitosano

Biopolímero obtenido por hidrolisis del grupo aminoacetil de la quitina que se extrae del exoesqueleto de los crustáceos, compuesto de unidades β-(1,4)-2-acetamido-2-deoxy-D-glucosa. El quitosano tiene un grupo amino y dos grupos hidroxilos por cada unidad de glucosa. Los grupos amino le proporcionan las cargas positivas lo cual, lo posiciona en el grupo de los polímeros catiónicos reaccionando con un numero de aniones multivalentes para formar hidrogeles (Giri, Thakur, Alexander, Badwalk, & Tripathi, 2012).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
El quitosano no es soluble en agua solo en medios ácidos (pH<6). Éste polímero ha sido investigado en las últimas décadas para aplicaciones biomédicas como en la preparación de hidrogeles para heridas que por su biocompatibilidad, biodegradabilidad, actividad antibacterial y compatibilidad celular ayuda en el proceso de curación (Pandis et al., 2014).

1.3.17 Fuerzas Electroestáticas

Estas fuerzas pueden ser de tipo repulsivas o atractivas, dependiendo de si las cargas que interaccionan son de igual o distinto signo. La intensidad de una fuerza electrostática depende directamente de la carga de cada ion, y es inversamente proporcional a la constante dieléctrica del disolvente y a la distancia entre cargas (Devlin, 2004).

1.3.18 Entrecruzamiento físico y químico

Pueden considerarse dos tipos de entrecruzamiento principales: físico y químico. Por medio del entrecruzamiento físico se logra un bajo grado de reticulación ya que ocurre básicamente en la superficie del material, se da por medio de una estimulación física a la solución provocando cambios en los enlaces que conforman la estructura. Por el contrario, con el entrecruzamiento químico se logra un alto grado de reticulación, pues se ven involucrados tanto la superficie como el cuerpo del material; en este caso, el entrecruzamiento se logra por la adición de compuestos químicos a la solución que resultan en modificaciones de la estructura física, buscando reforzar los enlaces entre los reactivos (Ratanavaraporn, Rangkupan, Jeeratawatchai, Kanokpanont, & Damrongsakkul, 2010).

1.3.18.1 Liofilización

Proceso de desecación especial en el que el disolvente, generalmente agua, es, primero congelado, y después, sublimado a presión reducida en la que el sólido (agua hielo) pasa a gas. Las etapas del proceso son: congelación de la formulación, desecación primaria o sublimación, desecación secundaria o desorción, y acondicionamiento (Herrero, Gonzalez, Garcia, & Chavarino, 2010).

1.3.18.2 Sonicación

El ultrasonido ha sido utilizado para mejorar las tasas de reacción química. También mejora las tasas de polimerización en la fabricación y síntesis de polímeros (Bhanvase & Sonawane, 2014)

La aplicación de un campo ultrasónico a una mezcla polimérica, reduce la resistencia en la conformación de los canales y además, puede ayudar a disminuir la viscosidad de la mezcla (Chen, Chen, Li, Lai, & Jow, 2010).

El tratamiento con ultrasonido, proporciona la energía necesaria para romper los enlaces químicos; por lo cual, se han estudiado sus efectos en la degradación de diferentes
polímeros. Junto con esto, se han venido estudiando los efectos del ultrasonido en posibles cambios del peso molecular de los polímeros (Rong Huei Chen, Jaan Rong Chang, & Ju Shii Shyur, 1997).

Los efectos químicos del ultrasonido, se deben principalmente al rápido crecimiento de burbujas en la solución que colapsan creando explosiones a medida que la onda pasa a través del líquido. Por medio de microscopía electrónica de barrido (SEM) en muestras de PVC tratadas con ultrasonido, se pueden apreciar cambios en la morfología de las superficies, evidenciando mayor rugosidad debida a protuberancias que se generan a lo largo del material (Price, White, & Clifton, 1995).
2. ELABORACIÓN DEL APÓSITO CARGADO CON ALOE VERA

El desarrollo del presente trabajo de grado se realizó mediante los siguientes procedimientos:

2.1 Extracción de Aloe Vera

Con el objetivo de construir un apósito cargado con un medicamento natural, se eligió el Aloe Vera como medicamento para contribuir a la regeneración del tejido afectado durante el proceso de cicatrización. Para esto, se tomaron las hojas de Aloe vera Barbadensis de la familia Liliácea, compradas en un supermercado, con aproximadamente 4 años de edad, determinados por su gran espesor y longitud cerca a los 45 - 50 centímetros de largo.

Las hojas se lavaron con agua corriente y jabón neutro, alcohol y posteriormente con agua destilada. Luego, se les retiró con un cuchillo afilado la corteza dejando solo el parénquima o gel. Éste se cortó en trozos pequeños y se lavó con agua destilada varias veces para quitarle la Aloína, sustancia amarilla, quedando el cristal limpio.

Los trozos de aloe vera fueron licuados inicialmente, el jugo de Aloe vera se pasó por un colador, luego por un tamiz de 180 μm para que el contenido fuera mucho más fino y por último se realizó un filtrado al vacío con el equipo Millipore® (India, Bedford) como se muestra en la ilustración 2.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Luego de la filtración al vacío, el Aloe vera fue almacenado en tubos Falcon de 50 mL cubiertos con papel aluminio para aislarlo de cualquier medio de luz que pueda degradarlo. Finalmente, se almacenó en un congelador a 0 ºC para conservarlo hasta su uso.

2.2 Preparación de las matrices

Para la preparación de las matrices se utilizó Chitosan poly (D-glucosamine) quitin deacetylado (SIGMA ALDRICH) y alginato de sodio de alga café de baja viscosidad (SIGMA ALDRICH), para el proceso de liofilización se utilizó el equipo FREEZE DRY SYSTEM (LABCONCO, USA), el agitador magnético digital con calefacción Cimarec® (Thermo SCIENTIFIC, USA) se usó para mezclar las soluciones el equipo de ultrasonido de referencia Sonics VCX-130.

Los hidrogeles a base de alginato (A) y quitosano (Q) ya tenían protocolos descritos hechos en el Laboratorio de Biomateriales. Estos fueron la base para la optimización de las diferentes mezclas que se describirán más adelante.

Se plantearon modificaciones donde se prepararon 12 tratamientos con componentes químicos y físicos diferentes, buscando mejorar los niveles de absorción y la cinética de liberación de las matrices al cargarse con Aloe Vera. También se emplearon dos concentraciones de quitosano diferentes que fueron 1% (Q1) y 1.5% (Q1.5), mientras el alginato se trabajó con una sola concentración que fue 1%.

Los componentes químicos empleados para realizar las diferentes matrices de los diversos tratamientos, fueron bicarbonato de sodio para aumentar la porosidad de la matriz y cloruro de sodio para disminuir fuerzas electrostáticas entre la mezcla del alginato y el quitosano. Los componentes físicos fueron los procesos de liofilización como entrecruzamiento físico y la sonicación para disminuir las fuerzas electrostáticas entre la misma mezcla.

De los 12 tratamientos con los diferentes procesos, se seleccionaron los que presentaron mejor absorción y liberación del medicamento (Aloe vera) y además, aquellos que presentaron buenas propiedades físicas como resistencia a la compresión y a la manipulación. También, se evaluaron las microestructuras de las matrices seleccionadas por medio de microscopía electrónica de barrido (SEM).

2.3 Hidrogeles Físicos

Para este tipo de hidrogeles, se empleó el proceso de liofilización (L) como entrecruzante para formar la red polimérica del apósito. En algunos casos se introdujo el proceso de sonicación (S), determinando una estructura adecuada para el hincharmiento con el Aloe Vera.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
En primer lugar, se leyó el protocolo diseñado para hacer hidrogeles de alginato / quitosano hecho en el laboratorio, después de acuerdo a referencias bibliográficas se propusieron diferentes tratamientos que se muestran en la Tabla 2.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Descripción de la matriz</th>
<th>Modificaciones</th>
<th>Proporciones polímeros</th>
<th>Concentración polímeros (p/v)</th>
<th>Entrecruzamiento</th>
<th>Agente porogénico</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1Q1L</td>
<td>Alginato+Quitosano+Liofilización</td>
<td>X</td>
<td>75% alginato, 25% quitosano</td>
<td>Alginato 1% Quitosano 1%</td>
<td>Liofilización</td>
<td>NA</td>
</tr>
<tr>
<td>A1Q1NaCIL</td>
<td>Alginato+Quitosano+Liofilización</td>
<td>X</td>
<td>75% alginato, 25% quitosano</td>
<td>Alginato 1% Quitosano 1.5%</td>
<td>Liofilización</td>
<td>NA</td>
</tr>
<tr>
<td>A1Q1SL</td>
<td>Alginato+Quitosano+Liofilización</td>
<td>X</td>
<td>75% alginato, 25% quitosano</td>
<td>Alginato 1% Quitosano 1%</td>
<td>Liofilización</td>
<td>NA</td>
</tr>
<tr>
<td>A1Q1NaCISL</td>
<td>Alginato+Quitosano+Liofilización</td>
<td>X</td>
<td>75% alginato, 25% quitosano</td>
<td>Alginato 1% Quitosano 1%</td>
<td>Liofilización</td>
<td>NA</td>
</tr>
<tr>
<td>A1Q1.5L</td>
<td>Alginato+Quitosano+Bicarbonato+Liofilización</td>
<td>X</td>
<td>75% alginato, 25% quitosano</td>
<td>Alginato 1% Quitosano 1%</td>
<td>Liofilización</td>
<td>Bicarbonato NaHCO3</td>
</tr>
<tr>
<td>A1Q1.5NaCIL</td>
<td>Alginato+Quitosano+Bicarbonato+Liofilización</td>
<td>X</td>
<td>75% alginato, 25% quitosano</td>
<td>Alginato 1% Quitosano 1%</td>
<td>Liofilización</td>
<td>NA</td>
</tr>
<tr>
<td>A1Q1.5SL</td>
<td>Alginato+Quitosano+Bicarbonato+Liofilización</td>
<td>X</td>
<td>75% alginato, 25% quitosano</td>
<td>Alginato 1% Quitosano 1%</td>
<td>Liofilización</td>
<td>NA</td>
</tr>
<tr>
<td>A1Q1.5NaCISL</td>
<td>Alginato+Quitosano+Bicarbonato+Liofilización</td>
<td>X</td>
<td>75% alginato, 25% quitosano</td>
<td>Alginato 1% Quitosano 1%</td>
<td>Liofilización</td>
<td>NA</td>
</tr>
</tbody>
</table>

Tabla 2. Tratamientos para optimización de matrices

Las proporciones definidas de alginato y quitosano que se muestran en la Tabla 2. Fueron definidas en el proyecto desarrollado por la estudiante de maestría Luisa Gómez Chabala, el cual abarca la fabricación y caracterización de las matrices cargadas con Aloe vera como sistema de liberación de medicamentos y del cual este proyecto constituye una parte complementaria.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
2.3.1 Preparación de la solución de alginato (1%)

Se agregaron 100 mL de agua destilada en un beaker, se tomó el pH y se ajustó asegurando que estuviera entre 6,0 – 6,5, ya que la integridad del alginato se puede ver afectada a valores de pH muy ácidos (pH<5) o muy básicos (pH>10), generando el rompimiento de enlaces en su estructura lo cual puede llevarlo a degradarse y perder sus propiedades. De esta manera, al adicionar el alginato se tuvieron las condiciones ideales para preservarlo. Una vez se estabilizó el pH, se puso el sistema en constante agitación a una temperatura de 80 º C y se adicionó lentamente el alginato. Estas condiciones se preservaron por un periodo de 3 horas hasta lograr una mezcla homogénea. Luego, se dejó enfriar la mezcla a temperatura ambiente.

2.3.2 Preparación de las soluciones de quitosano al 1% y 1.5%

Se agregaron 100 mL de agua destilada en un beaker, se tomó el pH asegurando que este estuviera entre 4,0 – 4,5, ya que la integridad del quitosano puede verse afectada a valores diferentes de pH. Luego, se adicionó la cantidad de quitosano necesaria de acuerdo a la concentración requerida, 1,0 g para la solución quitosano (1%) y 1,5 g para la solución de quitosano (1.5%). Se tuvieron condiciones de agitación constante a una temperatura de 40 º C. Las condiciones se mantuvieron por 3 horas hasta lograr una mezcla homogénea. Por último, se dejó enfriar la mezcla a temperatura ambiente. Cuando la mezcla está lista, se envasa en frascos de vidrio con su etiqueta indicando su contenido y la fecha de fabricación y se ponen en el refrigerador 4 º C.

![Ilustración 3. Preparación Solución de Quitosano](image-url)
2.3.4 Preparación matriz A1Q1B12L

Para realizar ésta matriz se tomaron las siguientes proporciones: 25% alginato y 75% quitosano en un volumen final de 40 mL, es decir, se tomaron 10mL de la solución de alginato(1%) y 30 mL de la solución de quitosano (1%) previamente preparadas. Se agregó en un beaker la cantidad de quitosano ya mencionada y se puso dentro de otro beaker con hielo (baño en hielo) y se puso el sistema en agitación. El baño en hielo ayuda a disminuir la viscosidad del quitosano para permitir una mezcla más homogénea. Luego, se añadió el bicarbonato de sodio dejándolo en constante agitación durante 30 minutos, hasta que desaparezca la efervescencia en la mezcla. Después, con la ayuda de un gotero se adicionó el alginato lentamente y se dejó durante el tiempo necesario en agitación hasta que se observó una mezcla homogénea. Por último, se vertió la mezcla en cajas de petri de 50 mm de diámetro con 10 mL de la solución final y se pusieron a congelar durante 24 horas. Finalmente, se sometieron a un proceso de liofilización por 24 horas (Anexo 1).

Ilustración 4. Matriz con bicarbonato A1Q1B12L

2.3.5 Preparación matriz A1Q1L / A1Q1.5L

Las proporciones para estas mezclas fueron de 75% alginato y 25% quitosano.

En un beaker se tomaron 10 mL de quitosano (1%) y se pusieron en baño en hielo con agitación constante. Luego se agregó lentamente con un gotero el alginato con el fin de que no se formara grumo por las fuerzas electrostáticas entre ambos polímeros. Posteriormente se dejó en agitación con observación constante hasta obtener una mezcla homogénea y por último, se adicionaron 10 mL en cada caja de petri, se congelaron y se dejaron liofilizando por 24 horas (Anexo 2).

El mismo procedimiento anterior se realizó para la mezcla con concentración de quitosano (1.5%).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
2.3.6 Preparación matriz A1Q1SL / A1Q1.5SL

Las proporciones que se manejaron en estos hidrogeles fueron de 75% alginato y 25% quitosano (Anexo 3).

En un tubo de Falcon se añadieron 10 mL de quitosano (1%) que se pusieron en baño en hielo. En un beaker se agregaron 30 mL de alginato, todo se llevó a la zona de sonicación donde se le aplicó al tubo de Falcon ultrasonido con amplitud de 100% a 5 pulsos por min durante 2 minutos. Mientras las ondas acústicas (ultrasonida) se aplicaban a la muestra el alginato se iba adicionando con un gotero lentamente. Se observó que la mezcla no tuviera grumos y se adicionó en cada caja de petri 10 mL, luego se pusieron a congelar y a liofilizar por 24 horas.

El mismo procedimiento se realizó para la mezcla con mayor concentración de quitosano (1.5%).

Debido al resultado del proceso de liberación de Aloe vera realizado por la estudiante de maestría Luisa Goméz Chabala, de todos los tratamientos probados fueron escogidos los que se sometieron al proceso de liofilización (Tabla 3), ya que fueron las que mejor capacidad de hinchamiento y liberación tuvieron.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Descripción de la matriz</th>
<th>Proporciones polímeros</th>
<th>Concentraciones de los polímeros (p/v)</th>
<th>Entrecruzamiento</th>
<th>Agente porogénico</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1Q1L</td>
<td>Alginato+Qitosano +Liofilización</td>
<td>75% alginato, 25% quitosano</td>
<td>Alginato 1% Qitosano 1%</td>
<td>Liofilización</td>
<td>NA</td>
</tr>
<tr>
<td>A1Q1.5L</td>
<td>Alginato+Qitosano +Liofilización</td>
<td>75% alginato, 25% quitosano</td>
<td>Alginato 1% Qitosano 1.5%</td>
<td>Liofilización</td>
<td>NA</td>
</tr>
<tr>
<td>A1Q1B12L</td>
<td>Alginato+Qitosano +Bicarbonato+Liofilización</td>
<td>25% alginato, 75% quitosano</td>
<td>Alginato 1% Qitosano 1%</td>
<td>Liofilización</td>
<td>Bicarbonato de Sodio NaHCO3</td>
</tr>
<tr>
<td>A1Q1SL</td>
<td>Alginato+Qitosano +Sonicación+Liofilización</td>
<td>75% alginato, 25% quitosano</td>
<td>Alginato 1% Qitosano 1%</td>
<td>Sonicación Liofilización</td>
<td>NA</td>
</tr>
<tr>
<td>A1Q1.5SL</td>
<td>Alginato+Qitosano +Sonicación+Liofilización</td>
<td>75% alginato, 25% quitosano</td>
<td>Alginato 1% Qitosano 1.5%</td>
<td>Sonicación Liofilización</td>
<td>NA</td>
</tr>
</tbody>
</table>

Tabla 3. Matrices seleccionadas

2.4 CARÁCTERÍSTICAS ESTRUCTURALES DE LAS MATRICES SELECCIONADAS

Ésta técnica se empleó para reconocer nuevos grupos funcionales en las matrices seleccionadas que fueron modificadas a partir de la optimización que se hizo dentro de cada proceso de obtención.

Se hizo un barrido de las 5 muestras correspondientes a los 5 tratamientos seleccionados.

Ilustración 7. Equipo FT-IR

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
El equipo empleado fue un espectrofotómetro FT-IR Perkin Elmer (USA) como se muestra en la Ilustración 7.

2.5 MORFOLOGÍA DE LOS TRATAMIENTOS CON SEM

La morfología de las matrices de los diferentes tratamientos se utilizó como apoyo en la determinación de cuales matrices se debían escoger para cumplir con los objetivos, observando el tamaño, forma y textura de los poros y paredes que las componen.

Se tomó una muestra de cada matriz, se pegó en un holder metálico con cinta conductiva y se metió en el Sputter Coater para su posterior baño en oro al vacío como se muestra en la Ilustración 8.

![Ilustración 8. Equipo Sputter Coater para baño de oro a) y Muestras de matrices bañadas en oro b).](image)

Se sacó la muestra y se puso en la cámara cubierta de plomo donde se aceleraron los electrones que impactaron la muestra y generaron la imagen de ésta en el programa del monitor.

![Ilustración 9. Posicionamiento y evaluación de las muestras de cada tratamiento en el equipo SEM](image)

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
El equipo empleado para determinar la morfología fue un JEOL JSM-6400 Microscopio electrónico de barrido en la Ilustración 9.

2.6 DEGRADABILIDAD DE LAS MATRICES CARGADAS CON ALOE VERA

Para éste ensayo se tomó como referencia el protocolo de degradabilidad del Laboratorio de Biomateriales y se hicieron algunos cambios según referencias bibliográficas (Anexo 4).

Este proceso se lleva a cabo simulando el ambiente fisiológico al cual la matriz estará expuesta durante su uso, garantizando las condiciones adecuadas bajo las cuales puede cumplir su función como sistema liberador de medicamentos.

Para esto, se utilizó una solución de PBS con un pH de 7,4, condiciones de agitación y temperatura constantes evaluando la pérdida de peso de las matrices en el tiempo.

Este sistema se evaluó para ser utilizado en heridas y/o irritaciones dérmicas superficiales.

2.7 CAPACIDAD ANTIBACTERIAL DE LAS MATRICES CARGADAS CON ALOE VERA

También conocido como “método de susceptibilidad microbiana”, “antibiograma” o “método de difusión en agar”, es una técnica comúnmente utilizada para evaluar la sensibilidad de microorganismos bacterianos a los antibióticos. Esta técnica es de uso común en laboratorios clínicos, ya que es rápida, práctica y reproducible (Bernal & Guzmán, 1984).

Los agares utilizados para el ensayo, son medios sólidos con condiciones ideales para el crecimiento de las bacterias, producidos por casas comerciales. La conservación de estos medios es crítica para garantizar la confiabilidad de los resultados del ensayo. Para esto, los agares deben mantenerse refrigerados a temperaturas entre los 4-5 ºC hasta que vayan a ser utilizados (Bernal & Guzmán, 1984).

La técnica es comúnmente utilizada para evaluar la sensibilidad de microorganismos de crecimiento rápido, como Staphylococcus aureus (Gram positiva) y Pseudomonas aeruginosa (Gram negativa). Estos fueron los dos microorganismos seleccionados para evaluar la capacidad antibacterial de los hidrogeles con Aloe vera. Ambos son microorganismos ambientales, mesófilos (microorganismos cuya temperatura de crecimiento óptima está entre un rango moderado de 15 a 37 ºC, con temperatura óptima de crecimiento en los 37 ºC), se encuentran normalmente en suelos, cuerpo animal y en el cuerpo humano, presentes en la piel como parte de la flora microbiana normal y crecen en condiciones aerobias (valores normales de oxígeno). Por lo tanto, estarán en contacto directo con heridas dérmicas donde pasarán a ser patógenas y deberán ser combatidos por el apósito para ayudar a la curación de la herida.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Además de los mesófilos, también existen otros tipos de microorganismos, los sicrófilos que crecen en rangos de temperatura de 4 a 15 °C y los termófilos que crecen en temperaturas superiores a los 37 °C.

Considerando que la principal aplicación de los apósitos cargados con Aloe Vera será sobre heridas dérmicas, se tuvieron en cuenta los diversos tipos de microorganismo que están presentes en estos casos. Es común encontrar microorganismos como Staphylococcus aureus, Pseudomonas aeruginosa (bacteria Gram(+)) y Streptococcus pyogenes (bacteria Gram(-)).

En cabina de flujo laminar, con condiciones de asepsia adecuadas, los microorganismos, Staphylococcus aureus y Pseudomonas aeruginosa, cepas ATCC criopreservadas a -80 °C, fueron reactivadas en agar Tripticasa Soya, haciendo una siembra por agotamiento para obtener colonias aisladas y, se dejó incubando por 24 h a 37 °C. Luego, haciendo uso de un isopo esteril, se tomó una colonia aislada y se sumerge el isopo en el medio líquido BHI, agitando un poco para diluir el microorganismo. Se obtiene cierta turbidez que es comparada con un patrón de turbidez, McFarland, que indica de manera cualitativa la concentración, para garantizar cerca de 0.5 McF. La suspensión es transferida a un agar fresco Muller-Hinton, que es medio de cultivo sólido que consta de propiedades adecuadas para lograr crecimiento de bacterias, tales como un pH neutro entre 7,2-7,4 (Bernal & Guzmán, 1984), haciendo un barrido lentamente en tres direcciones diferentes, con el fin de hacer una cobertura completa de la superficie del medio con el microorganismo. Una vez el microorganismo ha sido inoculado, se posicionan las matrices en el agar y se rotula la base del medio con la nomenclatura de los diferentes tratamientos sometidos al ensayo. Los platos de petri se incuban por 24 h a 37 °C. Una vez cumplido el tiempo, se hace la medición de los “halos” o zonas de inhibición, tomando la longitud del diámetro de los discos transparentes que se forman alrededor de cada una de las muestras con un pie de rey. El ensayo se realizó por triplicado para cada uno de los tratamientos y además, se tuvieron como controles dos antibióticos, gentamicina (CN10) y tetraciclina (TE30), y un control positivo para el Aloe vera para determinar la capacidad antimicrobiana de las matrices (Anexo 5).
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Ilustración 10. a) Subcultivo del microorganismo en agar Tripticasa Soya por agotamiento para obtención de colonias aisladas, b) Toma de colonia aislada con isopo esteril, c) Suspensión de colonia aislada en caldo BHI, d) Inoculación del microorganismo en agar Muller Hinton, e) Posicionamiento de muestras en agar Muller Hinton, f) Rotulación de las muestras para lectura de resultados posterior.

2.8 CITOTOXICIDAD DEL APÓSITO CARGADO CON ALOE VERA EN CÉLULAS CHO

Determinar la viabilidad celular es de gran importancia cuando las células se han expuesto a un agente externo que podría resultar tóxico para su supervivencia y proliferación.

Tradicionalmente, para la determinación de citotoxicidad, se utiliza el ensayo MTT (Anexo 6) descrito previamente por Tim Mosmann en 1983 (Mosmann, 1983). Esta técnica consiste en un ensayo colorimétrico cuantitativo, donde pueden detectarse cantidades de células viables dependiendo de la actividad metabólica de las células.

La sal de tetrazolio MTT (3-(4, 5 – Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) de tonalidad amarilla, es reducido por la enzima mitocondrial succinato deshidrogenasa en cristales de formazán. Este producto que se obtiene al interior de las células, puede ser disuelto por un solvente, como el dimetil sulfóxido (DMSO), obteniendo una solución de color azul oscuro que puede ser detectada por espectrofotometría para determinar el nivel de absorbancia. Con base en los valores de absorbancia que se obtienen, es posible determinar la cantidad de células que permanecen viables luego de haber sido sometidas a contacto con el agente externo. Para esto, se tiene como referencia una curva de calibración previamente obtenida con cantidades conocidas de células, que se relacionan

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
con los valores de absorbancia obtenidos (Cabrera, 2010; Maiso, 2012; SEREY, n.d.; Villalonga, 2008).

2.9 DISEÑO DEL SOPORTE DEL SISTEMA LIBERADOR DE ALOE VER

Inicialmente, debe hacerse una definición clara del problema que se quiere solucionar. De esta forma, se podrá proceder a abordar el tema para encontrar soluciones.

Para llevar a cabo el diseño del producto, se tomó como guía el método descrito por Karl T. Ulrich y Steven D. Eppinger en el libro Diseño y Desarrollo de Producto, que consiste en una serie de métodos estructurados que facilitan a los miembros del equipo entender la lógica de toma de decisiones, evitando llevar a cabo aquellas que no sean fundamentales para la elaboración del producto. Los integrantes del equipo de diseño procurarán priorizar ideas que permitan identificar la problemática. Además, hace uso de listas y tablas que definen paso a paso las actividades de desarrollo para incluir todos los aspectos importantes considerando las necesidades del usuario.

El método se divide en diferentes fases en las cuales toma en cuenta aspectos como las necesidades que tiene el usuario, las especificaciones para suplir dichas necesidades, las posibles soluciones que se pueden encontrar en el mercado actual y como estas pueden adaptarse a las prioridades del diseño para generar conceptos y finalmente hacer la selección del concepto ganador.

Estas fases se describen brevemente a continuación:

- **Identificación de necesidades**
 En esta fase se busca identificar el conjunto de necesidades del cliente, asegurándose que el producto cumpla con lo que el cliente necesita e incluir necesidades ocultas, que muchas veces no son expresadas por el cliente o son olvidadas, pero forman parte fundamental en la toma de decisiones para la selección del concepto final.

 Estas necesidades se listan en una tabla con una calificación jerárquica de acuerdo a la importancia que tienen en la funcionalidad.

 Estas se pueden obtener por medio de encuestar a los clientes, por juicio de expertos y/o referencias bibliográficas.

- **Identificación de especificaciones**
 Las especificaciones son la guía sobre como diseñar y crear el producto, con base en las necesidades del cliente. Deben explicar con detalle las cosas que el producto tiene que hacer en un idioma técnico que pueda ser comprendido por el personal ingenieril o de diseño.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Las especificaciones, de igual manera, se listan en una tabla y se describe para cada una un valor, una medida y su nivel de importancia basado en las necesidades del cliente. El valor puede ser cuantitativo o cualitativo; pero también, se da campo a valores subjetivos. La medida puede determinarse como un valor específico o estar definida por un rango o una desigualdad.

- **Generación de concepto**
 - **Caja negra**
 Esta permite aclara el problema, desarticulándolo en sub-problemas más simples. El problema se representa como una sola caja que encierra la función global del producto que utiliza material, energía y señal, como se muestra en la Ilustración 11.

 Ilustración 11. Caja negra

 - **Diagrama de funciones**
 En esta fase, se divide la caja negra en sub-funciones que permitan tener una visión más clara de lo que deberían hacer cada uno de los elementos del producto. Estas sub-funciones deben ser lo suficientemente simples para ser entendidas por el equipo de trabajo y por lo tanto, puedan ser llevadas a cabo.

 - **Registro de posibles soluciones**
 En una tabla, se registran diferentes opciones que puedan dar solución a cada una de las funciones del diagrama de funciones. Éstas se ponen en una tabla donde se incluye una imagen de la solución y al frente una breve descripción de sus características y funcionalidad.

 - **Matriz morfológica: selección del concepto solución**
 Las diferentes soluciones que fueron obtenidas en la fase anterior, se resumen en una matriz donde, se ubican funciones contra soluciones y se combinan para generar y comparar diferentes soluciones para el problema global.

 Si se tiene un gran número de soluciones, es necesario determinar la viabilidad de estas antes de adicionárselas a la matriz, para no perder la utilidad de esta. Entre más soluciones se tengan, habrá mayor número de probabilidades de generar conceptos.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Sobre esta matriz, se comienzan a trazar rutas que combinan diferentes soluciones. Estas pueden ser inicialmente aleatorias, pero deben responder a criterios funcionales y cumplir con las especificaciones para que pueda ser una opción viable como concepto solución. Además, deben considerarse variables presupuestales que limiten el acceso a tecnologías y puedan reducir el número de soluciones.

- **Puntuación del concepto: Selección del concepto solución**
 Con base en la matriz se construyeron los diferentes conceptos. Se comparan las fortalezas y debilidades de cada uno de los conceptos solución para asignar una calificación. Luego se ordenan los conceptos y se buscan combinaciones que puedan mejorarlo. Finalmente, se selecciona el concepto ganador y se reflexiona sobre el proceso.

- **Diseño de detalle**
 Una vez se ha seleccionado un concepto a partir de los conceptos de solución previamente obtenidos, se procede a realizar el análisis de diseño, para determinar la seguridad del diseño del concepto solución. En esta etapa, se evalúan materiales, medidas, resistencia y otros aspectos del diseño para evaluar si es viable continuar con el concepto seleccionado y este no presenta dificultades que puedan reconsiderarse de los pasos anteriores con diferentes soluciones.
 Para esto, se toman en cuenta las relaciones entre las funciones, cálculos, medidas y selección de materiales junto con la selección de formas y esquemas en planos 2D y 3D, y la operación del producto.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
3. DESARROLLO DEL APÓSITO CARGADO CON ALOE VERA

3.1 PREPARACIÓN DE HIDROGELES

Para la optimización de los tratamientos que se venían trabajando en el laboratorio y así poder escoger las que presentaban mejores propiedades físicas y que eran una solución para el requerimiento del uso en heridas dérmicas, se evaluaron diferentes procesos en las matrices de alginato y quitosano, que se describen a continuación:

3.1.1 Hidrogeles por proceso de sonicación

El método de sonicación es muy utilizado en los laboratorios para romper o lisar compuestos de diferentes muestras; en este caso se utilizó para disminuir las fuerzas electrostáticas de forma física, que se dan entre el alginato y quitosano, proporcionando cargas positivas y negativas extras, de manera que la gelificación que se forma de manera rápida disminuyera, logrando obtener una mezcla homogénea. Después de su liofilización, las matrices obtuvieron una textura esponjosa, sin embargo, la absorción y liberación del medicamento natural fue baja; por lo tanto no fue una de las seleccionadas, pero se dejó como alternativa, es decir, se le aplicaron las mismas pruebas que a las seleccionadas (matrices con solo proceso de liofilización) para observar los cambios generados por el ultrasonido.

3.1.2 Hidrogeles con NaCl o NaHCO3

Para la preparación de estas matrices se usaron dentro del procedimiento procesos de ultrasonido y/o liofilización.

La adición de la sal en la preparación de los hidrogeles se hizo con el fin de disminuir la atracción electrostática de forma química entre el quitosano y el alginato disminuyendo así los grumos o la gelificación instantánea que se forma al adicionar el alginato en el quitosano. Sin embargo, éste hecho ocasionó que las matrices quedarán frágiles (Ilustración 12 a y b) y con cristales que impedían la entrada adecuada al sumergirlas en Aloe vera, lo que llevó a una mala liberación de éste medicamento natural. Por otra lado, las matrices que contenían el agente porogénico, bicarbonato de sodio (NaHCO3) también, presentaron fragilidad física al ser manipuladas y con partículas de éste que impedían el paso del medicamento natural en su interior. Cuando se hacía la mezcla de los dos compuestos las matrices eran quebradizas (Ilustración 12 c) al ser manipuladas y era difícil la obtención de muestras y por ende, su hinchamiento no fue bueno.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
3.1.3 Hidrogeles liofilizados

El proceso de liofilización como etapa final para la obtención del hidrogel es un proceso que ayuda a entrecruzar los biopolímeros utilizados en la mezcla con el propósito de no usar químicos que puedan resultar tóxicos en la unión, lo que hace que el agua sea separada, es decir, se deshidrata la muestra, obteniéndose como producto final un hidrogel seco para ser estudiado y así, definir textura, porosidad, absorción y liberación del Aloe vera. Éste método al ser físico no genera consecuencias futuras en contacto con las heridas, ni irritaciones que puedan perjudicar al paciente.

3.2 SELECCIÓN DE MATRICES PARA EL SISTEMA LIBERADOR

Para seleccionar los tratamientos con los que se llevarían a cabo los objetivos del proyecto, se consideraron los siguientes parámetros como determinantes para descartar algunos de los tratamientos probados:

- Matrices que al ponerse en contacto con el Aloe Vera se solubilizaron
- Matrices con estructuras físicas muy débiles, que no resistieron la manipulación

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
- Matrices que no presentaron un buen porcentaje de hinchamiento al sumergirlas durante 24 horas en el Aloe Vera, ya que como consecuencia, no se obtiene una liberación controlada del medicamento.

La evaluación de liberación del Aloe vera (hecha por la estudiante de maestría Luisa Gómez) y los resultados que se obtuvieron en el estudio del hinchamiento (Gráfica 1) y las imágenes arrojadas por SEM de las matrices permitió determinar cuáles serían las apropiadas para la curación de heridas superficiales o irritación.

![Gráfica 1. Prueba de Hinchamiento de las Matrices](image)

3.1.1 MORFOLOGÍA DE LA SUPERFICIE DE LAS MATRICES CON SEM

Para observar el nivel de interconectividad, porosidad y fisuras o fracturas de los diferentes tratamientos se realizó una microscopía electrónica de barrido (SEM) analizando las muestras de lado transversal y superficial.

Los ensayos SEM muestran las microestructuras de las diferentes matrices, donde se encontró justificación a los comportamientos y características que se presentan con cada una de las matrices al someterlas a los ensayos de hinchamiento (Gráfica 1), liberación y propiedades físicas en general. Con estas imágenes, pueden dirigirse los ensayos con una visión crítica para mejorar los sistemas y complementar las propiedades que han identificado estas matrices como potenciales sistemas de liberación de medicamentos.

La Ilustración 14 es un ejemplo de una de las muestras que fueron procesadas, más adelante se analizará los datos comparando los tratamientos que tuvieron el proceso de ultrasonido y/o liofilización.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

3.1.2 CARACTERÍSTICAS DE LAS MATRICES CON FT-IR

La técnica de espectroscopía infrarroja de transformada de Fourier (FT-IR) fue usada para analizar la presencia de nuevos componentes y enlaces dentro de las muestras de los 5 tratamientos seleccionados, comparándolas con el resultado FT-IR del alginato y quitosano solos de la Gráfica 2.

Gráfica 2. FT-IR del Alginato y del Quitosano (Abreu et al., 2008)

3.3 DEGRADABILIDAD DE LAS MATRICES

Se cortaron 6 muestras de cada uno de los 3 tratamientos escogidos y de 2 tratamientos alternativos sonicados para observar su degradación. Se cortaron muestras de aproximadamente 10mm x 10 mm y cada una se pesó en la balanza analítica previo al experimento.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
De las 6 muestras de cada tratamiento, 3 muestras se recargaron con Aloe Vera durante 24 horas y las otras 3 se conservaron en su estado normal. Al día siguiente, cada muestra se puso en un recipiente plástico con 5 mL de PBS, simulando las condiciones de solución fisiológica. Se codificaron las muestras como se muestra en la Tabla 4, y de igual manera se etiquetó cada uno de los recipientes conteniendo las matrices. Luego, se ubicaron aleatoriamente en el shaker, con agitación constante durante el día, aproximadamente 350 rpm y a temperatura ambiente (20 - 25 º C). Desde el primer día que se pusieron en agitación, se hizo diariamente el pesaje de cada matriz para determinar el peso perdido con la siguiente ecuación:

\[W_p = \left(\frac{w_i - w_f}{w_i} \right) \times 100 \]

\(W_p = \text{peso perdido} \)

\(W_o = \text{peso inicial} \)

Para obtener los valores de peso, se realizó inicialmente un secado con papel filtro luego de retirar las muestras de la solución de PBS para quitar el exceso. Las muestras se secaron en horno a 37 º C durante 2 horas para determinar el peso de la matriz y poder calcular la pérdida de peso. Las matrices se volvieron a sumergir en la solución PBS y se repitió el proceso hasta obtener una pérdida de aproximadamente 60% del peso inicial.

La nomenclatura manejada en el proceso de éste ensayo fue la siguiente:

\(W_r = \text{peso matriz cargada con Aloe vera} \)

\(R = \text{Matriz cargada con Aloe Vera} \)

\(W_o = \text{Peso inicial de la matriz sin cargar} \)

\(C = \text{Matriz control} \)

<table>
<thead>
<tr>
<th>Matriz</th>
<th>A1Q1B12L</th>
<th>A1Q1L</th>
<th>A1Q1.5L</th>
<th>A1Q1SL</th>
<th>A1Q1.5 SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1R</td>
<td>A1C</td>
<td>B1R</td>
<td>B1C</td>
<td>C1R</td>
<td>C1C</td>
</tr>
<tr>
<td>A3R</td>
<td>A3C</td>
<td>B3R</td>
<td>B3C</td>
<td>C3R</td>
<td>C3C</td>
</tr>
<tr>
<td>A1R</td>
<td>A1C</td>
<td>B1R</td>
<td>B1C</td>
<td>D1R</td>
<td>D1C</td>
</tr>
<tr>
<td>A2R</td>
<td>A2C</td>
<td>B2R</td>
<td>B2C</td>
<td>D2R</td>
<td>D2C</td>
</tr>
<tr>
<td>A3R</td>
<td>A3C</td>
<td>B3R</td>
<td>B3C</td>
<td>D3R</td>
<td>D3C</td>
</tr>
<tr>
<td>A1R</td>
<td>A1C</td>
<td>B1R</td>
<td>B1C</td>
<td>E1R</td>
<td>E1C</td>
</tr>
<tr>
<td>A2R</td>
<td>A2C</td>
<td>B2R</td>
<td>B2C</td>
<td>E2R</td>
<td>E2C</td>
</tr>
<tr>
<td>A3R</td>
<td>A3C</td>
<td>B3R</td>
<td>B3C</td>
<td>E3R</td>
<td>E3C</td>
</tr>
</tbody>
</table>

Tabla 4. Nomenclatura de las matrices cargadas y no cargadas en ensayo de degradabilidad

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
3.4 CAPACIDAD ANTIBACTERIAL DE LAS MATRICES CARGADAS CON ALOE VERA

Para el proceso de la capacidad antibacterial se definieron dos bacterias que están comúnmente presentes en el medio ambiente las cuales fueron *Staphylococcus aureus* y *Pseudomonas aeruginosa*. La nomenclatura manejada para distinguir los ambientes a los cuales se sometieron los cinco tratamientos con sus diversos factores, se muestran a continuación en la Tabla 5.

<table>
<thead>
<tr>
<th>Matriz</th>
<th>Factor</th>
<th>Nivel</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1Q1L</td>
<td>Sin Aloe Vera</td>
<td>Staphylococcus aureus</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>Staphylococcus aureus</td>
<td>M2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td></td>
</tr>
<tr>
<td>A1Q1.5L</td>
<td>Sin Aloe Vera</td>
<td>Staphylococcus aureus</td>
<td>M5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>Staphylococcus aureus</td>
<td>M6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td></td>
</tr>
<tr>
<td>A1Q1B12L</td>
<td>Sin Aloe Vera</td>
<td>Staphylococcus aureus</td>
<td>M9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>Staphylococcus aureus</td>
<td>M10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td></td>
</tr>
<tr>
<td>A1Q1SL</td>
<td>Sin Aloe Vera</td>
<td>Staphylococcus aureus</td>
<td>M13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>Staphylococcus aureus</td>
<td>M14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td></td>
</tr>
<tr>
<td>A1Q1.5SL</td>
<td>Sin Aloe Vera</td>
<td>Staphylococcus aureus</td>
<td>M17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>Staphylococcus aureus</td>
<td>M18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5. Tratamientos sometidos a actividad bacteriana.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
3.5 CITOTOXICIDAD DEL APÓSITO CARGADO CON ALOE VERA EN CÉLULAS CHO

Para el ensayo de citotoxicidad por medio del método MTT, se definieron dos condiciones para evaluar la toxicidad de las matrices, con las muestras cargadas de Aloe vera y otras sin medicamento que se tomaron como controles. La nomenclatura manejada para distinguir los ensayos se muestra en la Tabla 6 y los controles para cuantificar a viabilidad celular se muestran en la Tabla 7. Éste ensayo se realizó para dos tiempos diferentes, correspondientes a 15 y 18 horas de contacto entre las matrices y las células. El tamaño de las muestras se determinó de acuerdo a la norma ISO 10993:1999, donde se establece que éstas deben cubrir un décimo de la superficie de la capa de células.

<table>
<thead>
<tr>
<th>Matriz</th>
<th>Factor</th>
<th>Nomenclatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1Q1L</td>
<td>Sin Aloe Vera</td>
<td>MC1</td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>MA1</td>
</tr>
<tr>
<td>A1Q1.5L</td>
<td>Sin Aloe Vera</td>
<td>MC2</td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>MA2</td>
</tr>
<tr>
<td>A1Q1B12L</td>
<td>Sin Aloe Vera</td>
<td>MC3</td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>MA3</td>
</tr>
<tr>
<td>A1Q1SL</td>
<td>Sin Aloe Vera</td>
<td>MC4</td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>MA4</td>
</tr>
<tr>
<td>A1Q1.5SL</td>
<td>Sin Aloe Vera</td>
<td>MC5</td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>MA5</td>
</tr>
</tbody>
</table>

Tabla 6. Diseño de experimentos: Tratamientos para ensayo MTT.

<table>
<thead>
<tr>
<th>Controles</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control negativo</td>
<td>DMEM</td>
</tr>
<tr>
<td>Control positivo</td>
<td>Etanol 70%</td>
</tr>
</tbody>
</table>

Tabla 7. Diseño de experimentos: controles para ensayo MTT.

Para la obtención de la curva de calibración, se cultivaron diferentes concentraciones celulares conocidas de 10000, 25000, 50000, 100000, 150000, 200000 y 250000. Estos valores conocidos se tuvieron por triplicado. Las células se dejaron en incubación a 37 °C y 5 % CO2 por un periodo de 6 horas para garantizar la adhesión de las células al plato de cultivo. Pasado el tiempo de incubación, se retiró el medio de los pozos y se realizaron 3 lavados con PBS estéril a cada uno de los pozos. Se procede a adicionar 990 uL de medio y 10 uL de la solución MTT. Los platos de cultivo se cubren con papel aluminio para garantizar las condiciones del ensayo, ya que pueden presentarse variaciones al ser la solución MTT fotosensible. Se llevan los platos una vez cubiertos a incubación durante

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
3 horas. Luego, se aspira la solución MTT y se adiciona a cada uno de los pozos DMSO para disolver los cristales de formazán que se han formado al interior de las células (Ilustración 16).

![Ilustración 16. Cristales de Formazán](image)

Finalmente, se procede a retirar la solución de cada pozo y se deposita en cubetas de cuarzo, que son llevadas al espectrofotómetro para realizar las mediciones de absorbancia. Cada una de las mediciones se relaciona con una concentración conocida de células como se muestra en la Gráfica 3. Por medio de una regresión lineal, puede determinarse un nivel de confianza de 98,72% para los datos que se obtuvieron.

![Curva de calibración MTT](image)

Para empezar con el ensayo de citotoxicidad de los 5 tratamientos, inicialmente las matrices fueron sometidas a un proceso de esterilización para garantizar condiciones adecuadas de asepsia para realizar los ensayos de citotoxicidad. Para esto, las muestras tomadas de las matrices, de 6 mm de diámetro, fueron expuestas a radiación ultravioleta

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
por un periodo de 6 horas. Luego, las matrices se sometieron a un lavado rápido con etanol al 70%. Inmediatamente, las muestras se sumergieron en medio de cultivo DMEM para ser cargadas durante 8 horas asegurando una buena absorción del medio. Pasado este tiempo, las muestras que debían contener *Aloe vera*, fueron retiradas del medio y sumergidas en éste medicamento por un periodo de 24 horas a 4 °C. Las demás matrices (control sin *aloe*) que no requirieron carga, permanecieron en las mismas condiciones hasta realizar el ensayo.

Nota: El *Aloe vera* tuvo un proceso de filtración exhaustivo el cual, consistió en filtrar el *Aloe vera* por un filtro de plástico (muestra utilizada para Ilustración 17 A), seguido de un filtrado al vacío (todos sus componentes esterilizados en autoclave) en campana, y por último, un segundo filtrado al vacío en campana con un filtro de 0,45 µm hecho en el laboratorio de biotecnología para obtener *Aloe vera* completamente limpio de bacterias y microorganismos que puedan alterar o contaminar el ensayo. Al final de esto se cultivó en tripticasa de soya para saber si contenía algún microorganismo y lo que se obtuvo se puede apreciar en la Ilustración 17 B.

![Ilustración 17. A) muestra de Aloe vera filtrado en el filtro plástico incubado en agar tripticasa soya para evaluación de presencia de microorganismos y B) Aloe vera obtenido al final de todos los pasos de filtrado, sin microorganismos.](image)

Se cultivaron las células en cajas de 24 pozos a una concentración de 50.000 cel / mL en cada uno, dejándolas en la incubadora por 6 horas para garantizar adhesión celular. Después, por el método de contacto directo, se pusieron cada una de las matrices cargadas y no cargadas en cada uno de los pozos y se dejaron en incubación por 15 y 18 horas, para proseguir con la técnica de MTT como se describió anteriormente.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
3.6 DESARROLLO DEL DISEÑO DEL SOPORTE DEL SISTEMA LIBERADOR DE ALOE VERA

3.6.1 Diseño de concepto

Se describe el apósito como: el conjunto conformado por la matriz con un soporte o sistema de adhesión, la porción de Aloe vera con que se cargará la matriz para liberarlo posteriormente como medicamento y el empaque.

3.6.1.1 Identificación de necesidades del usuario

Después de analizar el problema y contextualizarlo, se procedió a definir la lista de necesidades por medio de juicio de expertos, información recolectada del Curso Internacional en Ingeniería de tejidos, Medicina Regenerativa y Nuevos Materiales para el Diseño de Sistemas de Liberación en Enfermedades de Alto Impacto Socioeconómico que tuvo lugar del 8 al 10 de Octubre de 2014 en la Alcaldía Mayor de Bogotá, Colombia y evaluación de bibliografía relacionada.

<table>
<thead>
<tr>
<th>Num.</th>
<th>Tipo</th>
<th>Necesidad</th>
<th>Imp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>El apósito</td>
<td>Puede ser puesto en contacto con la herida dérmica o la piel</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>El apósito</td>
<td>Se adhiere a la piel</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>El apósito</td>
<td>Está impregnado de Aloe vera</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>El apósito</td>
<td>Libera el Aloe vera de manera controlada</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>El apósito</td>
<td>Es resistente a la manipulación</td>
<td>2</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

6. El apósito
 - Está estéril
 Valor: 2

7. El apósito
 - Viene empacado
 Valor: 4

8. El apósito
 - Brinda un ambiente adecuado, húmedo, para la cicatrización de la herida
 Valor: 2

9. El apósito
 - Está protegido de la luz dentro del empaque (para evitar la degradación del Aloe vera)
 Valor: 2

10. El apósito
 - No presenta problemas de citotoxicidad
 Valor: 1

11. El apósito
 - Tiene propiedades antibacteriales
 Valor: 1

12. El apósito
 - Tiene un tiempo de uso delimitado antes de comenzar a degradarse y perder algunas de sus propiedades
 Valor: 2

13. El apósito
 - Tiene un espesor para contener una buena cantidad de Aloe vera
 Valor: 4

14. El apósito
 - Se adapta a la superficie de la piel donde es utilizada
 Valor: 3

15. El apósito
 - Es de fácil aplicación
 Valor: 3

<table>
<thead>
<tr>
<th>Num.</th>
<th>Num. de necesidad</th>
<th>Especificación</th>
<th>Imp.</th>
<th>Unidades</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Aceptación de la piel y/o la herida</td>
<td>1</td>
<td>Subjetivo</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Adhesión a superficies</td>
<td>5</td>
<td>MPa</td>
<td>0,0089</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Cantidad contenida de Aloe vera</td>
<td>3</td>
<td>mL</td>
<td>0 - 10</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Tiempo de liberación del Aloe vera al estar</td>
<td>2</td>
<td>hr</td>
<td>0 - 24</td>
</tr>
</tbody>
</table>

Tabla 8. Lista de necesidades del usuario

3.6.1.2 Identificación de especificaciones

Una vez establecidas las necesidades, se analizaron las diferentes características que debía tener el apósito para satisfacerlas. Se muestran las especificaciones en la Tabla 9, donde se muestra la importancia, las unidades en las cuales se mide y los valores estimados.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

<table>
<thead>
<tr>
<th>N°</th>
<th>N°</th>
<th>Especificación</th>
<th>N°</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>Resistencia a la manipulación</td>
<td>2</td>
<td>MPa</td>
<td>0,0145</td>
</tr>
<tr>
<td>6</td>
<td>6, 7</td>
<td>Empaque al vacío</td>
<td>3</td>
<td>Subjetivo</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6, 10, 11</td>
<td>Debe ser estéril</td>
<td>1</td>
<td>Subjetivo</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Debe ser húmeda</td>
<td>2</td>
<td>%</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>7, 9</td>
<td>Empaque no permite el paso de la luz hacia la matriz</td>
<td>2</td>
<td>Subjetiva</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>Tiempo entre desempaque del apósito e inicio de carga del aloe.</td>
<td>3</td>
<td>min</td>
<td>0 - 5</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>El apósito siempre debe estar refrigerado</td>
<td>2</td>
<td>°C</td>
<td>-3 - 4</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Vida útil después de aplicado</td>
<td>3</td>
<td>horas</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Espesor del apósito</td>
<td>4</td>
<td>mm</td>
<td>1 - 10</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Morfología especializada</td>
<td>4</td>
<td>Subjetivo</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Tiempo de aplicación</td>
<td>3</td>
<td>s</td>
<td>0 - 10</td>
</tr>
</tbody>
</table>

Tabla 9. Lista de especificaciones

A partir de las Tablas 8 y 9, se elaboró la matriz necesidades-especificaciones que se muestra en la Tabla 10. En ella, se relacionan las especificaciones o medidas que corresponden a cada una de las necesidades, permitiendo visualizar las necesidades que requieren mayor atención para el diseño.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

<table>
<thead>
<tr>
<th>Necesidad</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Puede ser puesto en contacto con la herida dérmica o la piel</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Se adhiera a la piel</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Está impregnado de Aloe vera</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Libera el Aloe vera de manera controlada</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Es resistente a la manipulación</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Está estéril</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Viene empaquetado</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Brinda un ambiente adecuado, húmedo, para la cicatrización de la herida</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Está protegido de la luz dentro del empaque (para evitar la degradación del Aloe vera)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>No presenta problemas de citotoxicidad</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Tiene propiedades antibacteriales</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Tiene un tiempo de uso delimitado antes de comenzar a degradarse y perder algunas de sus propiedades</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Tiene un espesor para contener una buena cantidad de Aloe vera</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Se adapta a la superficie de la piel donde es utilizada</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Es de fácil aplicación</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Especificaciones</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
</table>

Tabla 10. Matriz necesidades - especificaciones

Con la matriz necesidades-especificaciones, pueden determinarse los criterios de selección con base en la importancia (Tabla 11).
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

<table>
<thead>
<tr>
<th>Criterio de selección</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biocompatibilidad</td>
<td>30%</td>
</tr>
<tr>
<td>Capacidad antibacterial</td>
<td>20%</td>
</tr>
<tr>
<td>Fácil de operar</td>
<td>10%</td>
</tr>
<tr>
<td>Esterilidad</td>
<td>15%</td>
</tr>
<tr>
<td>Durabilidad</td>
<td>10%</td>
</tr>
<tr>
<td>Adhesión</td>
<td>15%</td>
</tr>
</tbody>
</table>

Tabla 11. Lista de criterios de selección

3.6.1.3 Generación del concepto

- **Caja negra: desarticular el problema**
 Representación global del producto, donde las líneas denotan materia que entra al sistema, energía requerida y señales, de acuerdo como se muestra en la Ilustración 19. El siguiente esquema, de caja negra, es uno de los más utilizados (Ulrich & Eppinger, 2000).

![Ilustración 19. Caja negra del apósito](image)

- **Diagrama de funciones**
 Consiste en la desarticulación funcional del problema.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
- **Registro de posibles soluciones**

Extraer matriz del empaque: consiste en el sistema de empaque que contiene la matriz sin cargar con *Aloe vera*, que la conserva en condiciones adecuadas para su uso posterior.

<table>
<thead>
<tr>
<th>REGISTRO DE SOLUCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagen solución</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Tabla 12. Alternativas solución para extraer la matriz del empaque

Extraer Aloe vera del refrigerador: Consiste en la forma en que el paciente o usuario del apósito obtiene la solución de Aloe vera que permanece en el refrigerador hasta que vaya a hacerse uso de él.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

<table>
<thead>
<tr>
<th>Imagen solución</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracción manual</td>
<td>La persona retira el envase que contiene el Aloe vera del refrigerador con su mano.</td>
</tr>
</tbody>
</table>

Tabla 13. Alternativas solución para extraer Aloe vera del refrigerador

Cargar matriz con Aloe vera: Consiste en el sistema que permitirá adicionar el *Aloe vera* a la matriz.

<table>
<thead>
<tr>
<th>Imagen solución</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empaque plástico</td>
<td>Recipiente en polietileno fabricado por termoformado. Permite almacenar sustancias en cantidades específicas y mantenerlas aisladas del medio ambiente, conservando sus propiedades. No permite el paso de la luz hacia su contenido. Sellado herméticamente.</td>
</tr>
<tr>
<td>Dosificador</td>
<td>Envase plástico para almacenar contenidos líquidos. Permite proporcionar la dosis requerida del contenido del envase. Protege el contenido del medio exterior mientras permanezca tapado. No protege su contenido de los rayos de luz.</td>
</tr>
</tbody>
</table>
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

<table>
<thead>
<tr>
<th>Bolsa plástica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolsa plástica que mantiene su contenido en las condiciones adecuadas para su preservación. Su manipulación puede ser difícil porque pueden presentarse derrames.</td>
</tr>
</tbody>
</table>

Tabla 14. Alternativas solución para cargar matriz con *Aloe vera*

Refrigerar matriz cargada: El paciente o ayudante del paciente ingresa la matriz cargada al refrigerador para asegurar buena absorción y conservando condiciones adecuadas para evitar la degradación del *Aloe vera*.

<table>
<thead>
<tr>
<th>REGISTRO DE SOLUCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagen solución</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Tabla 15. Alternativas solución para refrigerar matriz cargada

Posicionar paciente: Consiste en la ubicación del paciente o parte del cuerpo del paciente en el momento de hacer uso del apósito.

<table>
<thead>
<tr>
<th>REGISTRO DE SOLUCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagen solución</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Fijar matriz al paciente: Representa el ajuste que se logra con el apósito para poder adherirlo correctamente sobre la superficie dérmica afectada del paciente y evitar desplazamientos no deseados.

<table>
<thead>
<tr>
<th>REGISTRO DE SOLUCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagen solución</td>
</tr>
<tr>
<td>Apósito con pestaña de adhesión</td>
</tr>
<tr>
<td>(Braun, n.d.)</td>
</tr>
<tr>
<td>Apósito con adhesión</td>
</tr>
<tr>
<td>(MÖLNLYCKE, n.d.)</td>
</tr>
</tbody>
</table>
Apósito con soporte externo

Apósito que necesita ser inmovilizado sobre la superficie lesionada por medio de un adhesivo externo o vendaje.

(LARTMANN, 2014)

<table>
<thead>
<tr>
<th>Imagen solución</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difusión</td>
<td></td>
</tr>
</tbody>
</table>

El *Aloe vera* sale de la matriz por principio de difusión, que se basa en las diferencias de concentraciones que se dan entre el interior de la matriz y la superficie con la que es puesta en contacto, liberando su contenido en dirección a la superficie que presenta menor concentración de *Aloe vera*. No se requieren energías externas.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Retiro manual

La persona retira el apósito con su mano, tomándolo por una esquina.

Tabla 19. Alternativas solución para retirar apósito

Degradar apósito: Mecanismo que indica que el estado de integridad del apósito está deteriorado. Alerta al usuario para dejar de utilizarlo.

<table>
<thead>
<tr>
<th>Imagen solución</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El apósito se torna de un color amarillo y pierde su forma. El usuario lo toma como una señal para saber que el apósito se está degradando y debe retirarlo.</td>
</tr>
</tbody>
</table>

Tabla 20. Alternativas solución para cargar matriz con Aloe vera

Generar hongos: Mecanismo que indica que el apósito está contaminado. Alerta al usuario para dejar de utilizarlo.

<table>
<thead>
<tr>
<th>Imagen solución</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Se presentan puntos negros en el apósito. El usuario lo toma como una señal para saber que el apósito se está contaminado y debe retirarlo.</td>
</tr>
</tbody>
</table>

Tabla 21. Alternativas solución para cargar matriz con Aloe vera

- Matriz morfológica: selección de soluciones

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Reúne las diferentes alternativas para solucionar cada una de las funciones y se hacen combinaciones de ellas para generar conceptos solución.

<table>
<thead>
<tr>
<th>Función / Soluciones</th>
<th>Solución 1</th>
<th>Solución 2</th>
<th>Solución 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraer matriz del empaque</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extraer Aloe vera del refrigerador</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargar matriz con Aloe vera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerar matriz cargada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posicionar paciente</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Tabla 22. Matriz morfológica

<table>
<thead>
<tr>
<th>Concepto A:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 23. Ruta Solución del Concepto A.</td>
</tr>
<tr>
<td>Extraer matriz del empaque</td>
</tr>
<tr>
<td>S1</td>
</tr>
</tbody>
</table>

Como se muestra en la matriz morfológica, este concepto cuenta con un empaque en plástico y papel que está completamente sellado, aislando el apósito de cualquier contaminación, manteniéndolo estéril mientras el empaque permanezca sellado. Tiene la desventaja de estar expuesto a humedecerse si ocurre algún derrame de líquidos sobre el empaque, ya que la parte en papel no aislará el apósito y este podrá absorber cualquier...

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

sustancia. El *Aloe vera* viene en un empaque que permite poner toda la matriz en contacto directo con el Aloe vera, para de esta forma cargarla de manera homogénea y garantizar que el medicamento impregne toda la superficie que estará en contacto con la región dérmica lesionada. Esto lo diferencia en gran medida de los demás conceptos, ya que brinda para el usuario mayor comodidad y facilidad de uso respecto a los demás.

La fijación del apósito al paciente por medio de pestañas de adhesión, es otra de las ventajas que presenta este concepto, brinda facilidad de operación y también, seguridad para el usuario; podrá hacer uso del apósito sin tocar el área que va en contacto con la herida además, podrá continuar realizando sus actividades sin preocuparse por que este se despegue del lugar lesionado.

Concepto B:

<table>
<thead>
<tr>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraer matriz del empaque</td>
<td>Extraer Aloe vera del refrigerador</td>
<td>Cargar matriz con Aloe vera</td>
<td>Refrigerar matriz cargada</td>
<td>Posicionar paciente</td>
<td>Fijar matriz al paciente</td>
<td>Liberar Aloe vera</td>
<td>Retirar apósito</td>
<td>Degradar apósito</td>
<td>Generar hongos</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S2</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 24. Ruta Solución del Concepto B.

En este concepto, el apósito cuenta con un empaque en acetato y aluminio que lo mantiene aislado de cualquier contaminación externa. Tiene la ventaja de proteger la forma del apósito ya que no se aplastará al ser el empaque más resistente y conservar el espacio libre para el apósito dentro de él. Otra de las ventajas del empaque, es que mantiene el apósito aislado de cualquier derrame, manteniéndolo seco hasta que vaya a ser utilizado y cargado con el *Aloe vera*.

En este concepto, el *Aloe vera* viene empacado en un dosificador que permitirá al usuario adicionar la cantidad deseada de Aloe vera al apósito. Tiene como desventaja, que la distribución uniforme del Aloe vera dependerá del usuario.

La adhesión propia que posee el apósito tiene la ventaja de hacer fácil su uso, pero, puede ser una desventaja que el apósito no cuente con un área adicional donde el usuario pueda manipularlo sin preocuparse por tocar el área que irá en contacto con la herida.

Concepto C:

<table>
<thead>
<tr>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraer matriz del empaque</td>
<td>Extraer Aloe vera del refrigerador</td>
<td>Cargar matriz con Aloe vera</td>
<td>Refrigerar matriz cargada</td>
<td>Posicionar paciente</td>
<td>Fijar matriz al paciente</td>
<td>Liberar Aloe vera</td>
<td>Retirar apósito</td>
<td>Degradar apósito</td>
<td>Generar hongos</td>
</tr>
<tr>
<td>S3</td>
<td>S1</td>
<td>S3</td>
<td>S1</td>
<td>S1</td>
<td>S3</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Este concepto cuenta con un empaque sellado en papel, que permite mantener la matriz aislada de cualquier contaminación del ambiente. Tiene como desventaja, que no protege el apósito de derrames de líquidos. La administración del Aloe vera para cargar la matriz se realiza por medio de una bolsa plástica que contiene el Aloe vera. Tiene como desventaja, que su manipulación puede ser complicada y puede desperdiciarse Aloe vera.

La adhesión del apósito debe realizarse con un soporte externo, como cintas y microporos, que permiten al usuario adherirlo hasta sentirse seguro. Tiene como desventaja, que la manipulación puede ser difícil una vez el apósito esté cargado con el Aloe vera, pues el usuario puede humedecer el adhesivo antes de ubicar correctamente el apósito y perder capacidad de adhesión.

3.6.1.4 Selección de concepto:

“La selección del concepto es el proceso de evaluar los conceptos con respecto a las necesidades del cliente, así como otros criterios, comparando las fortalezas y debilidades de los conceptos, y seleccionando uno o más de ellas para investigación, prueba o desarrollo adicional” (Ulrich & Eppinger, 2000).

Para seleccionar el concepto ganador, se utilizó la Tabla 26. Lista de criterios de selección y se calificaron dichos criterios para cada uno de los conceptos con una escala de 1 a 5, siendo 5 el mayor valor.

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Peso</th>
<th>A</th>
<th>Puntuación ponderada</th>
<th>B</th>
<th>Puntuación ponderada</th>
<th>C</th>
<th>Puntuación ponderada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biocompatibilidad</td>
<td>30%</td>
<td>5</td>
<td>1,5</td>
<td>5</td>
<td>1,5</td>
<td>5</td>
<td>1,5</td>
</tr>
<tr>
<td>Capacidad antibacterial</td>
<td>20%</td>
<td>4</td>
<td>0,8</td>
<td>4</td>
<td>0,8</td>
<td>4</td>
<td>0,8</td>
</tr>
<tr>
<td>Fácil de operar</td>
<td>10%</td>
<td>5</td>
<td>0,5</td>
<td>4</td>
<td>0,4</td>
<td>3</td>
<td>0,3</td>
</tr>
<tr>
<td>Esternidad</td>
<td>15%</td>
<td>3</td>
<td>0,45</td>
<td>4</td>
<td>0,6</td>
<td>2</td>
<td>0,3</td>
</tr>
<tr>
<td>Durabilidad</td>
<td>10%</td>
<td>4</td>
<td>0,4</td>
<td>4</td>
<td>0,4</td>
<td>2</td>
<td>0,2</td>
</tr>
<tr>
<td>Adhesión</td>
<td>15%</td>
<td>5</td>
<td>0,75</td>
<td>3</td>
<td>0,45</td>
<td>2</td>
<td>0,3</td>
</tr>
<tr>
<td>Puntuación total</td>
<td></td>
<td>4,4</td>
<td>4,15</td>
<td>3,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rango</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De acuerdo a la puntuación obtenida para cada uno de los conceptos, teniendo en cuenta los criterios de selección establecidos previamente, se concluye que el concepto ganador es el concepto A. Por diferencia de 0,25 con el concepto B y 1,0 con el concepto C, sobresale en puntuación. Una vez se ha seleccionado el concepto ganador, se procede a hacer el diseño de detalle.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
4. DISCUSIÓN DE RESULTADOS

Los resultados muestran matrices de color blanco, con un grosor de aproximadamente unos 4,30 mm y contextura esponjosa que es una propiedad fundamental para permitir una buena absorción del Aloe vera y su aplicación como sistema liberador de medicamentos. Su resistencia al tacto hace que su aplicación sea fácil y puedan ser utilizadas en heridas que requieran un ambiente húmedo, que presenten exudados que pueden ser absorbidos por la matriz y permitan lograr un proceso de recuperación más rápido y efectivo.

4.1 MATRICES COMO SISTEMAS LIBERADORES DE ALOE VERA

4.1.1 MORFOLOGÍA DE LA SUPERFICIE DE LAS MATRICES CON SEM

Para observar el nivel de interconectividad, porosidad y fisuras o fracturas de los diferentes tratamientos se realizó una microscopía electrónica de barrido (SEM), con el fin de ver cómo sería la eficiente incorporación del Aloe vera dentro de ellos. En las diferentes imágenes se ven diferencias en cuanto al tamaño, geometría y organización de los poros entre las matrices con proceso de liofilización y/o ultrasonido.

La ilustración 21 muestra las matrices A1Q1 con proceso de liofilización y/o ultrasonido. Las que presentan ultrasonido ilustraciones b), d) y f) muestran paredes más delgadas, arrugadas y débiles, mientras las ilustraciones a), c) y e) tienen paredes fuertes. En la Ilustración e), se observan poros uniformes, lo que ayuda a una mayor tensión superficial por el perímetro que abarca, y así, retención de mayor líquido, mientras en la Ilustración f). Se observa el poro con grietas disminuyendo la tensión superficial, y por ende, la retención de fluido. También se puede determinar desde la perspectiva de las ilustraciones e) y f) que las rugosidades que presenta la matriz con proceso de ultrasonido puede proporcionarle mayor resistencia a esfuerzos mecánicos, cosa contraria que le ocurre a las que tienen solo el proceso de liofilización que presentan dobleces llevándola a ser débiles ante esfuerzos mecánicos de compresión.
En la ilustración 22, se pueden ver los cambios estructurales del tratamiento A1Q1.5 con los diferentes procesos. Se observa en las figuras a), c) y e) de matriz con solo liofilización, que los poros están más organizados e interconectados, pero algunos no están definidos, es decir, algunos no fueron totalmente abiertos quedando una especie de membrana que interrumpe o dificulta el paso del fluido, mientras en las figuras b), d) y f) que son de la matriz A1Q1.5 SL se ve mayor interconectividad y presenta microfacturas en sus paredes. Sin embargo, al tocarlas físicamente se detectó una textura más estable, esponjosa y duradera en los tratamientos con proceso de sonicación, lo que también se evidenció en el ensayo de biodegradabilidad, pero en el ensayo de absorción y liberación del Aloe vera fue realmente pobre la incorporación de éste medicamento natural dentro de...
ellas; por lo cual, se definió como tratamiento alternativo. Las matrices liofilizadas sin ultrasonido, al tacto eran difíciles de manipular por su fragilidad era fácil que se deterioraran rápido, pero en relación con el ensayo de biodegradabilidad fueron las que más rápido se degradaban, pero seguían hinchadas.

![Ilustración 22. Imágenes de SEM. a), c) y e) Matriz A1Q1.5L en aumento de X100, X500 y X700 respectivamente. c), d) y f) Matriz A1Q1.5 SL en aumeneto X100, X500 y X700 respectivamente.](image)

En la ilustración 23, se pueden observar las matrices que tuvieron en su mezcla cloruro de sodio (a y b) y bicarbonato de sodio (c). El SEM y las fotos en el microscopio mostraron que ambas presentaban saturación en los poros de cristales salinos y de partículas del compuesto respectivamente, que impidieron la absorción del medicamento natural por obstrucción física. Por lo anterior, fueron descartadas. Aunque, una de estos tratamientos

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
que presentó comportamiento estructural y de hinchamiento bueno fue, la matriz A1Q1B12 L, es decir, ésta si fue escogida para el análisis de todo el proyecto.

Ilustración 23. Foto con el Microscopio de la Matriz con NaCl a) y b) y SEM de la matriz A1Q1B12L c).

4.1.2 CARACTERÍSTICAS DE LAS MATRICES CON FT-IR

La evaluación de la composición de las diferentes matrices es muy importante para reconocer nuevas estructuras y enlaces químicos, identificando interacciones químicas entre los diferentes componentes de cada tratamiento. En la Gráfica 4 se observa el espectro FT-IR de A1Q1B12L, A1Q1L, A1Q1SL, A1Q1.5L y A1Q1.5SL.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
En todos los tratamientos se puede observar una depresión o banda ancha en la región 3610-3300 cm\(^{-1}\) debido a la formación de bandas por el estiramiento intermolecular de puentes de hidrógeno y a las vibraciones de las cargas de los grupos amino que se sobrelapan en la misma región (Baysal et al., 2013; Kusrini et al., 2014), es decir, se evidencia el enlace entre el quitosano y el alginato. La banda que aparece aproximadamente de 2835 a 2940 cm\(^{-1}\) se ve más pronunciada en los tratamientos A1Q1B12L, A1Q1.5SL, A1Q1.5L se da por las vibraciones de los grupos –CH₃ (Pereira, Carvalho, et al., 2013), mientras en A1Q1SL y A1Q1L esta banda se ve de menor profundidad, casi desaparece. Otro pico que se detalla en todos con la misma forma, pero diferente profundidad, y se ve diferente en A1Q1B12L en el valor 1600 cm\(^{-1}\) donde se observa un pico simétrico correspondiente a las vibraciones de los grupos COO\(^{-}\) (Abreu et al., 2008) en el alginato y la sobreposición del grupo amino del quitosano. La interacción electrostática entre el grupo carboxilo y el grupo amino forma el complejo electrolítico (Venkatesan, Bhatnagar, & Kim, 2014). Por otro lado, el tratamiento A1Q1B12L presenta dos picos cercanos que están en 1595 y 1570 cm\(^{-1}\), se dan debido a los modos de vibración de las flexiones del NH₃ (Abreu et al., 2008). En 1407 y 1298 cm\(^{-1}\) se dan bandas simétricas y asíméticas, respectivamente que aparecen probablemente por la presencia de las vibraciones de los grupos CH₃ (Pereira, Carvalho, et al., 2013) y C-O-C, indicando que el alginato y quitosano reaccionan en esos puntos (Sankalia, Mashru, Sankalia, & Sutariya, 2007). Alrededor de 1070 cm\(^{-1}\) en todos aparece una banda de absorción débil relacionada a C-O y C=O debido a los grupos carboxilos, y otro pico asímético muy cerca de la banda anterior se observa aproximadamente en el punto 1027 cm\(^{-1}\) por el estiramiento C-O-C por las vibraciones de los grupos OH atribuido a la estructura sacárida del alginato (Baysal et al., 2013)(Li, Dai, Zhang, Wang, & Wei, 2005). Entre 767 y 990 cm\(^{-1}\), se pueden distinguir tres picos y un pico en 816 cm\(^{-1}\) por la banda Na-O (Baysal et al., 2013) características del alginato.

En todos los tratamientos se observaron enlaces que identifican la presencia de los dos polisacáridos indicando su entrelazamiento. Sin embargo, en cada mezcla se observan diferencias en la profundidad de los picos y ancho de algunas bandas, sobre todo en las matrices A1Q1SL y A1Q1L en las cuales la concentración y porcentaje de quitosano es menor.

Matriz Óptima de los 5 Tratamientos

Para determinar el resultado del objetivo: optimizar el sistema de las soluciones de las matrices, se planteó un sistema de ecuaciones que tome en cuenta los resultados de citotoxicidad, degradabilidad y capacidad antibacterial para obtener la mejor matriz de los 3 tratamientos escogidos, y ya con ese resultado obtener la puntuación de los tratamiento alternativos.

\[
\text{C= Citotoxicidad} \\
\text{D= Degradabilidad} \\
\text{Cal= f(C,D,A) = } \alpha \text{ C + } \beta \text{D + } \delta \text{A} \\
\text{A= Antibacterial}
\]

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Tabla 27. Calificación de las Variables de los Tratamientos

Al tener el ponderado de la calificación y el porcentaje dado, se plantean las ecuaciones así:

\[
1,2 = \alpha C + \beta D + \delta A \\
2,3 = \alpha C + \beta D + \delta A \\
2,5 = \alpha C + \beta D + \delta A
\]

Luego, se hace una tabla con ellas (tabla 28).

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1,2</td>
<td>0</td>
<td>0,79</td>
</tr>
<tr>
<td>β</td>
<td>2,3</td>
<td>0,66</td>
<td>0,89</td>
</tr>
<tr>
<td>δ</td>
<td>2,5</td>
<td>0,67</td>
<td>0,85</td>
</tr>
</tbody>
</table>

Tabla 28. Ecuaciones de los Tratamientos Seleccionados

Y se ponen las condiciones de igualdad (tabla 29)

<table>
<thead>
<tr>
<th>Condiciones</th>
<th>-1,2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2,3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-2,5</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabla 29. Condiciones de las Ecuaciones

Por último, se obtiene las constantes α, β y δ

<table>
<thead>
<tr>
<th>Solución</th>
<th>α</th>
<th>β</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,7522</td>
<td>2,96E-02</td>
<td>0,6195</td>
</tr>
</tbody>
</table>

Tabla 30. Coeficientes Encontrados
Con este resultado se obtiene el resultado de los tratamientos alternativos

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>A</th>
<th>D</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1Q1SL</td>
<td>0,57</td>
<td>16</td>
<td>0,18</td>
<td>1,58</td>
</tr>
<tr>
<td>A1Q1.5SL</td>
<td>0,81</td>
<td>14</td>
<td>0,78</td>
<td>2,31</td>
</tr>
</tbody>
</table>

Tabla 31. Resultados Tratamientos Alternativos

De los resultados anteriores se obtuvo que los mejores tratamientos fueron: de los alternativos el A1Q1.5SL y de los seleccionados A1Q1B12L y A1Q1.5 (Tabla 32), es decir, el tratamiento óptimo fue la solución que tiene mayor concentración de quitosano al 1.5 %.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>A</th>
<th>D</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1Q1SL</td>
<td>0,57</td>
<td>16</td>
<td>0,18</td>
<td>1,58</td>
</tr>
<tr>
<td>A1Q1.5SL</td>
<td>0,81</td>
<td>14</td>
<td>0,78</td>
<td>2,31</td>
</tr>
<tr>
<td>A1Q1L</td>
<td>0</td>
<td>24</td>
<td>0,79</td>
<td>2,30</td>
</tr>
<tr>
<td>A1Q1.5L</td>
<td>0,66</td>
<td>20</td>
<td>0,89</td>
<td>2,30</td>
</tr>
<tr>
<td>A1Q1B12L</td>
<td>0,67</td>
<td>27</td>
<td>0,85</td>
<td>2,50</td>
</tr>
</tbody>
</table>

Tabla 32. Resultados de Todos los Tratamientos

4.2 ENSAYO DEGRADACIÓN **IN VITRO**

El estudio de degradación fue realizado para evaluar la capacidad de las matrices de conservar su forma y evaluar si las matrices una vez cargadas con el *Aloe vera* pueden ser degradadas fácilmente, para determinar condiciones que puedan ser importantes para el diseño del producto como un entregable y estimar su vida útil, y las mejores condiciones para que esta sea más larga.

Todas las matrices fueron sumergidas en solución PBS con pH 7.4, bajo agitación constante y a temperatura ambiente durante 13 días. La Gráfica 5 muestra los perfiles de pérdida de peso de las matrices durante este periodo. Las matrices A1Q1B12L R y A1Q1.5L R mostraron mayor pérdida de peso en comparación con las demás matrices. El resultado, puede ser debido al proceso de obtención de las matrices, donde se utilizó mayor contenido de quitosano y agente porogénico para la primera y mayor contenido de alginato para la segunda. Además, la adición del *Aloe vera* puede incrementar la presencia de grupos hidrofílicos que ayudan a mantener estructuras más estables al sumergir las matrices en la solución PBS. El *Aloe vera* es rico en polisacáridos como el acemanano, que al entrar en contacto con grupos funcionales del quitosano de las matrices, pueden resultar en una mejor capacidad de absorción en comparación con matrices sin cargar (Hamman, 2008).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Durante el ensayo, las matrices comenzaron a perder su forma gradualmente y a disolverse, lo cual pudo evidenciarse por la pérdida de peso en seco que se registró cada 24 horas. Esto ocurre como resultado de la degradación por erosión de la matriz, donde se va perdiendo material de las superficies al estar sometidas a condiciones de pH, temperatura y agitación constantes.

Los tratamientos gráfica 5, sometidos al proceso de sonicación, fueron los que presentaron mejor resistencia en las diferentes etapas del ensayo de degradabilidad, conservando su forma. También se recolectaron buenas observaciones de las matrices que contenían mayor proporción de quitosano (1.5%), especialmente las matrices A1Q1.5L, presentaron muy buena capacidad de hinchamiento e incluso después de los procesos de secado del ensayo, tuvieron la capacidad de permanecer hinchadas y retener solución aunque presentaran a la vez desprendimiento de las capas superficiales. Contrariamente, las matrices A1Q1L perdieron su forma rápidamente y quedaron colapsadas luego de las primeras tomas de peso.

La capacidad de hinchamiento de las matrices a lo largo del experimento, puede garantizar un mejor ambiente para la curación de heridas dérmicas, ya que la interfaz entre el apósito y la herida contará con condiciones necesarias de humedad y además, se absorben los excesos de exudados que puedan presentarse en la herida.

Las matrices A1Q1LC y A1Q1SLR mostraron pérdidas de peso en el tiempo realmente bajas en comparación con las demás, donde los valores de pérdida de peso superaron el 60% alrededor del día 8. En la degradación de matrices con contenido de quitosano,

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
puede ser influyente el grado de desacetilación del quitosano utilizado para fabricar la matriz; ya que, a mayor grado de desacetilación puede presentarse una degradación más lenta.

Después del día 13 algunas matrices comenzaron a evidenciar signos de contaminación como cambios de color y puntos negros, posiblemente hongos. Por esta razón, se tomó el día 13 como último día de medición, aunque esta se siguiera registrando hasta completar 30 días del ensayo, los datos no fueron analizados por las condiciones de las matrices. Sin embargo, después del día 13 se siguió con la observación de las alteraciones que presentaban.

4.3 ENSAYO ACTIVIDAD ANTIBACTERIAL

Las heridas presentan altos potenciales de infección ocasionadas por diferentes tipos de bacterias y otros microorganismos. Por esta razón, se busca implementar propiedades antibacteriales en matrices utilizadas para la curación de heridas, buscando reducir el riesgo de contaminación que pueda causar estas infecciones.

El Aloe vera, planta tropical de la familia de las Liliáceas, se ha caracterizado por sus buenas propiedades en la curación de heridas pequeñas y su propiedad antibacterial intrínseca sobre heridas dérmicas. Esto se logra por la composición heterogénea del Aloe vera, que contiene enzimas, aminoácidos, polisacáridos, vitaminas (Hamman, 2008).

La matrices cargadas con Aloe vera son diseñadas para contribuir al proceso de curación de heridas dérmicas en segunda etapa de cicatrización, para lo cual es de vital importancia su actividad antibacterial, de manera que proporcione además de un ambiente húmedo, unas condiciones antibacteriales para prevenir posibles infecciones.

Esto puede lograrse con las propiedades antibacteriales tanto del Aloe vera como del alginato, que al mezclarse en la composición de la matriz cargada pueden potenciar dicho efecto y ayudar a promover el proceso de cicatrización a la fase final como también lo reporta R. F. Pereira et. al en su trabajo Influence of Aloe vera on water absorption and enzymatic in vitro degradation of alginate hydrogel films.

La evaluación de la capacidad antibacterial de las matrices contra Staphylococcus aureus que son bacterias frecuentemente encontradas en heridas de piel; se obtuvo alto potencial antibacterial con las matrices cargadas con Aloe vera (Ilustración 24), ya que presentaron halos de inhibición, que demostraron que las matrices cargadas brindan mejor capacidad antibacterial que las matrices sin cargar. Por el contrario, para Pseudomonas aeruginosa, no se encontró potencial antibacterial con las matrices control ni con las matrices cargadas con Aloe vera (Ilustración 25), ya que no hubo presencia de halos de inhibición.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Ilustración 24. Resultados ensayo Kirby-Bauer con *Staphylococcus aureus* para las matrices a) A1Q1L M1, M2, b) y c) A1Q1.5L M5, M6, d) A1Q1B12L M9, M10, e) A1Q1SL M13, M14, f) A1Q1.5SL M17, M18.

Ilustración 25. Resultados ensayo Kirby-Bauer con *Pseudomonas aeruginosa* a) controles de antibióticos CN10, TE30 y Aloe vera, b) A1Q1L M1, M2 c) A1Q1.5L M5, M6, d) A1Q1B12L M9, M10, e) A1Q1SL M13, M14, f) A1Q1.5SL M17, M18.

Por sí solas, las matrices no evidenciaron ningún tipo de halo para ninguno de los dos microorganismos. Por el contrario, una vez cargadas, su capacidad antibacterial contra *S.aureus* se potenció, superando la capacidad que tiene el *Aloe vera* solo que se utilizó como control (Gráfica 6).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Para las muestras M2 y M10, A1Q1L y A1Q1B12 respectivamente, se obtuvieron valores superiores de halos de inhibición contra S. Aureus (M2: 24 mm, M10: 27 mm) en comparación con el antibiótico CN10 (23 mm) y valores no muy inferiores a la capacidad antibacterial del TE30 (28 mm). Se demuestra como la adición del Aloe vera incrementa la capacidad antibacterial de las matrices contra S. aureus, ya que los controles no presentaron halos de inhibición. Aun comparando con la capacidad antibacterial del Aloe vera, utilizado como control, se lograron valores mayores en los halos de inhibición de las matrices cargadas (Tabla 33).

Para las demás matrices cargadas con Aloe vera para S. aureus, se obtuvieron halos de inhibición de menor tamaño pero, que de igual manera, brindan buena capacidad antibacterial, ya que alcanzan valores similares a la capacidad antibacterial del Aloe vera que, como se mencionó anteriormente, presenta buenas propiedades antibacteriales.

<table>
<thead>
<tr>
<th>Matriz</th>
<th>Fator</th>
<th>Nivel</th>
<th>Nombre</th>
<th>Halo promedio (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1Q1L</td>
<td>Sin Aloe Vera</td>
<td>S. aureus</td>
<td>M1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>P. aeruginosa</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1Q1L</td>
<td>S. aureus</td>
<td>M2</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>P. aeruginosa</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A1Q1L</td>
<td>Sin Aloe Vera</td>
<td>S. aureus</td>
<td>M5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>P. aeruginosa</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A1Q1L</td>
<td>Sin Aloe Vera</td>
<td>S. aureus</td>
<td>M6</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>P. aeruginosa</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A1Q1L</td>
<td>Sin Aloe Vera</td>
<td>S. aureus</td>
<td>M9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>P. aeruginosa</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A1Q1L</td>
<td>Sin Aloe Vera</td>
<td>S. aureus</td>
<td>M10</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>P. aeruginosa</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A1Q1L</td>
<td>Sin Aloe Vera</td>
<td>S. aureus</td>
<td>M13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>P. aeruginosa</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A1Q1L</td>
<td>Sin Aloe Vera</td>
<td>S. aureus</td>
<td>M14</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>P. aeruginosa</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A1Q1L</td>
<td>Sin Aloe Vera</td>
<td>S. aureus</td>
<td>M17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>P. aeruginosa</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A1Q1L</td>
<td>Sin Aloe Vera</td>
<td>S. aureus</td>
<td>M18</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Con Aloe Vera</td>
<td>P. aeruginosa</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aloe vera</td>
<td>S. aureus</td>
<td>16</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. aeruginosa</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibióticos</td>
<td>CN10</td>
<td>S. aureus</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. aeruginosa</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TE30</td>
<td>S. aureus</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. aeruginosa</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 33. Resultados ensayo Kirby-Bauer. Valores promedio de los halos medidos para cada uno de los tratamientos con los microorganismos S. Aureus y P. Aeruginosa,
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

Gráfica 6. Resultados ensayo kirby–Bauer evidencian los tratamientos con mejor capacidad antibacterial teniendo como referencia los controles de antibióticos y Aloe vera.

4.4 ENSAYO CITOTOXICIDAD

Ensayos in vitro con cultivos de células CHO-k1 (células de ovario de hámster chino) demostraron que las matrices, tanto cargadas con Aloe vera como las matrices mismas, presentan buena compatibilidad con las células fibroblásticas.

Previos estudios han demostrado los efectos que pueden lograrse con el gel de Aloe vera sobre heridas dérmicas; tales como mantener un ambiente con las condiciones de humedad, oxigenación y control de actividad antibacterial que contribuyen para lograr epitelización y proliferación fibroblástica (Boateng & Matthews, 2008).

Al finalizar éste ensayo se obtuvieron solo las absorbancias de 4 de los 5 tratamientos, ya que se realizó una modificación en el protocolo de esterilización, a partir de los lavados en PBS; pues el tratamiento A1Q1L se diluyó en esta solución. Con base en esto, se decidió eliminar este paso del protocolo de esterilización para conservar la integridad de las muestras y además, se eliminó también éste tratamiento, por la pérdida de forma que presentaron las muestras de la matriz que impidió continuar la siguiente parte del ensayo de citotoxicidad.

Los valores de las absorbancias se obtuvieron por medio de un mismo ensayo en diferentes tiempos, a las 15 y 18 horas de estar las muestras de las matrices en contacto directo con las células (Tabla 34).

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

<table>
<thead>
<tr>
<th>MTT 15 horas</th>
<th>MTT 18 horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS1</td>
<td>ABS2</td>
</tr>
<tr>
<td>DMSO</td>
<td>0,000</td>
</tr>
<tr>
<td>Etanol 70%</td>
<td>-0,002</td>
</tr>
<tr>
<td>DMEM</td>
<td>0,030</td>
</tr>
<tr>
<td>MA4</td>
<td>0,016</td>
</tr>
<tr>
<td>MC4</td>
<td>0,010</td>
</tr>
<tr>
<td>MA3</td>
<td>0,018</td>
</tr>
<tr>
<td>MC3</td>
<td>0,020</td>
</tr>
<tr>
<td>MA5</td>
<td>0,030</td>
</tr>
<tr>
<td>MC5</td>
<td>0,023</td>
</tr>
<tr>
<td>MA2</td>
<td>0,030</td>
</tr>
<tr>
<td>MC2</td>
<td>0,045</td>
</tr>
</tbody>
</table>

Tabla 34. Datos de Absorbancia en nm a las 15 y 18 horas.

De la anterior tabla se utilizaron los datos para comparar por medio de tabla de columnas los tratamientos en los dos tiempos manejados (Gráfica 7).

Gráfica 7. Resultados MTT a) Absorbancias de los Tratamientos y b) concentraciones celulares.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Los datos de la Gráfica 7 fueron normalizados con el control negativo, es decir, se tomó como si fuera el 100 % en cada uno de los tiempos; tomando en cuenta esto, se evidenció que el tratamiento A1Q1.5SL control (MC5) a las 18 horas tuvo 83,6 % de células vivas, mientras que el tratamiento A1Q1.5L control (MC2) a las 15 horas fue el que tuvo mayor número celular con la misma absorbancia que el control negativo (DMEM) del 100%. En los tratamientos con Aloe vera a las 18 horas el que mejor porcentaje arrojó respecto al control negativo fue el MA5 con un 79,6% y a las 15 horas fue el MA2 con un 79,4 % de células vivas. Según lo anterior, las matrices con menor citotoxicidad con Aloe vera y control fueron A1Q1.5L y A1Q1.5SL, mientras que los tratamientos MC3 a las 15 y 18 horas, MA3 a las 15 horas y MA4 a las 18 horas fueron los que más bajo porcentaje de células vivas tuvieron con 55.8 %, 63.2%, 44.1% y 57.1%, respectivamente, siendo el más tóxico A1Q1SL (MA4).

No se registraron diferencias estadísticamente significativas con los tratamientos y el control negativo, por lo cual, los tratamientos no se consideran como tóxicos.

Los datos fueron analizados utilizando JMP (version 10.0 SAS Institute, Inc., North Carolina) por medio de un ensayo ANOVA para determinar las diferencias a través de los diferentes tratamientos. Con un nivel de confianza del 95%, p<0,05.

4.5 DISEÑO DE DETALLE DEL SOPORTE DEL SISTEMA LIBERADOR DE MEDICAMENTOS

4.5.1 Diseño de detalle

Se describe como se llevó a cabo la selección de cada uno de los componentes del apósito con base en el concepto ganador. Cada solución se justifica para implementarla y dejar claro los detalles. Esto se hace por medio de cálculos, mediciones, análisis y descripción, para hacer una selección apropiada. Se aprecian además, planos de algunos componentes que fueron diseñados con base en las necesidades del cliente. Finalmente, se muestra evidencia fotográfica del concepto ganador terminado en el numeral 4.5.

4.5.1.1 Subsistemas

Para apreciar mejor los componentes del apósito, se segmentará en subsistemas.

- Moldes para fabricación de apósitos
- Sistema de adhesión
- Empaque para el apósito
- Empaque para el Aloe vera

Moldes para fabricación de apósitos

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Para el diseño de los moldes, teniendo en cuenta la aplicación del apósito, se planteó diseñarlos para un área específica del cuerpo. Se decidió realizar apósitos para utilizar en lesiones dérmicas faciales, por lo cual, se requiere observar la forma de la cara para obtener datos anatómicos que realizar un diseño que brinde comodidad al paciente y evite contacto con zonas como los ojos, orificios nasales y boca. Se siguieron los siguientes pasos:

Obtención de las medidas:

Se tomó un dibujo de un rostro con medidas antropométricas de un rostro real (Ilustración 26). Se utilizó como plantilla para delimitar la forma y el tamaño de las diferentes piezas que pueden requerirse para heridas dérmicas que se presenten en la piel, estableciendo básicamente 4 piezas: frente, nariz, mejillas y barbilla.

![Ilustración 26. Figurín de cara (Ybarra, n.d.)](image)

Generación de bocetos:

Utilizando Solid Edge ST7® como ambiente CAD y retomando las medidas obtenidas anteriormente se generaron los bocetos para las zonas de la cara como se muestra en la Ilustración 27.

![Ilustración 27. Bocetos en Solid Edge ST7® de las zonas de la cara.](image)

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Impresión en laser:

Haciendo uso de una impresora láser, se imprimieron en acrílico transparente de 6mm todas las piezas para luego ensamblarlas y obtener los moldes.

[Imagen de moldes]

Ilustración 28. Moldes para fabricación de matrices

Sistema de adhesión

Evaluación de la adhesión:

Se adquirió un rollo impermeable al agua de Fixomull® transparente. Se recorta una sección y haciendo uso de la máquina universal de INSTRON®, se evaluó el esfuerzo de corte para determinar la adhesión (Ecuación 2).

\[
\text{Esfuerzo de corte} = \frac{F}{A}
\]

Ecuación 2.

Donde

- **F**: equivale a la fuerza obtenida en el ensayo con la máquina universal
- **A**: equivale al área de la película que se adhirió para realizar el ensayo

\[
\text{Esfuerzo de corte} = \frac{9.3 \, N}{1044 \, \text{mm}^2} = 0.0089 \, \text{MPa}
\]

Corte del adhesivo:

Se tomó el rollo de Fixomull® transparent y se cortó una sección para adherir al apósito. Se cortó además, una parte del centro para permitir el intercambio de gases con el ambiente, de manera que no se vea afectada la liberación del *Aloe vera* hacia la superficie lesionada. Se removió una parte del protector que trae el adhesivo para adherir el apósito como se muestra en la Ilustración 29 y 30.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Ilustración 29. Corte del adhesivo de Fixomull® transparent

Ilustración 30. Fijación del apósito al adhesivo de Fixomull® transparent

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Esterilización del apósito

Luego de tener el apósito con el sistema de adhesión incorporado, se sometió a irradiación UV por un periodo de 6 horas, con el fin de asegurar que el material esté estéril al momento de ser utilizado.

Empaque para el apósito

Luego de tener el apósito esterilizado, se empacó en un empaque compuesto de una lámina de papel al que se le sobrepone una lámina de plástico y se sella, de manera que el contenido quede completamente aislado y conserve su esterilidad. Estas bolsas son comúnmente utilizadas para empacar instrumentos que van a ser esterilizados con vapor de agua a altas temperaturas.

Empaque para el Aloe vera

Se tomó un empaque de acetato de 1mm de espesor como se muestra en la Ilustración 31. Se selló completamente para aislar el Aloe vera del ambiente y prevenir cualquier tipo de contaminación. Además se le hizo una cubierta con papel aluminio para proteger el Aloe vera de la luz y evitar su degradación.

Ilustración 31. Empaque para el Aloe vera.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
5. CONCLUSIOINES Y CONSIDERACIONES FINALES

Se logró caracterizar las diferentes matrices poliméricas cargadas con Aloe vera, que pueden ser utilizadas para el tratamiento de heridas dérmicas superficiales. Los principales componentes de las matrices, alginato y quitosano, presentan fuerzas electrostáticas que los unen de manera tal que, forman entrelazados que con ayuda de entrecruzantes físicos pueden reforzarse y alcanzar buenas condiciones de porosidad para formar sistemas de liberación controlada de Aloe vera. Esto se evidencia en la interconectividad y el tamaño de los poros que forman en conjunto ambos polímeros.

Por medio de ultrasonido se buscó aumentar el grado de entrecruzamiento entre el alginato y el quitosano, buscando obtener una mezcla más homogénea. El resultado fueron matrices con una apariencia física más pulida y resistente a la manipulación, similar a una esponja.

La matrices una vez hidratadas con Aloe vera, son aptas para ser utilizadas como tratamiento en la curación de heridas. La matrices son cargadas por inmersión durante 24 horas en Aloe vera previamente procesado bajo condiciones de asepsia, para luego ser puestas en contacto con la región dérmica lesionada donde comenzará a liberar el Aloe vera de manera controlada brindando un ambiente húmedo a la herida por su forma de hidrogel y además aprovechando las propiedades curativas del Aloe vera que podrán actuar directamente en la región afectada.

La matrices que contienen mayor proporción de quitosano y además, cuentan con la adición de agente porogénico, tienen muy buena resistencia a la manipulación cuando están cargadas con el Aloe vera, reduciendo su rigidez pero conservando la forma, y presentan excelentes propiedades antibacteriales contra Staphylococcus aureus, que incluso igualan la capacidad antibacterial de antibióticos como la gentamicina (CN10). Las matrices que fueron sometidas a proceso de sonicación, presentaron de igual manera muy buena resistencia a la manipulación conservando siempre su integridad y permitiendo un ajuste fácil a diferentes tipos de superficies; sin embargo, su capacidad de hinchamiento se vio limitada en comparación con las matrices que fueron únicamente licofilizadas. En todas las matrices, se potenció la actividad antibacterial contra Staphylococcus aureus al estar cargadas de Aloe vera. Por otro lado, no se evidenció buena capacidad antibacterial contra Pseudomona aeruginosa.

El ensayo de degradación demostró como las matrices pueden comenzar a degradarse por erosión con el uso, lo cual, permite estimar un tiempo de vida útil para el cual el apósito funcione correctamente como sistema de liberación de medicamento.

El ensayo de citotoxicidad demostró que las matrices no son tóxicas, ya que no hubo diferencia estadística significativa. En general, se obtuvo mejor viabilidad con las matrices control que con las matrices cargadas con Aloe vera. En largo tiempo, disminuyó la sensibilidad de medida. Pudo presentarse variabilidad en las mediciones debido a las

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
condiciones en que se realizó el ensayo; ya que el estado del equipo y el material de trabajo no fueron las ideales. Las cubetas para el espectrofotómetro se encuentran deterioradas, lo cual pudo afectar las mediciones.

Bajo estas condiciones, las matrices cumplen con las propiedades como sistemas liberadores de medicamentos, en este caso el Aloe vera, como se reporta en la literatura. Con base en esto, se desarrolló el diseño de concepto para el soporte que permitiría adherir estos sistemas liberadores de la piel que rodea el tejido lesionado, permitiendo a la persona recibir un tratamiento localizado sin interrumpir sus actividades; pues el apósito puede adherirse a la zona corporal deseada para suministrar el medicamento, brindando además, un ambiente adecuado para promover la curación de la lesión.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
6. RECOMENDACIONES

En busca de continuar y fortalecer esta investigación, se enuncian las siguientes recomendaciones para futuros estudios, que podrán ayudar a obtener resultados significativos que respalden el uso de los apósitos cargados con Aloe vera como sistemas liberadores de medicamentos.

Deben realizarse nuevos ensayos para mejorar las matrices sometidas al proceso de sonicación, con el fin de potenciar su capacidad de hinchamiento y lograr una liberación controlada del Aloe vera.

Se recomienda utilizar condiciones más rigurosas de asepsia y esterilización previas al ensayo de degradabilidad, para evaluar si de esta manera puede extenderse a más días sin presenciar posibles contaminaciones o degradaciones por descomposición del material. Logrando estas condiciones, sería deseable realizar el ensayo por un periodo más largo de tiempo.

Se recomienda para futuros ensayos, realizar de nuevo la curva de calibración para el MTT, buscando obtener el menor error posible con una regresión lineal de aproximadamente 0,99. Se deben realizar más ensayos, a periodos de tiempo mayores para extender a la vida útil del apósito, en relación al ensayo de degradabilidad.

Es de gran importancia vigilar las condiciones del Aloe vera, evaluar que no haya presencia de contaminación bacteriana o por otro tipo de microorganismos que pueda afectar el efecto del Aloe vera como medicamento. Para garantizar estas condiciones, se recomienda seguir un protocolo de preparación exhaustivo, en el cual, se asegure que el producto final de Aloe vera está libre de contaminación. El uso de diferentes pasos de filtrado que disminuyen el tamaño del poro gradualmente es realmente efectivo; además, debe hacerse uso de cabinas de flujo para lograr condiciones más estériles y almacenarlo en envases previamente esterilizados para preservar las condiciones hasta el momento de uso.
BIBLIOGRAFÍA

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
ANEXO 1

PROTOCOLO PARA MEZCLA A1Q1B12L

MATERIALES Y EQUIPOS

<table>
<thead>
<tr>
<th>N°</th>
<th>EQUIPOS</th>
<th>N°</th>
<th>EQUIPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Balanza analítica</td>
<td>1</td>
<td>Pipeta graduada</td>
</tr>
<tr>
<td>1</td>
<td>Beaker de 800mL</td>
<td>1</td>
<td>Agitador magnético</td>
</tr>
<tr>
<td>1</td>
<td>Beaker de 20mL</td>
<td>1</td>
<td>Plancha con agitación magnética</td>
</tr>
<tr>
<td>1</td>
<td>Caja de Petri</td>
<td>1</td>
<td>Probeta</td>
</tr>
<tr>
<td>1</td>
<td>Pesa sustancias</td>
<td>1</td>
<td>Cabina de fluo laminar</td>
</tr>
<tr>
<td></td>
<td>Micropipeta.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REACTIVOS

<table>
<thead>
<tr>
<th>REACTIVO MONOCAPA</th>
<th>CANTIDAD</th>
<th>PESO MOLECULAR</th>
<th>MARCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alginato de Sodio</td>
<td>1,00 g</td>
<td></td>
<td>Aldrich</td>
</tr>
<tr>
<td>Quitosano</td>
<td>1 g</td>
<td></td>
<td>Aldrich</td>
</tr>
<tr>
<td>Ácido Acético</td>
<td>2,00 ml</td>
<td>130.000</td>
<td>Aldrich</td>
</tr>
<tr>
<td>Agua destilada</td>
<td>500 ml</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Preparación del Alginato al 1% (p/v).
1. Limpia bien con alcohol todas las superficies a utilizar (mesón, cámara ambiental, planchas agitadoras y otros).
2. Pesar aproximadamente 1,00 g de alginato de sodio.
3. Medir con una probeta 50 mL de agua destilada, llevarlo a un beaker de 800 mL.
4. Medir el pH, si este llega a estar por debajo de 6 o encima de 6,5 adicionar NaOH para ajustarlo y que este en un rango entre 6-6,5.
5. Adicionar lentamente el alginato y agua destilada hasta completar 100 ml, agitar continuamente durante 1 hora a 80°C
6. Dejar agitando el sistema por 3 horas a 80 °C hasta garantizar una solución homogénea.
7. Después de obtener una mezcla homogénea y transparente, dejar en agitación la solución de alginato hasta que se enfrié.
8. Luego, envasarlo en un frasco de vidrio debidamente etiquetado.

Preparación del Quitosano al 1% (p/v)
1. Limpia bien con alcohol todas las superficies a utilizar (mesón, cámara ambiental, planchas agitadoras y otros).
2. Pesar aproximadamente 1 g de quitosano.
3. Medir con una probeta 50 mL de agua destilada, llevarlo a un beaker de 80 mL y hacer lo mismo para la otra concentración de alginato.
4. Adicionar lentamente 1,00 ml de ácido acético glacial.
5. Medir el pH, asegurar que este en el rango de 3-3,5, si no lo está ajustar con NaOH o HCl.
6. Adicionar lentamente el quitosano y agua destilada hasta completar 100 ml, agitar continuamente durante 1 hora a 40°C.
7. Dejar agitando el sistema por 3 horas bajando la temperatura lentamente hasta enfriar la solución.
8. Posteriormente realizar un procedimiento de filtración al vacío para eliminar posibles impurezas presente en la solución.
9. Por último, envasar cada solución en un frasco de vidrio debidamente etiquetado.

Obtención de la matriz A1Q1B12 L
1. Lavar todos los implementos con agua destilada, jabón neutro y alcohol, luego de tener la vidriería limpia y seca purgar cada uno de los estos con agua destilada.
2. Para realizar el baño hielo se debe picar aproximadamente 6 cubos de hielo, llevarlo a un beaker de 200 ml luego introducir en el recipiente (beaker de 200 ml) un beaker de 100 ml para garantizar una temperatura homogénea de 4°C aproximadamente.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
3. Luego, tomar un volumen 30 ml de la solución filtrada de quitosano al 1% (p/v) llevarlo al beaker de 100 ml que se encuentra en el sistema de baño hielo y agitar aproximadamente a 400 rpm.
4. Adicionar 0,4032 g de NaHCO3 lentamente al quitosano, dejar en agitación por 30 minutos hasta no observar burbujas.
5. Inmediatamente, adicionar lentamente 10 ml de la solución de alginato al 1%(p/v) a la solución del paso 4.
6. Agitar la mezcla continuamente a 400 rpm, si hay dificultad durante el proceso de agitación se recomienda disminuir las revoluciones.
7. Posteriormente, tomar 10 ml de la solución anterior, adicionarla a las cajas de Petri (5cm) que alcance para luego congelar a 0°C por 24 horas.
8. Pasado este tiempo se somete la matriz a un proceso de liofilización de 24 horas.

Cálculos.

Preparar una solución de Alginato/ Quitosano (75%/25%) en un volumen total de 100 mL.

Cantidad de Alginato:

\[
\% \left(\frac{p}{V} \right) = \frac{\text{Masa de Alginato (g)}}{\text{Volumen total de la solución}} \times 100 \%
\]

\[
\text{Masa de Alginato} = \left(\frac{1\%}{100\%} \right) \times 100 \text{ mL} = 1,00 \text{ g}
\]

Cantidad de Quitosano:

\[
\left(\frac{p}{V} \right) = \frac{\text{Masa de Quitosano (g)}}{\text{Volumen total de la solución}} \times 100 \%
\]

\[
\text{Masa de Quitosano} = \left(\frac{1,0 \%}{100\%} \right) \times 100 \text{ mL} = 1,0 \text{ g}
\]

Cantidad de NaHCO3 0,12 mol/L

\[
\text{Vol de la solución de quitosano} = 30 \text{ mL}
\]

\[
W \text{ quitosano} = \left(\frac{0,12 \text{ mol} \times 40 \text{ mL} \times 84 \text{ g}}{1000 \text{ mL} \times \text{mol}} \right) = 0,4032 \text{ g}
\]

\[
\text{Vol de la solución polimérica} = 40 \text{ mL}
\]

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Vol de la solución de Alginato = 25% \times 40 mL = 10 mL
Vol de la solución de Quitosano = 75\% \times 40 ml = 30 ml
ANEXO 2

PROTOCOLO PARA LA PREPARACIÓN DE LA MEZCLA A1Q1L Y A1Q1.5L

MATERIALES Y EQUIPOS

<table>
<thead>
<tr>
<th>Nº</th>
<th>EQUIPOS</th>
<th>Nº</th>
<th>EQUIPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Balanza analítica</td>
<td>1</td>
<td>Pipeta graduada</td>
</tr>
<tr>
<td>1</td>
<td>Beaker de 100mL</td>
<td>1</td>
<td>Agitador magnético</td>
</tr>
<tr>
<td>1</td>
<td>Beaker de 200mL</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Beaker de 20mL</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Caja de Petri</td>
<td>1</td>
<td>Plancha con agitación magnética</td>
</tr>
<tr>
<td>1</td>
<td>Pesa sustancias</td>
<td>1</td>
<td>Probeta</td>
</tr>
<tr>
<td></td>
<td>Micropipeta.</td>
<td>1</td>
<td>Cabina de flujo laminar</td>
</tr>
</tbody>
</table>

REACTIVOS

<table>
<thead>
<tr>
<th>REACTIVO MONOCAPA</th>
<th>CANTIDAD</th>
<th>PESO MOLECULAR</th>
<th>MARCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alginato de Sodio</td>
<td>1,00 g</td>
<td></td>
<td>Aldrich</td>
</tr>
<tr>
<td>Quito sano</td>
<td>1,00 g</td>
<td></td>
<td>Aldrich</td>
</tr>
<tr>
<td>Acido Acético</td>
<td>2,00 ml</td>
<td>130.000</td>
<td>Aldrich</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Preparación del Alginato al 1% (p/v).
9. Limpia bien con alcohol todas las superficies a utilizar (mesón, cámara ambiental, planchas agitadoras y otros).
10. Pesar aproximadamente 1,00 g de alginato de sodio.
11. Medir con una probeta 50 mL de agua distilada, llevarlo a un beaker de 800 mL.
12. Medir el pH, si este llega a estar por debajo de 6 o encima de 6,5 adicionar NaOH para ajustarlo y que este en un rango entre 6-6,5.
13. Adicionar lentamente el alginato y agua distilada hasta completar 100 ml, agitar continuamente durante 1 hora a 80°C
14. Dejar agitando el sistema por 3 horas a 80 °C hasta garantizar una solución homogénea.
15. Después de obtener una mezcla homogénea y transparente, dejar en agitación la solución de alginato hasta que se enfrié.
16. Luego, envasarlo en un frasco de vidrio debidamente etiquetado.

Preparación del Quitosano al 1,5% y al 1% (p/v)
10. Limpia bien con alcohol todas las superficies a utilizar (mesón, cámara ambiental, planchas agitadoras y otros).
11. Pesar aproximadamente 1,50 g de quitosano y 1 g de quitosano.
12. Medir con una probeta 50 mL de agua distilada, llevarlo a un beaker de 80 mL y hacer lo mismo para la otra concentración de alginato.
13. adicionar lentamente 1,00 ml de ácido acético glacial.
14. Medir el pH, asegurar que este en el rango de 3-3,5, si no lo está ajustar con NaOH o HCl.
15. Adicionar lentamente el quitosano y agua distilada hasta completar 100 ml, agitar continuamente durante 1 hora a 40°C.
16. Dejar agitando el sistema por 3 horas bajando la temperatura lentamente hasta enfriar la solución.
17. Posteriormente realizar un procedimiento de filtración al vacío para eliminar posibles impurezas presente en la solución.
18. Por último, envasar cada solución en un frasco de vidrio debidamente etiquetado.

Obtención de la matriz A1Q1,5 L (75%A/25%Q) y de la matriz A1Q1 L (75%A/25% Q)
Nota: para las dos soluciones se siguen los mismos pasos solo cambia la concentración de quitosano.
9. Lavar todos los implementos con agua distilada, jabón neutro y alcohol, luego de tener la vidriería limpia y seca purgar cada uno de los estos con agua destilada.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
10. Para realizar el baño hielo se debe picar aproximadamente 6 cubos de hielo, llevarlo a un beaker de 200 ml luego introducir en el recipiente (beaker de 200 ml) un beaker de 100 ml para garantizar una temperatura homogénea de 4°C aproximadamente.

11. Luego, tomar un volumen 10 ml de la solución filtrada de quitosano al 1,5% (p/v) llevarlo al beaker de 100 ml que se encuentra en el sistema de baño hielo y agitar aproximadamente a 400 rpm.

12. Inmediatamente, adicionar lentamente 30 ml de la solución de alginato al 1%(p/v) a la solución del paso 2.

13. Agitar la mezcla continuamente a 400 rpm, si hay dificultad durante el proceso de agitación se recomienda disminuir las revoluciones.

14. Posteriormente, tomar 10 ml de la solución anterior, adicionarla a las cajas de Petri (5cm) que alcanza para luego congelar a 0°C por 24 horas.

15. Pasado este tiempo se somete la matriz a un proceso de liofilización de 24 horas.

Cálculos.

Preparar una solución de Alginato/Quitosano (75%/25%) en un volumen total de 100 mL.

Cantidad de Alginato:

\[\% \left(\frac{p}{V} \right) = \frac{Masa de Alginato (g)}{Volumen total de la solución} \times 100 \% \]

\[Masa de Alginato = \left(\frac{1\%}{100\%} \right) \times 100 \text{ mL} = 1,00 \text{ g} \]

Cantidad de Quitosano:

\[\left(\frac{p}{V} \right) = \frac{Masa de Quitosano(g)}{Volumne total de la solucion} \times 100 \% \]

\[Masa de Quitosano = \left(\frac{1,0\%}{100\%} \right) \times 100 \text{ mL} = 1,00g \]

\[Masa de Quitosano = \left(\frac{1,5 \%}{100\%} \right) \times 100 \text{ mL} = 1,50g \]

Solución de Alginato-Quitosano

- Vol de la solución polimérica = 40 mL
- Vol de la solución de Alginato = 75% \times 40 mL = 30 mL
- Vol de la solución de Quitosano = 75 % \times 40 ml = 10 ml

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
ANEXO 3

PROTOCOLO PARA LA PREPARACIÓN DE LA MEZCLA A1Q1SL Y A1Q1.5SL

MATERIALES Y EQUIPOS

<table>
<thead>
<tr>
<th>N°</th>
<th>EQUIPOS</th>
<th>N°</th>
<th>EQUIPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Balanza analítica</td>
<td>1</td>
<td>Pipeta graduada</td>
</tr>
<tr>
<td>1</td>
<td>Beaker de 100mL</td>
<td>1</td>
<td>Agitador magnético</td>
</tr>
<tr>
<td>1</td>
<td>Beaker de 200mL</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Beaker de 20mL</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Caja de Petri</td>
<td>1</td>
<td>Plancha con agitación</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>magnética</td>
</tr>
<tr>
<td>1</td>
<td>Pesa sustancias</td>
<td>1</td>
<td>Probeta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cabina de flujo laminar</td>
</tr>
<tr>
<td></td>
<td>Micropipeta.</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

REACTIVOS

<table>
<thead>
<tr>
<th>REACTIVO MONOCAPA</th>
<th>CANTIDAD</th>
<th>PESO MOLECULAR</th>
<th>MARCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alginato de Sodio</td>
<td>1,00 g</td>
<td></td>
<td>Aldrich</td>
</tr>
<tr>
<td>Quitosano</td>
<td>1,00 g</td>
<td></td>
<td>Aldrich</td>
</tr>
<tr>
<td>Ácido Acético</td>
<td>2,00 ml</td>
<td>130.000</td>
<td>Aldrich</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

| Agua destilada | 500 ml |

Preparación del Alginato al 1% (p/v).
17. Limpiar bien con alcohol todas las superficies a utilizar (mesón, cámara ambiental, planchas agitadoras y otros).
18. Pesar aproximadamente 1,00 g de alginato de sodio.
19. Medir con una probeta 50 mL de agua destilada, llevarlo a un beaker de 800 mL.
20. Medir el pH, si este llega a estar por debajo de 6 o encima de 6,5 adicionar NaOH para ajustarlo y que este en un rango entre 6-6,5.
21. Adicionar lentamente el alginato y agua destilada hasta completar 100 ml, agitar continuamente durante 1 hora a 80°C
22. Dejar agitando el sistema por 3 horas a 80 °C hasta garantizar una solución homogénea.
23. Después de obtener una mezcla homogénea y transparente, dejar en agitación la solución de alginato hasta que se enfríe.
24. Luego, envasarlo en un frasco de vidrio debidamente etiquetado.

Preparación del Quitosano al 1,5% y al 1% (p/v)

Nota: el mismo procedimiento para hacer quitosano de 1 % se hace para el quitosano de 1,5%.
19. Limpiar bien con alcohol todas las superficies a utilizar (mesón, cámara ambiental, planchas agitadoras y otros).
20. Pesar aproximadamente 1,50 g de quitosano y 1 g de quitosano
21. Medir con una probeta 50 mL de agua destilada, llevarlo a un beaker de 80 mL y hacer lo mismo para la otra concentración de alginato.
22. Adicionar lentamente 1,00 ml de ácido acético glacial.
23. Medir el pH, asegurar que este en el rango de 3-3,5, si no lo está ajustar con NaOH o HCl.
24. Adicionar lentamente el quitosano y agua destilada hasta completar 100 ml, agitar continuamente durante 1 hora a 40°C.
25. Dejar agitando el sistema por 3 horas bajando la temperatura lentamente hasta enfriar la solución.
27. Por último, envasar cada solución en un frasco de vidrio debidamente etiquetado.

Obtención de la matriz A1Q1,0 SL (75%A/25%Q) y de la matriz A1Q1,5 SL (75%A/25%Q)

Nota: para las dos soluciones se siguen los mismos pasos solo cambia la concentración de quitosano.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
16. Lavar todos los implementos con agua destilada, jabón neutro y alcohol, luego de tener la vidriería limpia y seca purgar cada uno de los estes con agua destilada.
17. Para realizar el baño hielo se debe picar aproximadamente 6 cubos de hielo, llevarlo a un beaker de 200 ml luego introducir en el recipiente (beaker de 200 ml) un tubo de Falcon de 50 mL para garantizar una temperatura homogénea de 4°C aproximadamente.
18. En un beaker de 80 mL adicionar 30mL de alginato.
19. Luego, tomar un volumen 10 ml de la solución filtrada de quitosano al 1% (p/v) llevarlo al tubo de 50 mL que se encuentra en el sistema de baño hielo y aplicar ultrasonido de amplitud 100, 5 pulsos por minuto durante 1 minuto dos veces, durante el ultrasonido se adicionan con un gotero los 30 mL de alginato al 1 &.
20. Observar si la mezcla quedo homogénea sin grumos.
21. Posteriormente, tomar 10 ml de la solución anterior, adicionarla a las cajas de Petri (5cm) que alcance para luego congelar a 0°C por 24 horas.
22. Pasado este tiempo se somete la matriz a un proceso de liofilización de 24 horas.

Cálculos.

Preparar una solución de Alginato/ Quitosano (75%/25%) en un volumen total de 100 mL.

Cantidad de Alginato:

\[\left(\frac{p}{V} \right) = \frac{Masa de Alginato\ (g)}{Volumen total de la solucion} \times 100\ % \]

\[Masa de Alginato = \left(\frac{1\%}{100\%} \right) \times 100\ mL = 1,00\ g \]

Cantidad de Quitosano:

\[\left(\frac{p}{V} \right) = \frac{Masa de Quitosano\ (g)}{Volumen total de la solucion} \times 100\ % \]

\[Masa de Quitosano = \left(\frac{1,0\%}{100\%} \right) \times 100\ mL = 1,00\ g \]

\[Masa de Quitosano = \left(\frac{1,5\%}{100\%} \right) \times 100\ mL = 1,5\ g \]

Solución de Alginato-Quitosano

\[Vol\ de\ la\ solucion\ polimérica = 40\ mL \]

\[Vol\ de\ la\ solucion\ de\ Alginato = 75\% \times 40\ mL = 30\ mL \]

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Vol de la solución de Quitosano = 25 % × 40 ml = 10 ml

Cuidados que hay que tener con el uso de reactivos y equipos

Para el uso de los reactivos y preparación de muestras es necesario usar guantes, gafas y mascarilla (OJO trabajar en la campana de extracción). Adicionalmente todos los equipos deben estar calibrados, no se pueden mover del lugar de trabajo y evitar los derrames de solventes sobre ellos.
ANEXO 4

PROTOCOLO PARA ENSAYO DE DEGRADABILIDAD

INTRODUCCIÓN

La evaluación de la degradabilidad de matrices poliméricas es importante para conocer como será su comportamiento en el tiempo al entrar en contacto con condiciones fisiológicas una vez sean puestas en contacto con la herida. De esta manera, se determina la duración funcional que puede brindar como sistema liberador de medicamentos.

OBJETIVO

Evaluar la degradabilidad de la matriz polimérica y Aloe Vera.

MATERIALES Y EQUIPOS

<table>
<thead>
<tr>
<th>N°</th>
<th>EQUIPOS</th>
<th>N°</th>
<th>EQUIPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Balanza analítica</td>
<td>1</td>
<td>Papel de filtro</td>
</tr>
<tr>
<td>2</td>
<td>Plancha para agitación con temperatura</td>
<td>2</td>
<td>Pesa sustancias</td>
</tr>
<tr>
<td>1</td>
<td>Frascos de volume 5 mL</td>
<td>1</td>
<td>Pinzas</td>
</tr>
<tr>
<td>1</td>
<td>Horno</td>
<td>1</td>
<td>Guantes</td>
</tr>
</tbody>
</table>

REACTIVOS

<table>
<thead>
<tr>
<th>REACTIVO MONOCAPA</th>
<th>CANTIDAD</th>
<th>PESO MOLECULAR</th>
<th>MARCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua destilada</td>
<td>500 ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>200 ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aloe Vera</td>
<td>100 ml</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
PROCEDIMIENTO

Preparación de las matrices.
25. Limpiar bien con alcohol todas las superficies a utilizar (mesón, cámara ambiental, planchas agitadoras y otros).
26. Cortar 6 muestras de las matrices obtenidas, cada una de dimensiones 10mmx10mm. El experimento se realiza por triplicado, tomando 3 matrices recargadas y 3 matrices sin cargar que funcionan como control.
27. Pesar las muestras en la balanza analítica antes de comenzar el experimento
28. Seleccionar las muestras que se van a recargar con Aloe Vera. El número debe ser el mismo que las matrices que se utilizarán como control.
29. La matrices que estarán recargadas, deberán sumergirse en 3 mL de Aloe Vera cada una durante 24 h para garantizar una buena absorción.
30. Pesar las muestras cargadas con Aloe Vera.
31. Cada muestra debe depositarse en un frasco con 5 mL de solución PBS (simula las condiciones fisiológicas, pH=7,2 - 7,4). Los fracos se ubican de manera segura en la plancha con agitación constante a 21 ºC.
32. En periodos predeterminados, se retira cada una de las muestras de la solución fisiológica, se quita el exceso de solución con papel de filtro y se pesa para determinar la absorción.
33. Luego, se llevan las muestras al horno a 40 ºC por 2 horas, luego se pesan para determinar la pérdida de peso.
34. Al terminar de pesarlas se vuelven a meter en los pozos con nuevo PBS. Se sigue haciendo éste paso cada vez que se quieran pesar las matrices. En nuestro caso se pesaron diariamente sin contar los fines de semana.
35. El procedimiento se repite periódicamente hasta que la matriz comience a degradarse con detección de contaminación.

CÁLCULOS

Se sacan las matrices del horno y se pesan. Luego se hace el cálculo de la pérdida de peso con la siguiente fórmula:

\[Wp = \left(\frac{wi - wf}{wi} \right) * 100 \]

- \(Wp\) = peso perdido
- \(Wi\) = peso inicial
- \(Wf\) = peso final

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
ANEXO 5

PROTOCOLO PARA ENSAYO ANTIBACTERIAL

Reactivación y conservación de microorganismos liofilizados

MATERIALES Y EQUIPOS

<table>
<thead>
<tr>
<th>N°</th>
<th>EQUIPOS</th>
<th>N°</th>
<th>EQUIPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E. coli ATCC 25922</td>
<td>1</td>
<td>Cabina de flujo</td>
</tr>
<tr>
<td>1</td>
<td>P. aeruginosa ATCC 27853</td>
<td>3</td>
<td>Tubos de CRYOBANK™</td>
</tr>
<tr>
<td>1</td>
<td>S. aureus ATCC 25923</td>
<td>1</td>
<td>Congelador(-80°C)</td>
</tr>
<tr>
<td>6</td>
<td>Agar Tripticasa Soya</td>
<td>3</td>
<td>Pipetas Pasteur estériles</td>
</tr>
<tr>
<td>1</td>
<td>Paquete isotopos estériles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Incubadora</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROCEDIMIENTO (DEBE CONTENER)

1. Reactivación liófilos:
 - Para la reactivación los microorganismo se re-suspenden en la solución que viene con el aplicador.
 - Con el aplicador se realiza una siembra por agotamiento, en agar Tripticasa Soya, se incuba durante 24 horas a 37°C.
 - Después de obtener las colonias bacterianas, se hace un subcultivo en agar Tripticasa Soya, se incuba durante 24 horas a 37°C.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
• Con un isotopo estéril se toman colonias aisladas del agar Tripticasa Soya, estas se re-suspenden en la solución de los Tubos de CRYOBANK, se agitan hasta lograr homogeneidad y se espera 5 minutos mientras los microrganismos se adhieren a las perlas.

• Con una pipeta Pasteur; se retira la solución crioprotectora de los Tubos de CRYOBANK. Los Tubos se almacenan en el congelador a -80°C.

• Remueva el Tubos de CRYOBANK del congelador, con la cepa deseada; tome una perla usando una pinza o un asa de punta para inoculación en el medio establecido según el interés del investigador.

2. Responsables

Marybel Montoya Alvarez

3. Tiempo estimado de cada proceso

30 minutos por cada proceso.

CULTIVO Y POSICIONAMIENTO DE LAS MUESTRAS CON EFECTO ANTIBACTERIAL

<table>
<thead>
<tr>
<th>N°</th>
<th>EQUIPOS</th>
<th>N°</th>
<th>EQUIPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>incubadora</td>
<td>10</td>
<td>Discos Papel filtro 5B Advantec</td>
</tr>
<tr>
<td>1</td>
<td>Vortex</td>
<td>1</td>
<td>Termocupla</td>
</tr>
<tr>
<td>9</td>
<td>Cajas de Petri</td>
<td>1</td>
<td>Par de guantes.</td>
</tr>
<tr>
<td>9</td>
<td>Medio de desempeño: agar Müeller Hinton en placa (90 x 15 mm)</td>
<td>1</td>
<td>Cabina de flujo laminar</td>
</tr>
</tbody>
</table>

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
1	Staphylococcus aureus, Cepa ATCC: 25923
1	Pseudomonas aeruginosa ATCC 27853
1	Escherichia coli ATCC 25922
1	Paquete de hisopos estériles
1	Patrón de turbidez: Mac Farland 0,5
1	Tubos de ensayo de vidrio con tapa
1	Frasco de Alcohol
1	Medio de enriquecimiento: caldo BHI
1	Control Positivo ()
1	Micropipetas
1	Quemador Bunsen

PROCEDIMIENTO

1. **Preparación de los discos de agar**

Si los platos de agar Mueller-Hinton (MH) se preparan a partir de medio deshidratado, los platos deben verterse de manera que conserven una profundidad de 4 mm (aproximadamente 25 mL de agar líquido para platos de 100-mm y 60 mL de agar líquido para platos de 150-mm, pero en todos los casos la profundidad medida debe ser de 4 mm). Si los platos poseen menor profundidad, se producirán resultados de falsa susceptibilidad ya que habrá difusión del compuesto antimicrobiano a una profundidad mayor de la indicada, creando de esta manera zonas de inhibición de mayor tamaño. En caso contrario, si los platos cuentan con poca profundidad (>4 mm), se producirán resultados de falsa resistencia frente al compuesto a evaluar.

Luego de su solidificación y al llevar a temperatura ambiente, el pH del agar MH debe estar en un rango de 7.2 a 7.4 y se debe probar inicialmente cuando se prepare por primera vez el medio. Si el pH es < 7.2 algunos compuestos aparentarán perder potencia (aminoglycosides, quinolones, macrolides) mientras que otros aparentarán tener actividad.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
excesiva (tetraciclina). Si el pH es > 7.4 resultados contrarios a los descritos previamente podrían ocurrir.

2. Obtención de Sensidiscos

Una vez obtenidas el material a evaluar y los controles, se procederá a inmovilizarlas en círculos de papel filtro de aproximadamente 5.5-13 mm de diámetro dentro de una cámara de flujo laminar bajo condiciones de esterilidad para impedir su contaminación, obteniéndose así sensidiscos.

2.1. Preparación de una solución estándar de microorganismos

Estándar McFarland

Los estándares McFarland son suspensiones de sulfato de bario o partículas de látex que permiten la comparación visual de la densidad bacteriana. Estándares preparados comercialmente se pueden adquirir de compañías como Remel o BD BBL. Éstos incluyen una tarjeta Wickerham, la cual tiene líneas negras paralelas que permiten comparar los patrones comerciales con los realizados para ensayo. Un estándar 0.5 McFarland es equivalente a una suspensión bacteriana que contiene entre 1×10^8 y 2×10^8 CFU/ml de E. coli.

Se procede a diluir por lo menos 3 colonias bien diferenciadas de los microorganismos a (Staphylococcus aureus ATCC: 25923 y Escherichia coli ATCC 25922 y Pseudomonas aeruginosa ATCC 27853) en medios BHI (diferentes) hasta quedar a una concentración equivalente al patrón 0,5 de Mac Farland.

3. Inoculación de las placas de agar Müeller Hinton

Se impregna la solución del microorganismo a evaluar usando un hisopo de algodón estéril a la superficie del agar Müeller Hinton, para ser distribuida en forma homogénea (también conocida como trapeado) rotando la caja de Petri 60° cada vez que se complete un patrón (por un total de 3 veces) sobre toda la superficie del agar.

La inoculación y distribución de la solución microbiana es realizada de forma similar para cada placa correspondiente a las muestras y los controles.

4. Montaje de los sensidiscos

Una vez inoculadas las placas de agar Müeller Hinton, se procede a depositar por duplicado en la superficie del agar los sensidiscos correspondientes a la muestra, control positivo y control negativo. Estas placas se llevan a una temperatura de incubación de 37 ºC por 24 horas.

5. Lectura de las placas

Transcurridas las 24 horas de incubación, las placas se retiran de la incubadora y se procede a realizar las mediciones de los halos de inhibición de los controles y las
muestras. Luego de la lectura de los halos de inhibición, se procede a retirar de los agares los sensidiscos en una cámara de flujo laminar bajo condiciones de esterilidad.

Posibles Controles Positivos

N,N-Dimethyl sulphoxide (DMSO)

Posibles Microorganismos

Los microorganismos recomendados en cuenta a propósito de calidad son Staphylococcus aureus ATCC 25923 (Biosafety level (BSL) 2), Escherichia coli ATCC 25922 (BSL 1) y Pseudomonas aeruginosa ATCC 27853 (BSL 2) ya que la zona de inhibición para estos organismos es bien conocida y se encuentra en los insertos en cualquiera de los paquetes de los discos antimicrobianos comerciales.

TABLA 1. Interpretación de estándares del diámetro de la zona de inhibición para especies de Staphylococcus

<table>
<thead>
<tr>
<th>Staphylococcus species</th>
<th>(Zone Diameter, nearest whole mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resistant</td>
</tr>
<tr>
<td>Cefazolin (30 µg)</td>
<td>≤14</td>
</tr>
<tr>
<td>Clindamycin (2 µg)</td>
<td>≤14</td>
</tr>
<tr>
<td>Erythromycin (15 µg)</td>
<td>≤13</td>
</tr>
<tr>
<td>Gentamicin (10 µg)</td>
<td>≤12</td>
</tr>
<tr>
<td>Oxacillin (1 µg)</td>
<td>≤10</td>
</tr>
<tr>
<td>Penicillin G (10 µg)</td>
<td>≤28</td>
</tr>
<tr>
<td>Tobramycin (10 µg)</td>
<td>≤12</td>
</tr>
<tr>
<td>Vancomycin (30 µg)</td>
<td>--</td>
</tr>
</tbody>
</table>

TABLA 2. Interpretación de estándares del diámetro de la zona de inhibición para Pseudomonas aeruginosa y otras barras gram-negativas no fermentantes

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Pseudomonas aeruginosa and other non-fermenting Gram Negative Rods
(Zone Diameter, nearest whole mm)

<table>
<thead>
<tr>
<th></th>
<th>Resistant</th>
<th>Intermediate</th>
<th>Susceptible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin (30 µg)</td>
<td>≤14</td>
<td>15-16</td>
<td>≥17</td>
</tr>
<tr>
<td>Cefoperazone (75 µg)</td>
<td>≤15</td>
<td>16-20</td>
<td>≥21</td>
</tr>
<tr>
<td>Cefotaxime (30 µg)</td>
<td>≤14</td>
<td>15-22</td>
<td>≥23</td>
</tr>
<tr>
<td>Gentamicin (10 µg)</td>
<td>≤12</td>
<td>13-14</td>
<td>≥15</td>
</tr>
<tr>
<td>Piperacillin (100 µg)</td>
<td>≤17</td>
<td>--</td>
<td>≥18</td>
</tr>
<tr>
<td>Tetracycline (30 µg)</td>
<td>≤14</td>
<td>15-18</td>
<td>≥19</td>
</tr>
<tr>
<td>Ticarcillin (75 µg)</td>
<td>≤14</td>
<td>--</td>
<td>≥15</td>
</tr>
<tr>
<td>Tobramycin (10 µg)</td>
<td>≤12</td>
<td>13-14</td>
<td>≥15</td>
</tr>
</tbody>
</table>

TABLA 3. Interpretación de estándares del diámetro de la zona de inhibición para E. coli y otras barras gram-negativas

E. coli and other enteric Gram Negative Rods
(Zone Diameter, nearest whole mm)

<table>
<thead>
<tr>
<th></th>
<th>Resistant</th>
<th>Intermediate</th>
<th>Susceptible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin (30 µg)</td>
<td>≤14</td>
<td>15-16</td>
<td>≥17</td>
</tr>
<tr>
<td>Ampicillin (10 µg)</td>
<td>≤13</td>
<td>14-16</td>
<td>≥17</td>
</tr>
<tr>
<td>Cefazolin (30 µg)</td>
<td>≤14</td>
<td>15-17</td>
<td>≥18</td>
</tr>
<tr>
<td>Gentamicin (10 µg)</td>
<td>≤12</td>
<td>13-14</td>
<td>≥15</td>
</tr>
<tr>
<td>Tetracycline (30 µg)</td>
<td>≤14</td>
<td>15-18</td>
<td>≥19</td>
</tr>
<tr>
<td>Ticarcillin (75 µg)</td>
<td>≤14</td>
<td>15-19</td>
<td>≥20</td>
</tr>
<tr>
<td>Trimethoprim (5 µg)</td>
<td>≤10</td>
<td>11-15</td>
<td>≥16</td>
</tr>
<tr>
<td>Tobramycin (10 µg)</td>
<td>≤12</td>
<td>13-14</td>
<td>≥15</td>
</tr>
</tbody>
</table>

Referencias

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
Silver nanoparticle in hyperbranched polyamine: Synthesis, characterization and antibacterial activity

ANEXO 6

PROTOCOLO PARA ENSAYO DE CITOTOXICIDAD (MTT)

MATERIALES Y EQUIPOS

<table>
<thead>
<tr>
<th>N°</th>
<th>EQUIPOS</th>
<th>N°</th>
<th>EQUIPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bomba de vacío</td>
<td>1</td>
<td>Recipiente de descarte</td>
</tr>
<tr>
<td>1</td>
<td>Cabina de Bioseguridad Clase II</td>
<td>1</td>
<td>Microscopio</td>
</tr>
<tr>
<td>1</td>
<td>Balanza analítica</td>
<td>1</td>
<td>Tubos 15 mL</td>
</tr>
<tr>
<td>1</td>
<td>Nevera 4°C</td>
<td>2</td>
<td>Guantes latex</td>
</tr>
<tr>
<td></td>
<td>Micropipetas de 1000 ul, 200 ul</td>
<td>2</td>
<td>Marcador</td>
</tr>
<tr>
<td>1</td>
<td>Puntas estériles</td>
<td>1</td>
<td>Papel parafinado</td>
</tr>
<tr>
<td>1</td>
<td>Cetrífuga</td>
<td>1</td>
<td>T75</td>
</tr>
</tbody>
</table>

REACTIVOS

<table>
<thead>
<tr>
<th>REACTIVO</th>
<th>CANTIDAD</th>
<th>CONCETRACIÓN</th>
<th>CONCENTRACION FINAL</th>
<th>MARCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medio DMEM</td>
<td>1L</td>
<td>1.5 g</td>
<td></td>
<td>Sigma</td>
</tr>
<tr>
<td>Vial células CHO</td>
<td>2</td>
<td>1 mL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Procedimiento.

1. Preparar la cabina de flujo laminar y los implementos a utilizar realizando una limpieza profunda empleando etanol al 70%, luego encender la cámara por un periodo de 15 minutos.
2. Descongelar el vial de las células CHO y el medio a emplear.
3. Una vez descongelado el medio y el vial llevarlos a la cabina de bioseguridad clase II.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
4. Transferir el contenido del vial a un tubo estéril de 15 mL.
5. Adicionar medio hasta completar 8 mL.
6. Adicionar al frasco (T75) 15 mL de medio.
7. Centrifugar a 1200 rpm por 5 minutos a 25°C.
8. Aspirar el sobrenadante y resuspender el botón de células en 1 mL de medio.
9. Proceder a sembrar en el frasco (T75).
10. Incubar a 37°C y 5% de CO₂, dejando la tapa medio suelta para el intercambio de gases necesario para el cultivo.

IMPORTANTE:
Dependiendo de la concentración celular se recomienda subcultivar cada 3 días.

Curva de calibración y tinción con MTT

MATERIALES Y EQUIPOS

<table>
<thead>
<tr>
<th>N°</th>
<th>EQUIPOS</th>
<th>N°</th>
<th>EQUIPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vortex</td>
<td>1</td>
<td>Espectrofotómetro</td>
</tr>
<tr>
<td>1</td>
<td>Cabina de Bioseguridad Clase II</td>
<td>1</td>
<td>Puntas para micropipetas estériles</td>
</tr>
<tr>
<td>1</td>
<td>Balanza analítica</td>
<td>1</td>
<td>Tubos Eppendorf de 1.5 mL</td>
</tr>
<tr>
<td>1</td>
<td>Nevera 4°C</td>
<td>2</td>
<td>Guantes latex</td>
</tr>
<tr>
<td>1</td>
<td>Micropipetas de 1000 ul y 200 ul.</td>
<td>2</td>
<td>Tubos de 50 mL</td>
</tr>
<tr>
<td>1</td>
<td>Incubadora con atmósfera controlada de CO₂</td>
<td>1</td>
<td>Recipiente de descarte</td>
</tr>
<tr>
<td>1</td>
<td>Papel parafina</td>
<td>2</td>
<td>Plato de cultivo celular con 24 pozos.</td>
</tr>
<tr>
<td></td>
<td>Microscopio</td>
<td></td>
<td>Papel aluminio</td>
</tr>
</tbody>
</table>

REACTIVOS

<table>
<thead>
<tr>
<th>REACTIVO</th>
<th>CANTIDAD</th>
<th>CONCENTRACIÓN</th>
<th>CONCENTRACIÓN FINAL</th>
<th>MARCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medio DMEM</td>
<td>1.5 g</td>
<td>1L</td>
<td></td>
<td>Sigma</td>
</tr>
<tr>
<td>MTT</td>
<td>1g</td>
<td>50 mg/mL</td>
<td>0.5 mg/mL</td>
<td>Amresco</td>
</tr>
</tbody>
</table>
La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.

| PBS | 50 mL |

Cálculos para preparar MTT.

\[V_i \times C_i = V_f \times C_f \]

A partir del siguiente cálculo se determinó el volumen requerido MTT para lograr una concentración de 0.5 mg/mL.

\[V_i \times 50 \text{ mg/mL} = 0.5 \text{ mg/mL} \times 250 \text{ ul} \]

\[V_i = 0.01 \text{ mL} = 25 \text{ ul}. \]

1. En un tubo de 50mL hacer una solución de 50% de agua destilada y 50% de etanol la cantidad de MTT la cantidad necesaria para que la solución quede con una concentración de 0.5 mg/mL.
2. Agitar en el vortex hasta observar homogeneidad.
3. Cubrir el tubo con papel aluminio y guardarlo a 4 ºC.

Curva de calibración

Procedimiento

1. Subcultivar en pozos de 24 las siguientes concentraciones celulares: 10000, 50000, 100000, 150000, 200000, 250000 por triplicado.
2. Incubar por 24 horas para total adhesión asegurando células en los pozos.
3. Pasadas las 3 horas, se aspira el sobrenadante (medio).
4. Lavado con 1 mL de PBS estéril cada pozo 3 veces.
5. Agregar 990 uL de medio (sin suero) y 10 uL de la solución de MTT a cada pozo o para una buena homogeneidad preparar en un tubo de 50 mL la solución (MTT + medio) según los pozos a usar.
 Para pozos de 24 2250:225 uL de medio y 25 uL de Mtt.
6. Cubrir la caja con papel aluminio e incubar por 3 horas.
7. Después de las 3 horas, retirar el sobrenadante.
8. Adicionar 1 mL a cada pozo de dimetilsulfóxido (DMSO) y resuspender hasta que tome un color violeta homogéneo.
9. Se toman 1000 uL de cada pozo y se coloca en las cubetas de cuarzo del espectrofotómetro de UV.
10. Se leen las muestras en el equipo

Ensayo MTT para citotoxicidad en células

Procedimiento.

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
1. Cultivar las células (200000 cel/mL) en cada pozo de la caja de 6.
2. Incubar por 24 horas para total adhesión celular.
3. Remover el medio sobrenadante.
4. Lavar con 1,2 mL de PBS estéril cada pozo.
5. Adicionar 990uL de medio (sin suero) y 10 uL de la solución de MTT.
6. Cubrir las cajas con papel de aluminio e incubar por 3 horas.
7. Remover el sobrenadante.
8. Adicionar 1000 uL de DMSO en cada pozo y resuspende de 3 a 4 veces hasta que el color violeta quede homogéneo.
9. Tomar el sobrenadante de cada pozo y depositar cada muestra en una cubeta de cuarzo.
10. Leer la absorbancia de cada muestra según la absorbancia que arroja el pico del barrido avanzado (muestra de solo el DMSO (blanco) y muestra de mayor concentración celular) que es de aproximadamente a 550nm.

Protocolo para esterilización de matrices empleadas en el cultivo de células CHO.

MATERIALES Y EQUIPOS

<table>
<thead>
<tr>
<th>N°</th>
<th>EQUIPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cabina de bioseguridad Clase II</td>
</tr>
<tr>
<td>1</td>
<td>Etanol</td>
</tr>
<tr>
<td>1</td>
<td>PBS</td>
</tr>
<tr>
<td>1</td>
<td>Incubadora</td>
</tr>
<tr>
<td>1</td>
<td>Equipo de UV.</td>
</tr>
<tr>
<td>1</td>
<td>Incubadora con atmosfera controlada de CO2</td>
</tr>
<tr>
<td>1</td>
<td>Autocolave</td>
</tr>
<tr>
<td>1</td>
<td>Caja De 24 pozos.</td>
</tr>
</tbody>
</table>

REACTIVOS

La información presentada en este documento es de exclusiva responsabilidad de los autores y no compromete a la EIA.
<table>
<thead>
<tr>
<th>REACTIVO</th>
<th>CANTIDAD</th>
<th>CONCETRACIÓN</th>
<th>MARCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etanol</td>
<td>300 mL</td>
<td>70%</td>
<td>Merck</td>
</tr>
<tr>
<td>PBS</td>
<td>1 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agua destilada</td>
<td>15 mL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROCEDIMIENTO.

1. Preparar la cabina de bioseguridad clase II.
2. Tomar las muestras de las matrices poliméricas y ponerlas en cajas de petri.
3. Llevar las muestras a la cámara UV dejándolas allí por 3 horas.
4. Realizar a cada una de las matrices cuatro lavados con PBS estéril.
5. Llevar cada una de las matrices a una caja de 6 pozos, adicionar medio hasta cubrir cada una de las muestras.
6. Incubar cada una de las matrices por 12 horas a 37° C con un ambiente de CO₂ al 5%.

Solución de PBS.

Pesar 0.2 g de KCl, 1.22 g de Na₂HPO₄, 8 g de NaCl y 0.2 g de KH₂PO₄ llevarlo a un balón de 1000 mL, completar el volumen con agua destilada hasta el aforo, ajustar el pH de la solución a 7.4, luego autocolavar la solución a una temperatura de 121°C por 20 minutos.